CHAPTER 10: Investment Appraisal Methods

First hour - 23.11.11

- Payback
- ARR

Chapter 10 Making capital investment decisions

LEARNING OUTCOMES

You should be able to:

Explain the nature and importance of investment decision making

Identify the four main investment appraisal methods found in practice

Use each method to reach a decision on a particular investment opportunity

Discuss the attributes of each of the methods

Investment appraisal methods used in practice

- **Investment appraisal** the process of appraising the potential investment projects.
- Assessment of the level of expected **returns** earned for the level of **expenditure** made.
- Estimates of **future** costs and benefits over the project's life.

Investment Appraisal

- Every business would like to do everything
- But it all costs
- Capital expenditure on new projects or purchases (fixed assets) needs to be planned
- · Capital is always rationed

Scenario:

- Your business wishes to expand its product line
- It is considering Products A and B but it can only afford to do one.
- How does it decide? What main factors affect the investment decision

• How much will it cost?

• How much will I get back?

• When will I get the income?

 4 main techniques available ranging from simple to moderately complex

Investment appraisal methods used in practice

MULTIPLE APPRAISAL METHODS:

- Non-discounted cash flow techniques:
- 1. Payback period (PBP)
- 2. Accounting rate of return (ARR/ROCE/ROI)
- Discounted cash flow techniques(DCF):
- 3. Net Present Value (NPV)
- 4. Internal Rate of Return (IRR)

6

Objectives (1)

Non-discounted cash flow techniques:

- i) Calculate **payback period** and discuss the usefulness of payback as an investment appraisal method.
- ii) Calculate accounting rate of return (return on capital employed) and discuss its usefulness as an investment appraisal method.

PBP - Relevant Cash Flows

Payback is a *cash-flow* based technique and so considers the 'Relevant cash flows' which are:

- Future
- Incremental
- Cash-based

Ignore:

- Sunk costs
- Non-cash items
- Committed costs

1. Payback Period (PBP)

- **PBP** = The time it takes the cash inflows from a project to equal the cash outflows.
- Decision rule projects with a PBP up to defined maximum period are acceptable; the shorter the PBP, the more desirable.

Payback

• When does cash inflow cover cash outflow?

	Α	В
Outflow	(1,000,000)	(1,000,000)
Inflows:		
1	250,000	100,000
2	250,000	200,000
3	250,000	300,000
4	250,000	300,000
5	100,000	400,000
6	50,000	500,000

- Project A gets repaid after 4 years
- Project B is still not repaid only 900,000
- It is 100,000 short
- Year 5 project B has 400,000 coming in
- \bullet 100,000/400,000 = 25%
- 25% of year = 3 months
- Thus payback equals 4 years 3 months
- [or: 4 yrs + (100/400 x 12)]

MBA7001 Accounting for Decision-Makers Week 6 Lecture – Capital Investment Appraisal

2. Accounting Rate of Return (ARR)

ARR = <u>Average annual PBIT</u> x 100% Average investment

Where average investment = <u>initial outlay + scrap value</u>

Or ARR = Average annual PBIT x 100%
Initial capital costs

Profit is after depreciation but before interest and tax.

Accounting Rate of Return (ARR)

- Also known as Return on Capital Employed (ROCE) or Return On Investment (ROI).
- Can be used to rank projects taking place over a number of years (using average profits and investment).
- Can also rank mutually exclusive projects.
- Decision rule project with an ARR above a defined minimum are acceptable; the greater the ARR, the more desirable.

14

Accounting Rate of Return (ARR)

Example – A project involves the immediate purchase of an item of plant costing £110,000.

It would generate annual cash flows of £24,400 for five years, starting in Year 1. The plant purchased would have a scrap value of £10,000 in five years, when the project terminates.

Depreciation is on a straight-line basis.

Required:

• Calculate ARR.

15

Workings:

 Years
 Cash Flow
 Depreciation
 Profit

 1 − 5
 24,400
 (20,000)*
 4,400

Average investment =

ARR = x 100 =

16

Accounting Rate of Return (ARR)

Accounting profits VS. Cash flows:

- Profits cannot be spent
- Profits are subjective
- Cash is required to pay dividends

Accounting Rate of Return (ARR)

ARR = Average annual PBIT
Average investment

Advantages?

See textbook & further reading

3

Comparing PBP with ARR

The cash flows for projects Z and S are as follows and there is no residual value for either investment:

is no residual value for either investillent:			
	Z	S	
Year	£	£	
О	(20,000)	(25,000)	
1	4,000	8,000	
2	6,000	8,000	
3	6,000	6,000	
4	7,000	6,000	
5	6,000	5,000	
Anticipated PBP	3 years 7 months	3 years 6 months	

Comparing PBP with ARR

Using ARR:

Project Z:

[(4000+6000+6000+7000+6000)-20000]/5 = 18.0%

Project S:

[(8000+6000+5000+6000+8000)-25000]/5 = 12.8%

12,500

Objectives (2)

Discounted cash flow (DCF) techniques

- a) Explain and apply concepts relating to interest and discounting, including:
- i) the time value of money and the role of cost of capital in appraising investments;
- ii) the calculation of present values, and the use of discount and annuity tables;
- b) Calculate net present value and discuss its usefulness as an investment appraisal method.

23

Discounted Cash Flow Techniques

- DCF is an investment appraisal technique which takes into account both the **timings** of cash flows and also **total returns** over a project's life.
- Two DCF methods to evaluate capital investments:
 - (i) Net Present Value (NPV)
 - (ii) Internal Rate of Return (IRR)

23

Time value

Money has a time value – i.e. the timing of a cash flow affects how much it is really worth to us.

For example, if offered £100 now or £100 in one year's time, most people would choose the money now.

The main reasons for this time value are as follows:

- •Inflation time erodes the purchasing power of the money.
- •Investment opportunities the money now can be invested to grow into more than £100 in one year.
- Cost of finance the receipt now could be used to repay a loan, say, and save/ reduce interest charges.
- Risk the earlier cash flow is less risky than the promise of cash in the future.

Compounding & Discounting

 Compounding = multiplying a present sum by a return % to give a future value of an investment,

i.e.
$$FV = PV (I + r)^n$$

 Discounting = dividing the future value of an investment by a return % to give the present value,

i.e.
$$PV = FV _{l}$$
 $(l + r)^n$

DCF Assumptions – timing!

- Cash flows incurred at the beginning of project occur in **year o**.
- Cash flows occurring during time period assumed to occur at period-end.
- Cash flows occurring at beginning of period assumed to occur at end of previous period.

26

Net Present Value

NPV = the sum of the discounted (present) values of the cash flows from the investment.

If the discounted future cash flows > cost of setting up the project today

The project has a + net present value (NPV)

Decision rule – Accept all positive NPV investments as they enhance shareholders' wealth; the greater the NPV, the greater the enhancement and the more desirable.

NPV Example

Saga Co. estimates the relevant cash flow of project A as follows:

Year	Cash flov	
	£	
o	(100,000)	
1	60,000	
2	80,000	
3	40,000	
4	30,000	

If Discount rate = 15%, is project A acceptable for the company?

Over non-discounted techniques studied earlier

Internal Rate of Return (IRR)

- IRR = the discount rate that causes a project to have a zero NPV.
- It represents the average percentage return on the investment, taking account of the fact that cash may be flowing in and out of the project at various points in its life.
- **Decision rule** projects that have an IRR greater than the cost of capital are acceptable; the greater the IRR, the more desirable.

IRR

Example - Single cash inflow

<u>Year</u>	<u>Cash flow</u>	Discount rat	<u>e PV</u>
	£		£
o	(120)	1.00	(120)
1	138	?	120
			NPV = 0

IRR = ?

Internal Rate of Return

The rate of interest (discount) at which the NPV = 0

$$IRR \approx L + \left(\frac{N_L}{N_L - N_H}\right) x (H - L)$$

Where L = Lower rate of interest

H = Higher rate of interest

N_L = NPV at lower rate of interest

N_H = NPV at higher rate of interest

Projects should be accepted if their IRR is greater than the cost of capital.

IRR – decision rule

- IRR = The % return given by a project
- As the IRR gives the discount rate at which the NPV is zero, it follows that:
- If IRR > Cost of capital, ACCEPT project;
 (because project is bound to have a + NPV at the cost of capital)
- If IRR < Cost of capital, **REJECT** project
- This rule is valid for all CONVENTIONAL cash flows (ie a cash outflow followed by a series of inflows)

IRR

Example - Uneven cash flows

Time	CF 10	% Discount factor	PV £	12% Discount factor	PV £
Y0	(80,000)	1.000	(80,000)	1.000	(80,000)
Y1-5	20,000	3.791	75,820	3.605	72,100
Y5	10,000	0.621	6,210	0.567	5,670
		NP\	/ = 2,030	NPV	= (2,230)
IDD	10+[2,030	V(12 - 10)	70/2	

IRR = $10 + \left[\frac{2,050}{(2,030 + 2,230)}X(12 - 10)\right]\%$

= 10.95%

IRR

- It does not relate directly to shareholders' wealth.
- Takes account of the timing of cash flow.
- Takes all relevant information into account.
- Does not always provide clear signals and can be impractical to use.

NPV and IRR compared Will NPV and IRR always come to similar conclusions? Time Project A Project B (10,000) (6,000) Yearo 6,000 3,650 6,000 3,650 NPV@10% 413 334 IRR 13% 14%

NPV and IRR compared

<u>Unconventional cash flows</u> – Multiple IRRs and No IRRs

Time	Project C	Project D	
	£	£	
Year o	(10,000)	10,000	
1	33,000	(16,000)	
2	(24,000)	12,000	

