
Developing Custom
Knowledge Scripts

NetIQ AppManager

Version 6.0

Legal Notice

THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT ARE FURNISHED UNDER AND ARE
SUBJECT TO THE TERMS OF A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT. EXCEPT AS
EXPRESSLY SET FORTH IN SUCH LICENSE AGREEMENT OR NON-DISCLOSURE AGREEMENT, NETIQ
CORPORATION PROVIDES THIS DOCUMENT AND THE SOFTWARE DESCRIBED IN THIS DOCUMENT “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO
NOT ALLOW DISCLAIMERS OF EXPRESS OR IMPLIED WARRANTIES IN CERTAIN TRANSACTIONS; THEREFORE,
THIS STATEMENT MAY NOT APPLY TO YOU.

This document and the software described in this document may not be lent, sold, or given away without the
prior written permission of NetIQ Corporation, except as otherwise permitted by law. Except as expressly set
forth in such license agreement or non-disclosure agreement, no part of this document or the software described
in this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, or otherwise, without the prior written consent of NetIQ Corporation. Some companies,
names, and data in this document are used for illustration purposes and may not represent real companies,
individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein. These changes may be incorporated in new editions of this document. NetIQ Corporation
may make improvements in or changes to the software described in this document at any time.

Copyright © 1995-2004 NetIQ Corporation, all rights reserved.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), in accordance with 48
C.F.R. 227.7202-4 (for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101 and 12.212 (for non-
DOD acquisitions), the government’s rights in the software and documentation, including its rights to use,
modify, reproduce, release, perform, display or disclose the software or documentation, will be subject in all
respects to the commercial license rights and restrictions provided in the license agreement. (1jl)

ActiveAgent, ActiveAnalytics, ActiveKnowledge, ActiveReporting, ADcheck, AppAnalyzer, Application Scanner,
AppManager, AuditTrack, AutoSync, Chariot, ClusterTrends, CommerceTrends, Configuration Assessor,
ConfigurationManager, the cube logo design, DBTrends, DiagnosticManager, Directory and Resource
Administrator, Directory Security Administrator, Domain Migration Administrator, End2End, Exchange
Administrator, Exchange Migrator, Extended Management Pack, FastTrends, File Security Administrator,
Firewall Appliance Analyzer, Firewall Reporting Center, Firewall Suite, Ganymede, the Ganymede logo,
Ganymede Software, Group Policy Administrator, Intergreat, Knowledge Scripts, Log Analyzer,
Migrate.Monitor.Manage, Mission Critical Software, Mission Critical Software for E-Business, the Mission Critical
Software logo, MP3check, NetIQ, the NetIQ logo, the NetIQ Partner Network design, NetWare Migrator,
OnePoint, the OnePoint logo, Operations Manager, Qcheck, RecoveryManager, Security Analyzer, Security
Manager, Server Consolidator, SQLcheck, VigilEnt, Visitor Mean Business, Visitor Relationship Management,
Vivinet, W logo, WebTrends, WebTrends Analysis Suite, WebTrends Data Collection Server, WebTrends for
Content Management Systems, WebTrends Intelligence Suite, WebTrends Live, WebTrends Network, WebTrends
OLAP Manager, WebTrends Report Designer, WebTrends Reporting Center, WebTrends Warehouse, Work
Smarter, WWWorld, and XMP are trademarks or registered trademarks of NetIQ Corporation or its subsidiaries
in the United States and other jurisdictions.

All other company and product names mentioned are used only for identification purposes and may be
trademarks or registered trademarks of their respective companies.

Contents
About this guide . 9

Intended audience . 9

What’s changed? . 10

Using this guide . 10

Conventions used in this guide 11

Where to go for more information. 12

Learning more about NetIQ products 13

Questions or suggestions? Contact us... 14

Chapter 1 AppManager, Knowledge Scripts, and the
Developer’s Console . 17

Configuring a Knowledge Script job in the
AppManager Operator Console 17

How AppManager processes the Knowledge Script . . . 23

The components of a Knowledge Script. 23

Developer’s tools . 30

Editing Knowledge Scripts in the Developer’s Console . 31

Different views in the Developer’s Console 35

Testing the sample script . 38

Chapter 2 AppManager Architecture . 39

A completed Knowledge Script 39

AppManager architecture . 40

Running Knowledge Scripts . 43
1

Example . 45

Where each part of the running script came from 47

Chapter 3 Knowledge Script basics . 49

Script elements . 49

Starting creation of a new script 53

Setting default properties . 56

Where to go from here . 68

Chapter 4 Modifying a monitoring script written in VBScript . . 71

Listing of the Samples_FilesOpen.qml script 71

Preliminary discussion . 74

Syntax of the managed object methods 77

Syntax of the Callback functions 77

The program logic . 82

The modified script, Samples_FilesOpenEx.qml 86

Performance Monitor counters . 87

Chapter 5 Modifying a monitoring script written in
Summit BasicScript . 91

Listing of the NT_CpuLoaded.qml script 91

Preliminary discussion . 95

Syntax of the managed object methods 100

Syntax of the Callback functions 101

The program logic . 104

The modified script, NT_CpuLoadedEx.qml 111

Chapter 6 Modifying a monitoring script written in Perl 117

Listing of the Samples_HTTPHealth.qml script. 117
2 Developing Custom Knowledge Scripts

Preliminary discussion . 119

Syntax of the Callback functions 123

The program logic . 124

The modified script, Samples_HTTPHealthEx.qml . . . 130

Chapter 7 Modifying an action script written in VBScript133

Setting up to perform actions . 134

Invoking actions . 136

Events without actions . 136

Ending actions . 137

XML messages. 137

Listing of the Action_WriteToFile.qml script 140

User-set Script Parameters . 142

Parameters supplied by AppManager 145

Functions called in the code. 146

Syntax of the Callback functions 147

The program logic . 150

The modified script, Action_writeToFileEx.qml. 158

Chapter 8 Modifying an action script written in
Summit BasicScript .161

Listing of the Action_Messenger.qml script 162

User-set Script Parameters . 165

Parameters supplied by AppManager 167

Functions called in the code. 168

Syntax of the Callback functions 169

The program logic . 173

The modified script, Action_MessengerEx.qml 183
Contents 3

Chapter 9 Modifying an action script written in Perl. 185

Setting up to perform actions . 186

Invoking actions . 188

Events without actions . 188

Ending actions. 189

XML messages . 189

Listing of the Action_UXCommand.qml script 192

User-set Script Parameters. 192

Parameters supplied by AppManager. 193

Functions called in the code . 194

Syntax of the Callback functions 195

The program logic . 197

The modified script, Action_UXCommandEx.qml 199

Chapter 10 Modifying a report script written in VBScript 203

About report scripts . 204

Discovering the Report agent . 205

Altering the value set of an existing script 207

Modifying the code of an existing script 219

Chapter 11 AppManager Callbacks for Summit BasicScript
and VBScript . 229

AbortScript . 232

CreateData . 234

CreateEvent . 237

DataHeader. 240

DataLog. 242

DynaCollectData . 244
4 Developing Custom Knowledge Scripts

DynaDataLog . 246

GetAgentInfo . 248

GetContextEx . 249

GetJobID . 252

GetKPInterval . 253

GetMachName . 254

GetProgID . 255

GetSecurityContext . 256

GetTempFileName (VBScript only) 257

GetVersion . 258

Item (VBScript only) . 260

ItemCount (VBScript only) . 262

IterationCount . 264

LongDataHeader . 265

LongDataLog . 267

LongDynaDataLog . 268

MCAbort . 270

MCEnterCS . 271

MCExitCS. 272

MCGetMOID. 273

MCVersion . 275

MCWaitForObject (Summit BasicScript only). 276

MCWaitForObjectEx (Summit BasicScript only). 278

MSActions . 280

MSLongActions . 284

NQSleep. 285
Contents 5

QTrace . 286

WaitForObject . 288

Chapter 12 AppManager Callbacks for Perl 291

AbortScript() . 292

CounterValue() . 294

CreateData() . 295

CreateEvent() . 298

ExecCmd() . 301

ExportData() . 303

ExportHugeData_pl() . 305

GetJobID() . 306

GetMachName(). 307

GetScriptInterval() . 308

GetTempFileName() . 309

ImportData() . 310

ImportHugeData_pl() . 312

IterationCount() . 313

Chapter 13 Testing and debugging. 315

Debugging Knowledge Scripts 315

Where to debug scripts . 316

Setting debuggers for VBScript and BasicScript. 316

The prepend and append files 318

Debugging Summit BasicScript scripts 320

Debugging VBScript scripts . 320

Debugging Perl scripts . 321
6 Developing Custom Knowledge Scripts

Chapter 14 Glossary .323

Appendix A Dialog Boxes. .327

Appendix B Perl Development .351

Compiling your Perl modules . 351

Perl best practices . 352

Index .361
Contents 7

8 Developing Custom Knowledge Scripts

About this guide
The NetIQ® AppManager Suite (AppManager®) is a comprehensive
solution managing and monitoring the performance, availability, and
server health for a broad spectrum of operating environments,
applications, and server hardware.

AppManager enables system administrators to view all of their servers
and workstations from a central, easy-to-use console, providing
complete visibility of critical server and application resources across
the enterprise. With AppManager, administrative staffs can monitor
computer and application resources, check for potential problems,
initiate responsive actions, and gather performance data for real-time
and historical reporting and analysis.

Intended audience

Developing Custom Knowledge Scripts is intended for system administrators
and expert users interested in modifying existing Knowledge Scripts®
to provide different or additional information.

Knowledge Scripts referenced in the AppManager documentation and
packaged with the product can be used as a basis for building your
own Knowledge Scripts, provided that you are an authorized Beta site
or licensed customer and you are not engaged in any competitive
activities against NetIQ Corporation.

This guide assumes you are at least somewhat familiar with Visual
Basic or Perl programming and common programming practices as
well as system or operation management. All of the Knowledge
Scripts discussed in this guide and used as examples are written in
Summit BasicScript, VBScript, or Perl.
9

What’s changed?

This book replaces the Developer Guide that was delivered with
AppManager 5.0 and earlier versions. Developing Custom Knowledge Scripts
covers monitoring, action, and reporting scripts, with detailed
examples written in VBScript, Summit BasicScript, and Perl.

Using this guide

Depending on your interests and level of AppManager experience,
you may want to read portions of this guide selectively. The following
topics are covered:
● Chapter 1, “AppManager, Knowledge Scripts, and the Developer’s

Console,” provides an overview of how Knowledge Scripts are
used in AppManager and introduces the Developer’s Console.

● Chapter 2, “AppManager Architecture,” discusses the process by
which AppManager turns a Knowledge Script in XML format into
an executable script that an agent can run.

● Chapter 3, “Knowledge Script basics,” covers the basics of creating
a Knowledge Script, with the exception of writing the code.

● Chapter 4, “Modifying a monitoring script written in VBScript,”
dissects the code in a sample monitoring script and shows how to
modify it to obtain different information. This example is quite
simple.

● Chapter 5, “Modifying a monitoring script written in Summit
BasicScript,” dissects the code in a sample monitoring script and
shows how to modify it to obtain additional information. This
example is more complex than the one in the previous chapter.

● Chapter 6, “Modifying a monitoring script written in Perl,” dissects
the code in a sample Perl monitoring script and shows how to
modify it to obtain different information.
10 Developing Custom Knowledge Scripts

● Chapter 7, “Modifying an action script written in VBScript,”
dissects the code in a sample action script and shows how to
modify it to obtain different behavior.

● Chapter 8, “Modifying an action script written in Summit
BasicScript,” dissects the code in a sample action script and shows
how to modify it to obtain different behavior.

● Chapter 9, “Modifying an action script written in Perl,” dissects the
code in a sample action script and shows how to modify it to
obtain different behavior.

● Chapter 10, “Modifying a report script written in VBScript,”
discusses the structure of a report script.

● Chapter 11, “AppManager Callbacks for Summit BasicScript and
VBScript,” provides reference information for the Callback
functions used in BasicScript and VBScript Knowledge Scripts.

● Chapter 12, “AppManager Callbacks for Perl,” provides reference
information for the Callbacks used when writing Knowledge
Scripts in Perl.

● Chapter 13, “Testing and debugging,” discusses syntax checking
and debugging.

● Chapter 14, “Glossary,” defines the terms used in this book.
● Appendix A, “Dialog Boxes,” lists and discusses all the fields in the

various dialog boxes you can open in the Developer’s Console.
● Appendix B, “Perl Development,” details Perl programming best

practices.

In addition to these chapters an index is provided for your reference.

Conventions used in this guide

The following conventions are used in this guide:
● Fixed-width font is used for source code, program names or

output, file names, and commands that you enter.
About this guide 11

● An italicized fixed-width font is used to indicate variables.
● Bold text is used to emphasize commands, buttons, or user

interface text, and to introduce new terms.
● Italics are used for book titles.

Where to go for more information

The AppManager documentation set includes several sources of
information. These sources are available both as printed books and in
Adobe Acrobat (PDF) format:
● Installation Guide for complete instructions on installing and

configuring AppManager.
● User Guide for complete information about running jobs,

responding to events, creating reports, and working with all of the
AppManager consoles.

● Administrator Guide for complete information about managing an
AppManager site, setting security, and maintaining the
AppManager repository.

● Knowledge Script Guide for a brief description of what each
Knowledge Script does.

Additional documentation is available in Adobe Acrobat (PDF)
format only and includes:
● Upgrade and Migration Guide for complete information on how to

upgrade from a previous version of AppManager.
● Knowledge Script Reference Guide for complete information about each

Knowledge Script, including details about setting job parameters.
● Managed Objects Reference Guide for technical information about the

most commonly used AppManager managed objects. (This guide
does not document all AppManager managed objects.)

● Reporting Guide for complete information about working with
AppManager reporting components, including the NetIQ
12 Developing Custom Knowledge Scripts

AppManager Operator Console, Report Knowledge Scripts, and
NetIQ AppManager Operator Web Console.

The basic AppManager documentation set is available on the
AppManager CD-ROM. Additional resources are available on the
NetIQ Online Support Web site. In many cases, supplemental,
application-specific documentation may be available on the Web. For
example:
● NetIQ Work Smarter guides provide tips, advice, and

recommendations on special topics, such as improving the
performance of the AppManager Operator Console. We
recommend you periodically check the NetIQ Online Support site
for updated and new NetIQ Work Smarter guides.

● Up-to-date information regarding the versions of products that
AppManager supports.

Note To access the NetIQ Online Support site, you must be a
registered AppManager user.

You may also find supplemental technical documentation for your
applications useful. For example, you may want to refer to various
Microsoft Resource Kits and Microsoft VBA manuals.

Learning more about NetIQ products

NetIQ Corporation is a leading provider of intelligent, e-business
management software solutions for all components of your corporate
infrastructure. These components include servers, networks,
directories, Web servers, and various applications.

NetIQ Corporation provides integrated products that simplify and
unify directory, security, operations, and network performance
management in your extended enterprise. NetIQ Corporation
provides the following categories of products:
● Windows and Exchange Management The NetIQ Windows

and Exchange Management products provide tools for managing,
migrating, administering and analyzing your Windows and
About this guide 13

Exchange environments. These products include tools for setting
and enforcing policies that govern user accounts, groups,
resources, services, events, files, and folders, and products that
automate time-consuming administration tasks.

● Performance and Availability Monitoring The NetIQ
Performance and Availability products provide control and
automation for monitoring the performance and service
availability for your critical servers, applications, and devices, and
extensive network monitoring capabilities to provide a complete,
end-to-end management solution for e-business infrastructures.
These products enable you to pinpoint existing and potential
server and network problems and resolve those problems quickly
and effectively.

● Security Management and Administration The NetIQ
Security Management and Administration products enable you to
administer, assess, enforce, and protect all aspects of security
within your Windows environment. These products provide
incident management and intrusion detection, vulnerability
assessment, firewall reporting and analysis, and Windows security
administration.

● Web Analytics The NetIQ Web Analytics products enable you to
evaluate and analyze your Web site traffic and performance, as well
as manage your visitor relationships.

Questions or suggestions? Contact us...

NetIQ Corporation is a Microsoft Premier Independent Software
Vendor, a Microsoft Certified Solution Provider, ADSI Partner, and
Microsoft Security Partner and is headquartered in San Jose,
California, with offices throughout the United States, Canada, Europe,
and Asia.

If you have questions or comments, we look forward to hearing from
you. For information about contacting NetIQ, visit our Web site at
www.netiq.com/About_NetIQ/ContactUs.asp. From the Web
14 Developing Custom Knowledge Scripts

site, you can get the latest news and information from Technical
Support, Public Relations, Investor Relations, and Sales. In addition,
you can find our office locations and a list of our current partners.

To fill out an online Technical Support Request form, go to
www.netiq.com/Support or e-mail Technical Support directly at
support@netiq.com.

For comments or suggestions regarding the documentation or online
help, send an e-mail to documentation@netiq.com.
About this guide 15

16 Developing Custom Knowledge Scripts

Chapter 1

AppManager, Knowledge Scripts,
and the Developer’s Console
This chapter provides an overview of the way in which AppManager
uses Knowledge Scripts and an introduction to the Developer’s
Console. The following topics are covered:
● Configuring a Knowledge Script job in the AppManager Operator

Console
● How AppManager processes the Knowledge Script
● The components of a Knowledge Script
● Developer’s tools
● Editing Knowledge Scripts in the Developer’s Console
● Different views in the Developer’s Console
● Testing the sample script

Configuring a Knowledge Script job in the
AppManager Operator Console

If you are going to develop your own Knowledge Scripts, you should
already be familiar with the use of Knowledge Scripts in the
AppManager environment. This section provides a brief review of the
process, covering the steps that will be important for you to
understand as a developer.

An AppManager agent (software developed by NetIQ) on a managed
client (a managed computer) runs Knowledge Script jobs on that
computer. These jobs are requested by an Operator Console user
who:
17

● chooses the Knowledge Script that performs the task or tasks that
the user wants performed, and

● sets the properties of the job—such as the frequency with which
the job should run, thresholds that should not be exceeded,
whether or not to raise events, and so forth.

The user accomplishes these tasks in the AppManager Operator
Console by:

1 selecting the desired script in the Knowledge Script pane,

2 dragging the script to the target object on which it should operate
(a computer, a hardware component like a disk drive, an
application, and so forth) in the TreeView pane,

3 dropping the script on the target object, which opens a Properties
dialog box for the script, and

4 setting the job properties in the Properties dialog box.

When the user clicks OK to close the Properties dialog box, the
Knowledge Script becomes a “job” and is run by the AppManager
agent on the target computer.

Note In this book, the term target computer refers either to the
computer that is itself the target object for a script, or to the computer
that contains the target object (when the target object itself is a hardware
device like a CPU, or a software application or service). Refer to
Chapter 14, “Glossary,” for more definitions of terms used in this
book.
18 Developing Custom Knowledge Scripts

Visually, the process occurs like this:

Step 1. The user selects the Knowledge Script to be run and drags it
to the target object in the Operator Console’s TreeView pane. In the
case below, the script is a sample script (Samples_HelloWorld.qml, in
the Samples Knowledge Script Group) and the target object is a
computer.

Note that, during the drag, the target object icon has changed from its
normal state to a green disc. This indicates that it is legal to drop this
particular script on this target object. At the same time, the icon for
the CPU immediately below the target computer in the TreeView
pane has changed from its normal state to a left-pointing green arrow,
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 19

indicating that it is legal to drop this script on a target object higher up
in the TreeView pane.

Note The changing of icons to green, indicating where it is legal to
drop this script, is a manifestation of “object type checking.” Briefly,
every Knowledge Script contains an “object definition” that
determines which target objects are legal for this script. The Operator
Console software will not permit you to drop a script on the wrong
type of object.

Step 2. Given the green disc, the user drops the Knowledge Script on
the target object. The Knowledge Script Properties dialog box then
opens.

Icon Normal State During Drag

Target object (a computer).

CPU in the target computer, a
component lower in the TreeView
pane.
20 Developing Custom Knowledge Scripts

The Schedule tab allows the user to set the frequency with which the
job is to be run. In this case the default is Run once. The user can set
a different schedule, or accept the default.

Note The default schedule is not always the same. You, the script
developer, choose the default for your script.

Perhaps the most important tab in the Properties dialog box is the
Values tab. The Script Parameters in your script that you have chosen to
be user-definable are listed in this tab. The user may elect to accept the
default values or to change them.

Caution When an Operator Console user enters values for Script
Parameters, the Operator Console does not do any input validation.
Your code must always be written so that it can handle user input
errors, including no input.

You, the developer, create the Script Parameters that users can give
values to, and you choose the defaults for those Script Parameters as
well—when you create your script. You also define the range of
possible values for the Script Parameters. For example, in
Samples_HelloWorld.qml, DO_EVENT can only take on two values, “y”
or “n”.
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 21

In the case of this script, there is only one Script Parameter that the
user can set:

In general, the user is not shown the name of the Script Parameter he
or she is setting. When you create the Knowledge Script, you will
associate a variable name with each Script Parameter so that you can
access the user-specified value. The user will be shown a user-friendly
description. For example, in Samples_HelloWorld.qml, the user will
see "Raise events? [y/n]" while the variable name associated with
this parameter is DO_EVENT.

Step 3. When the user clicks OK and closes the Properties dialog
box, the job begins to run.

Script
Parameter

Description Possible
Values

Default

Raise
events?

Should the script raise events? y (yes)

or n (no)
y

22 Developing Custom Knowledge Scripts

Recall the green disc that appeared when the script was being dragged
and dropped. Once the job begins to run, the original icon reappears,
with a blue capital J (“J” for job) superimposed. A job is, by definition,
a Knowledge Script that has begun to run.

Note If an event has been raised by a script, the target object’s icon will
blink alternately with an error icon—a disc whose color indicates the
severity of the error. Your script defines what that severity is.

How AppManager processes the Knowledge Script

In the process described above, the Knowledge Script is transformed
by the AppManager infrastructure to generate a final script that the
AppManager agents can run. In this transformation, AppManager:

1 Parses the XML elements of the Knowledge Script.

2 Leaves the code section as is.

3 Adds constants for the AppManager and Knowledge Script version
numbers at the beginning of the code.

4 Gives the object type variable a value and adds it at the beginning
of the code.

5 Converts the Script Parameters to variables with defined values
(VBScript, Perl) or constants (Summit BasicScript), and adds them
at the beginning of the code.

This transformation generates an executable script that is sent to the
AppManager agent, along with scheduling information (not part of
the generated script), as a job to be run.

The components of a Knowledge Script

Knowledge Script code is written in:
● Summit BasicScript (older scripts for managing Windows

computers),
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 23

● VBScript (more recent scripts for managing Windows computers),
or

● Perl (scripts for managing UNIX computers).

Each Knowledge Script written by you or others (as checked into the
AppManager repository), is an XML file that consists of two
qualitatively different components:

1 numerous non-code XML elements at the beginning of the script

2 an XML element that contains the code (the last element in the file).

Such scripts have a “.qml” extension (for “NetIQ XML”).

Note Many older scripts have an “.ebs” extension. These scripts are
not written in XML. However, if you open and then save such a script
in the Developer’s Console (see “Developer’s tools” on page 30,
below), it will be converted to an XML file with a .qml extension.

The non-code XML elements of the Knowledge Script

The non-code XML section that precedes the code element contains:
● All of the Script Parameters (thresholds, DO_DATA, DO_EVENT, etc.)

for which the user can set values, along with their variable type,
range (if any), and default value.

● The schedule for running the script, with a default value.
● The resource object type or types for the script.
● The names of action scripts to be executed, if any (usually chosen

by the user).
● The name of the scripting language used.
● Several other elements, as discussed later.

Note You should not edit the non-code XML section directly. The
Developer’s Console includes a user interface (the Script Properties
dialog box, opened from the View menu) for entering and modifying
these non-code XML elements.
24 Developing Custom Knowledge Scripts

The code component of the Knowledge Script

This code component of the script is written by you. It is itself a large
XML element, although you do not need to concern yourself with the
XML tags. It will interact with the non-code XML elements in the
script, so you must be aware of them. For example, some of the
constants or variables in your script can have their values set by the
user. These values will replace the defaults in the non-code XML
<parameter> element if a user chooses to set them.

Note The Script Parameters that can be set by the user will become
variables (or constants, in the case of Summit BasicScript) in your code.

Your Knowledge Script code can contain the following:
● Any logic allowed by the language you have chosen to use.
● Any built-in functions of the language you have chosen to use.
● Script Parameters to which a user can give values, for example

DO_EVENT. You use these Script Parameters as constants or
variables in your code just as if you had declared them and had
assigned values to them. When the final agent-runnable script is
generated, these Script Parameters will be included as defined
constants in Summit BasicScript and as variables with values assigned
in VBScript or Perl scripts.

● Any other variables or constants of your choice.
● Managed object methods (see the Managed Object Reference Manual).

These methods are the “workhorses” of the scripts—you use them
to get system information about managed hardware or process
information about services and applications. In VBScript and
Summit BasicScript, managed objects are COM objects that
contain methods that you can call. In Perl, managed objects are
Perl modules.

● Callback functions (see Chapter 11, “AppManager Callbacks for
Summit BasicScript and VBScript” and Chapter 12, “AppManager
Callbacks for Perl”). These functions are called by your script to
request information or action from the AppManager agent that is
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 25

running the script. For example, you use a Callback function to
raise an event.

● Exception handling.

A sample Knowledge Script

Here is a listing of the entirety of a very simple Knowledge Script
called Samples_HelloWorld.qml, which can be found on your
AppManager CD in appmanager\documentation\
development_tools\developer_guide\scripts.

Samples_HelloWorld.qml is written in VBScript (the default
language). It raises an event with a message of “Hello World!” every
time the script executes (default = every 2 minutes).

The lines of asterisks (for example, *******comment**********) are
not part of the script. They have been added to show you the
boundaries of the non-code XML elements and the code element.

Note It is not necessary to try to understand this script at this time. It
is here just so you can see what a complete Knowledge Script contains.

***************beginning of the XML file*****

**************the non-code XML elements**************
<PROLOGUE>

<![CDATA[
'### Copyright (c) 1995-2002 NetIQ Corp. All rights reserved.

'###
'### Samples_HelloWorld.qml

'### This script, that illustrates sending events,
'### is used as an example in the Developer Guide.

]]>
</PROLOGUE>

<KSID>

 <Type>Regular</Type>
 <Name>Samples_HelloWorld</Name>

 <Desc>Sample Knowledge Script for raising events.</Desc>
 <Version>

 <AppManID>4.0.15.1</AppManID>
 <KSVerID>1.0</KSVerID>

 </Version>
26 Developing Custom Knowledge Scripts

 <NeedPWD>0</NeedPWD>

 <AdminOnly>0</AdminOnly>
 <UnixOnly>0</UnixOnly>

 <DataSrcID>0</DataSrcID>
 <Platform>-1</Platform>

</KSID>

<ObjType v3style="1" fullpath="0" dropfolderlist="0">
 <Type name="NT_MachineFolder"></Type>

</ObjType>

<Schedule>
 <Default type="interval" runmode="sched">

 <Interval>
 <Hour>0</Hour>

 <Minute>0</Minute>

 <Second>120</Second>
 </Interval>

 </Default>
 <Allowed>

 <RunOnce>1</RunOnce>
 <IntervalIter>1</IntervalIter>

 <Daily>1</Daily>
 <Weekly>1</Weekly>

 <Monthly>1</Monthly>
 </Allowed>

</Schedule>

<DataSrc></DataSrc>

<Parameter>
 <Desc>Set the Event property to y to generate events.</Desc>

 <Param name="DO_EVENT">
 <Desc>Raise events? (y/n)</Desc>

 <Type>String</Type>
 <Size>1</Size>

 <Range>ynYN</Range>
 <Value>y</Value>

 <ReqInput>0</ReqInput>
 <Folder>0</Folder>

 <NoQuote>0</NoQuote>
 </Param>

 <Param name="AKPID">
 <Desc>Action, if any</Desc>

 <Value>AKP_NULL</Value>
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 27

 <ReqInput>0</ReqInput>

 <Folder>0</Folder>
 <NoQuote>0</NoQuote>

 </Param>
</Parameter>

<ActionDef>

 <Desc>Specify the action to take when events are raised.
The default is to take no action. </Desc>

</ActionDef>

*****end of the non-code XML elements****************
*****beginning of the VBScript XML element********

<ScriptDef>
 <Script language="VBScript">

<![CDATA[
*****beginning of the executable code********

Sub Main()
 Dim strShortMsg

 If DO_EVENT = "y" Then

 'Event message displayed in the List pane
 strShortMsg = "Hello World! "

 ' raise an event
 NQEXT.CreateEvent 2, strShortMsg, _

 AKPID, "", 0, "", "", 0, 0
 End If

End Sub

*****end of the executable code*************
]]>

</Script>
</ScriptDef>

*****end of the VBScript XML element********
*****end of the XML file********************

The final, generated script

When you look over the above script in its entirety, it is evident that
this Knowledge Script file cannot be executed as it is because the non-
code XML portions are not syntactically correct. Even the
syntactically correct code cannot be executed because DO_EVENT is
neither declared nor assigned a value.
28 Developing Custom Knowledge Scripts

After the Operator Console user has created a job by dragging and
dropping a script on a target object (or objects) and then setting its
properties, and before the script is executed, the AppManager
infrastructure will generate a final script that the AppManager agent
can run. In the generation process, some of the non-code XML
elements in the Knowledge Script will be converted into actual code.
For example, the user-set Script Parameters are converted and
prepended to the beginning of the code section. The result is a
generated script, which is a complete and executable script that is
sent to the AppManager Agent (or Agents) to be run as a job. This
was briefly described in “How AppManager processes the Knowledge
Script” on page 23. You will see, in the next chapter, examples of each
stage in the process of converting a Knowledge Script into a running
job.
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 29

Developer’s tools

When you purchase a Developer license, you receive a suite of tools
and help files that you can use to create custom Knowledge Scripts.
You install these tools and help files when you select the Developer’s
Console Utilities component in the setup program.

The main utilities installed are the Developer’s Console, the
Knowledge Script Editor, and the Icon Manager.

Developer’s Console

Using this console, you can:
● Automatically generate values for non-code XML elements of your

Knowledge Script, using the Script Properties dialog box.
● Enter the code in the executable part of the script.
● Check Knowledge Scripts out of and into the AppManager

repository.
● Debug scripts written in VBScript.
30 Developing Custom Knowledge Scripts

The Developer’s Console also allows you to convert older existing
Knowledge Scripts (with a .ebs extension) to the newer .qml format.
Simply open the .ebs script in the Developer’s Console and then save
it. It will be automatically converted to the newer XML format and
saved with a .qml extension. Alternatively, you can convert entire
directories of 3.x scripts by using the Migrate command on the Tools
menu.

Caution After you migrate an .ebs file to a .qml file, you must be sure
that the <AppManID> element in the new .qml file is set to version 4.0
or later (for example, <AppManID>4.0</AppManID>). You will need to
edit the .qml file in a text editor to accomplish this—the <AppManID>
element is not accessible through the Script Properties dialog box.

Knowledge Script Editor

You can use the Knowledge Script Editor to write and debug Summit
BasicScript code directly (just the code, not the rest of the file).

Icon Manager

Use this utility to add custom icons and object types to the
AppManager repository for customized discovery scripts (not covered
in this book).

Editing Knowledge Scripts in the Developer’s
Console

Opening the Developer’s Console

To open the Developer’s Console, choose Program Files > NetIQ >
AppManager > Developer’s Console > Developer Console from
the Windows Start menu.

You have several options for editing Knowledge Scripts:
● Create a new Knowledge Script.
● Edit an existing Knowledge Script.
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 31

● Copy an existing Knowledge Script, rename it, and then edit it to
create a new script with modified behavior.

In all cases, the Knowledge Script you are editing must be checked out
of the AppManager repository. After completing your edits, you must
check the script in to the AppManager repository before you can run
it as a job.

Opening Files

Choose Open from the File menu to open a .qml or .ebs file. The
Developer’s Console will automatically sense the language that the
script is written in (from the XML <Script> element) and will open
with the script in edit mode.

Warning You must save any script you are editing in the Console
before you open another. If you use the Open command to open a
different file, the current file will be closed automatically and you will
lose your edits if you haven’t saved the file.

Alternatively you can double-click a Knowledge Script file in Windows
Explorer:
● If you double-click a file with a .qml extension in Windows

Explorer, the Developer’s Console will open automatically with
that file in edit mode.

● If you double-click on a file with a .qml extension when the
Developer’s Console is already open, a new instance of the
Console will open.

● If you double-click a file with an .ebs extension, the Developer’s
Console will not open. The Knowledge Script Editor, which is used
uniquely for .ebs scripts, will open instead.

Checking out scripts for editing

If the Knowledge Script already exists in the AppManager repository
and you want to edit it, you should check it out (use the right-click
menu in the AppManager Operator Console) before editing. Checking
32 Developing Custom Knowledge Scripts

it out will automatically open the Developer’s Console with the script
in edit mode. Then, choose Check In Knowledge Script from the
Tools menu to check your script back in when you are finished with
your edits.

Note If you have difficulty checking a script in from the Developer’s
Console, you can check it in from the AppManager Operator Console
using the Check In Knowledge Script... command on the KS menu
(or on the right-click menu). This will overwrite the previously
checked-in version.

Copying, renaming, and checking in scripts

If you want to use an existing Knowledge Script as the basis of a new
(modified) script, you should copy it and rename it before you do your
modifications.

To copy an existing Knowledge Script and check it in with a new
name, do the following:

1 In the Knowledge Script pane of the AppManager Operator
Console, highlight the file you want to copy.
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 33

2 With the cursor on the highlighted file, open the right-click pop-up
menu and choose Copy Knowledge Script.... The Copy
Knowledge Script dialog box will open:

3 Rename your file as desired, change the description, and click OK.

4 The new Knowledge Script appears in the Knowledge Script pane
of the AppManager Operator Console—it is automatically checked in
to the AppManager repository.

To edit the new file, you will need to check it out to a directory of your
choice. Then you must check it back in when you are finished with
your modifications.

Saving and checking in scripts

To save and check in a script:

1 Choose Save or Save As from the File menu to save your script to
any directory.

2 Choose Check In Knowledge Script from the Tools menu to
check your script in to the AppManager repository. If the script has
34 Developing Custom Knowledge Scripts

never been checked in before, you will see it appear in the
appropriate category in the AppManager Operator Console.

Different views in the Developer’s Console

The screen below shows the View menu of the Developer’s Console
when the Console is opened to begin development of a new script in
the default scripting language, VBScript.

In the central section of this menu are the views that you will use
during development. The views are:
● Edit—This is the default view where you see only your code,

which you can edit.
● XML (Read-only)—In this view, you see the entire XML file, the

same way you would see it if you opened it in a text editor. You
cannot edit the file in this view. (You are not supposed to edit the
non-code XML portion—you change that through the Script
Properties dialog box that opens when you select Properties
from the View menu.)

● VB Script/BasicScript/Perl (Read-only)—In this view, you see
the script as it will appear when it is run by the AppManager agent,
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 35

except that the values that the user can choose are still set to the
script defaults and the object type values are not yet assigned.
The generated script that gets executed in the AppManager agent will
look exactly like the script shown in this view except that the object
type will be filled in.

Note Not all of the information in the non-code XML elements goes
into the running script. For example, the information about the
schedule is sent to the AppManager agent along with the script, but it
is not part of the script.

Here is the sample script, Samples_HelloWorld.qml, that was listed
earlier, as it appears in the different views:

Edit view

This is what you see in the Edit view:
Sub Main()

 Dim strShortMsg

 If DO_EVENT = "y" Then
 ' Event message displayed in the List pane

 strShortMsg = "Hello World! "
 ' raise an event

 NQEXT.CreateEvent 2, strShortMsg, _
 AKPID, "", 0, "", "", 0, 0

 End If
End Sub

XML (Read-only) view

The complete listing that you saw in “A sample Knowledge Script” on
page 26 is what appears in the XML (Read-only) view (except that
the comment lines, such as ****the non-code XML elements******,
will not be present).

VB Script (Read-only) view

In the VB Script (Read-only) view, this is what you see:
36 Developing Custom Knowledge Scripts

'### Begin KSID Section

Const AppManID = "4.0.15.1"
Const KSVerID = "1.0"

'### End KSID Section

'### Begin Type Section
NT_MachineFolder = ""

'### End Type Section

'### Begin KPP Section
DO_EVENT="y"

AKPID="AKP_NULL"
'### End KPP Section

'### Begin KPV Section

Sub KS_INIT ()

End Sub
'### End KPV Section

'### Begin KPS Section

Sub Main()
Dim strShortMsg

If DO_EVENT = "y" Then

 'Event message displayed in the List pane
 strShortMsg = "Hello World! "

 ' raise an event
 NQEXT.CreateEvent 2, strShortMsg, _

 AKPID, "", 0, "", "", 0, 0
End If

End Sub
'### End KPS Section

Note that this is a script that the AppManager agent can run. It does
not yet have the values that a user might choose. However, it does
have the default values and you can run it as a job. Also note that the
lengthy section of non-code XML elements has been replaced with a
much shorter section of executable script.

Note The “KPV Section” that contains Sub KS_INIT() does
nothing—it is reserved for future use.
Chapter 1 • AppManager, Knowledge Scripts, and the Developer’s Console 37

Testing the sample script

If you want to run Samples_HelloWorld.qml to test what you have
learned, you must first check it in to the AppManager repository, as
follows:

1 Open the script in the Developer’s Console. This script, and other
sample scripts, are located on your AppManager CD, in
appmanager\documentation\

development_tools\developer_guide\scripts.

2 Check in the script by choosing Check In Knowledge Script from
the Tools menu. The script should appear in the Samples tab of
the Knowledge Script pane of the Operator Console.

Note If check-in fails using the Tools command, you can check in the
file directly by using the right-click menu in the Knowledge Script
pane of the Operator Console.

Once the Knowledge Script has been checked in, you can run it. You
might find it interesting to explore the effect of changing schedules or
adding actions to the script. You can do this either of two ways:
● with the Script Properties dialog box in the Developer’s Console

(in this case, you must check the script out and back in each time
you modify it) or

● using the Properties dialog box that opens in the Operator
Console after you have dropped the script on its target object.
38 Developing Custom Knowledge Scripts

Chapter 2

AppManager Architecture
The discussion in this chapter describes the AppManager architectural
elements used in processing and running Knowledge Scripts. It should
be helpful in understanding the more subtle aspects of writing scripts.
Complete mastery of this material is, however, not essential for
modifying existing scripts.

This chapter provides information about the life history of a
Knowledge Script—from the time it was checked in to the
AppManager repository as a completed script to the time it begins to
run as a job.

The following topics are covered:
● A completed Knowledge Script
● AppManager architecture
● Running Knowledge Scripts
● Example
● Where each part of the running script came from

A completed Knowledge Script

After you have finished creating or modifying a script, you check it in
to the AppManager repository. As you know (see “The final,
generated script,” on page 28), your checked-in Knowledge Scripts are
not yet executable.

All pre-existing scripts are stored in various tables of the AppManager
repository. You can find any script in your \AppManager\qdb\kp
39

directory, where they are in subdirectories according to type. For
example, WinNT scripts can be found in \AppManager\qdb\kp\nt.

Note The qdb in \AppManager\qdb is just the name of a directory—it
does not reflect the contents of the AppManager repository. During
the AppManager installation, scripts in the kp directory tree were
checked in to the AppManager repository. Subsequently, any changes
made (by checking scripts out, altering them, and checking them back
in) affect the Knowledge Scripts stored in the AppManager repository,
but those changes are not reflected in the .qml files in the
\AppManager\qdb\kp directory tree unless you checked them out to
that directory.

When a user creates a job from your Knowledge Script, AppManager
retrieves the script from the repository and processes it through a
series of steps to generate an executable script that the AppManager
agent can run on the target computer. To understand this series of
steps, you need to know a little about the AppManager architecture.

AppManager architecture

As discussed in Chapter 1, the Operator Console creates Knowledge
Script jobs to be run by the AppManager agent on the target
computer.
40 Developing Custom Knowledge Scripts

The following drawing shows a more detailed view of the
AppManager architecture to explain how Knowledge Scripts are
processed and run. The drawing does not represent the only possible
AppManager configuration—for example, the three components
shown as AppManager can be on the same server, as shown, but they
do not need to be. Also, the components on the Managed computer
have been simplified somewhat to facilitate discussion.

AppManager
management
server

AppManager

AppManager
Operator
Console

Managed server
or workstation with
AppManager agent
software installed.

AppManager
repository

Knowledge
Script job
Chapter 2 • AppManager Architecture 41

AppManager components

1 The Operator Console is the user interface for AppManager, and
connects to the AppManager repository.

Note The AppManager repository is called “QDB” by default,
although it can be given any name during installation.

2 The repository is very important—it is the center of the
AppManager world. The repository server provides a central store
of information including Knowledge Scripts, events, graphs, and
jobs (instances of running Knowledge Scripts). The job tables
include the various pieces of your scripts, and other information
such as scheduling.

AppManager

AppManager
repository

Managed computer

Operator
Console Managed

Objects

Management
Service

Managed Client’s own
system, programs, services,

applications

AppManager
Agent

Script
Engine

Callback
functions
42 Developing Custom Knowledge Scripts

3 The Management Service is responsible for transferring jobs
created by the user to the AppManager agents on managed systems.
It is also responsible for forwarding the events and data generated
by jobs from the agents back into the AppManager repository.

Managed computer components

1 The AppManager agent performs a variety of tasks:
● It runs scripts (jobs).
● It has a local repository where it stores scripts, schedules, and

actions.
● It communicates with the AppManager management server.

2 The managed objects are installed on the managed computer along
with the AppManager agent, and are called by the scripts being run
by the agent. They are COM objects or Perl modules containing
methods that are specific to particular applications and are used to
retrieve information about the monitored system or application that
the script cannot obtain for itself.

Running Knowledge Scripts

These are the steps that the script undergoes when it is converted
from a Knowledge Script stored in the AppManager repository to a
job running on a target computer:

1 In the Operator Console, a user chooses a Knowledge Script, drags
it, and drops it on the target object.

2 The Properties dialog box opens.

3 The user sets Script Parameters, execution schedule, actions, and so
forth—or accepts the defaults. Then the user clicks OK to close the
dialog box.

4 The Operator Console fills in values for the object types.
Chapter 2 • AppManager Architecture 43

5 The Operator Console creates an instance of the script (a job) in the
repository. The job is an instance of the script that includes the user
defined Script Parameter values, the schedule, the object types, and
so forth. This final script has all Script Parameters (including AKPID)
and object types defined as constants in BasicScript and variables in
VBScript and Perl.

6 The job is forwarded to the AppManager agent on the target
computer to be run as a job. Scheduling information (not part of the
script) is also sent to the agent, as is information about Actions to
perform.

All of the information about the job is also held in the AppManager
repository, along with pointers to any action scripts that are to be run
on the AppManager management server.

Once the job starts to run, you can see the entire running script by
double-clicking on the job’s child. This will open the Properties
dialog box, where there is now a button you can click to see the
running script:
44 Developing Custom Knowledge Scripts

Example

As an example, let’s run the Samples_HelloWorld.qml script
discussed in the previous chapter, accepting the defaults in the
Properties dialog box: Here is the final script as it will run:
'### Begin KSID Section
Const AppManID = "4.0.15.1"

Const KSVerID = "1.0"
'### End KSID Section

'### Begin Type Section

NT_MachineFolder = "SJCRISSERT01"
'### End Type Section

'### Begin KPV Section
Sub KS_INIT ()

End Sub

'### End KPV Section
'### Begin KPP Section

DO_EVENT="y"
AKPID="AKP_NULL"

'### End KPP Section

Sub Main()
Dim strShortMsg

If DO_EVENT = "y" Then

 'Event message displayed in the List pane
 strShortMsg = "Hello World! "

 ' raise an event
 NQEXT.CreateEvent 2, strShortMsg, _

 AKPID, "", 0, "", "", 0, 0
End If

End Sub

Compare this script with the VB Script (Read-only) view in the
Developer’s console:
'### Begin KSID Section
Const AppManID = "4.0.15.1"

Const KSVerID = "1.0"
'### End KSID Section

'### Begin Type Section

NT_MachineFolder = ""
Chapter 2 • AppManager Architecture 45

'### End Type Section

'### Begin KPP Section

DO_EVENT="y"
AKPID="AKP_NULL"

'### End KPP Section

'### Begin KPV Section
Sub KS_INIT ()

End Sub
'### End KPV Section

'### Begin KPS Section

Sub Main()
Dim strShortMsg

If DO_EVENT = "y" Then

 'Event message displayed in the List pane
 strShortMsg = "Hello World! "

 ' raise an event
 NQEXT.CreateEvent 2, strShortMsg, _

 AKPID, "", 0, "", "", 0, 0
End If

End Sub
'### End KPS Section

Comparing the two scripts, you will see only one difference in the
code—a value has been filled in for the object type,
NT_MachineFolder = "SJCRISSERT01"(the name of the target
computer) in the running script.

If we had used the Properties dialog box to change the value of the
DO_EVENT Script Parameter, rather than accepting the default, we
would have seen the changed value in the “KPP section” of the
running script as well.

Changes to the schedule will not appear in the running script, as
scheduling information is not part of the final script. AppManager
sends the scheduling information to the AppManager agent
independently of the script.
46 Developing Custom Knowledge Scripts

Where each part of the running script came from

Apart from Sub Main(), everything in the running script was
generated by AppManager from the other non-code XML elements of
the Knowledge Script. Here is a brief view of where each section came
from:

Anything that was in non-code XML elements that does not appear in
the running script is used by AppManager in some other way. For

Running Script Section Origin

'### Begin KSID Section
Const AppManID = "4.0.15.1"
Const KSVerID = "1.0"
'### End KSID Section

The two constants came from the
<KSID></KSID> non-code XML
element.

'### Begin Type Section
NT_MachineFolder = "SJCRISSERT01"
'### End Type Section

The name “NT_MachineFolder” came
from the <ObjType> non-code XML
element. The value ("SJCRISSERT01",
which is the actual name of the target
computer) was filled in by the Operator
Console program.

'### Begin KPV Section
Sub KS_INIT ()
End Sub
'### End KPV Section

This section is reserved for future use.
At the present time, Sub KS_INIT ()
does nothing.

'### Begin KPP Section
DO_EVENT="y"
AKPID="AKP_NULL"
'### End KPP Section

These values came from the
<Parameter> non-code XML elements.
Any changes by the user during job
creation would appear here.

See the note below about AKPID.

Sub Main()
Dim strShortMsg
If DO_EVENT = "y" Then
 strShortMsg = "Hello World! "
'Event message displayed in the
List pane
' raise an event
 NQEXT.CreateEvent 2,
strShortMsg, _
 AKPID, "", 0, "", "", 0, 0
End If
End Sub

This is the code section, exactly as it
was written.
Chapter 2 • AppManager Architecture 47

example, all of the information about scheduling is forwarded to the
AppManager agent but is not part of the script.

Note If a user added one action script during job creation, AKPID
would have the value AKPID= “1”. If two jobs were added, it would be
AKPID= “1,2”. These values are IDs for the action scripts to be run.
AppManager can determine which action scripts need to be run from
the IDs, although the running script itself has no knowledge of what
the action scripts are.

As with schedules, you do not need to write code to handle actions.
You do, however, need to define AKPID in the Parameters section of
the Developer’s Console Script Properties dialog box and give it a
default value of “AKP_NULL”. If you want to define actions yourself, you
must do it in this dialog box (in which case the Operator Console
program will over-ride “AKP_NULL” as the value of AKPID when a job is
created).
48 Developing Custom Knowledge Scripts

Chapter 3

Knowledge Script basics
This chapter covers the basics of creating a Knowledge Script, with
the exception of writing the code—that will be discussed in detail in
subsequent chapters.

Even if you are interested only in modifying or extending pre-existing
scripts—in such cases you will find much of this work already done
for you—this chapter will provide you with a basis for understanding
how to use the Developer’s Console to work with Knowledge Scripts.

The following topics are covered.
● Script elements
● Starting creation of a new script
● Setting default properties
● Where to go from here

Script elements

Apart from the code itself, there are a number of things that go into
Knowledge Scripts. For example, you must name your script and
assign an object type to it in ways that are consistent with the
AppManager application framework. You must also choose values for
a number of the non-code XML elements of the script.

Naming scripts

Each Knowledge Script name is composed of two parts: a prefix that
determines its Knowledge Script category and a name (as self-
explanatory as possible) that will be displayed in the Knowledge
49

Script pane of the AppManager Operator Console. An underscore
character separates the two parts.

For example, if you name a Knowledge Script NT_DiskSpace, the
Knowledge Script is displayed in the Knowledge Script pane under the
NT tab along with other NT-related Knowledge Scripts.

You can use an existing Knowledge Script category, or you create a
new one. If you check in a Knowledge Script with a prefix that does
not correspond to an existing category, a new category will be created.
For example, if you create and check in a Knowledge Script named
Samples_HelloWorld.qml, and there is no Samples category, it will be
created with your script in it.

Assigning an object type

Each Knowledge Script is associated with one or more resource object
types. An object type is used to determine which resource objects—
such as computers, disk drives, databases, or network cards to which
50 Developing Custom Knowledge Scripts

the Knowledge Script can be applied. Internally, AppManager uses a
type checking mechanism to ensure that each Knowledge Script is
applied only to the resource objects it can manage.

Creating new resource object types, and the discovery scripts that
must go with them, is a complex activity that should not be
undertaken by anyone who is not an experienced programmer. It is
not covered in this book.

You should be able to find an existing resource object type that you
can use. For example, NT_MachineFolder is quite versatile for
Windows. Similarly, for UNIX, UNIX_MachineFolder is widely
applicable.

To see what object types already exist, do the following:

1 Choose Properties from the View menu in the Developer’s
Console.

2 Choose the Object Types tab in the Script Properties dialog box.

3 Click Add to open the Add New Object Type dialog box.

 Between the Object group: and Objects: lists, you can see all the
existing object types.

This book is oriented towards script developers who are primarily
interested in modifying or extending existing Knowledge Scripts. In
such cases, the object type will already be defined and you do not have
to worry about it.

Object types are associated with icons. If you look in the Knowledge
Script pane of the Operator Console, you will see that each script
exhibits its own icon— the object type for the script. At the same
time, each object in the TreeView pane is also represented by the icon
for its object type. In general (a few icons are used for more than one
object type), when the script icon matches the TreeView object icon,
you can drop the script on that object.
Chapter 3 • Knowledge Script basics 51

Deciding on user-definable Script Parameters

You do not need to decide on user-definable Script Parameters before
you write your script, although you can do so. For example, DO_DATA
and DO_EVENT are very commonly used to allow users to decide
whether to collect data or raise events.

You should always define a Script Parameter named AKPID, used by
event messages to call for execution of action scripts. In most scripts,
you will leave it to the user to determine actions so you set AKPID to a
default of “AKP_NULL” (no actions). Users do not see AKPID as a Script
Parameter, even though that’s where you defined it—they use the
Actions tab of the Operator Console Properties dialog box to
choose the actions. The AppManager program alters the AKPID Script
Parameter in accordance with the user’s choices.
52 Developing Custom Knowledge Scripts

Other non-code XML elements

You will need to choose the scripting language before you begin
writing code. You must also choose the type of Knowledge Script.
There are four possibilities:
● Normal scripts, which can be either monitoring scripts (see

Chapters 4 through 6 for more information) or report scripts
(Chapter 10).

● Action scripts (see Chapters 7 through 9).
● Discovery scripts (not covered in this book).
● Install scripts (not covered in this book).

Starting creation of a new script

When you open the Developer’s Console and choose New from the
File menu, this is what you will see in the default Edit View:
Chapter 3 • Knowledge Script basics 53

You can begin to write your code immediately. Note, in the title bar of
the Console window, that the default language is VBScript.

It appears that the new Knowledge Script is empty except for the two
lines opening and closing the Main subroutine, where you will place
your code. However, it is not empty—the non-code XML elements
are there, even though they are not visible in the Edit View. Some of
the non-code XML elements already have default values filled in,
while others are empty, waiting for you to populate them through the
Script Properties dialog box.

Choose XML (Read-only) from the View menu to see the entirety
of the new Knowledge Script, including the header. If you have not
yet opened the Script Properties dialog box and made any changes,
this is what you will see:

The 6.0 agent can handle action scripts up to 256k bytes in length.
Agents from previous versions of AppManager can only run action
scripts up to 32k in length.
54 Developing Custom Knowledge Scripts

Listing of the new (empty) script

The table below shows the entire contents of the window above, with
explanations. You will populate the non-code XML elements (all but
the last three rows in the table) yourself through the Script
Properties dialog box.

Script section Description

<PROLOGUE>
<![CDATA[

]]>
</PROLOGUE>

You can enter comments here, such as the
author’s name, the date, copyright statements,
and a brief description of the script.

Here you edit the .qml file directly in a text
editor, rather than through the Script
Properties dialog box. This is the only place
you should edit a non-code XML element
without using the Script Properties dialog
box.

<KSID>
 <Type>Regular</Type>
 <Name></Name>
 <Version>
 <AppManID>4.0</AppManID>
 <KSVerID>1.0</KSVerID>
 </Version>
 <NeedPWD>0</NeedPWD>
 <AdminOnly>0</AdminOnly>
 <UnixOnly>0</UnixOnly>
 <DataSrcID>0</DataSrcID>
 <Platform>-1</Platform>
</KSID>

This section is already populated with some
default values. The <Type> element is set to
the default of “Regular”, which means that
the script is of “Normal” type, as opposed to
“Discovery” or “Action” or “Install”.
<AppManID> is 4.0, meaning that this script is
consistent with AppManager 4.0 and later.

The <KSVerID> element is incremented
automatically every time you check a script out
and then back in. It begins at 1.0 and is
incremented to 1.1, 1.2,

Note: To see the version number of any
Knowledge Script selected in the TreeView
pane of the Operator Console, open the right-
click menu and choose Version History.

 A zero value for elements means “no” or “not
required.”

<ObjType v3style="1"
fullpath="0"
dropfolderlist="0">
</ObjType>

This element will contain the “resource object
type” or types, when you add them with the
Script Properties dialog box.
Chapter 3 • Knowledge Script basics 55

Setting default properties

You use the Script Properties dialog box to set default values for the
job properties. The properties for a running script will be set by
whoever creates a job with this Knowledge Script using the Operator
Console. They will use a different dialog box to do this.

The different tabs of the Script Properties dialog box are shown
below. The Help file for the Developer’s Console describes their use in
detail. They are shown here to get you thinking about what goes into
the non-code XML elements of your Knowledge Scripts. See the
Appendix, “Dialog Boxes,” for a more detailed discussion.

<Schedule>
 <Default type="runonce"
runmode="sched"></Default>
 <Allowed>
 <RunOnce>1</RunOnce>
 <IntervalIter>1</
IntervalIter>
 <Daily>1</Daily>
 <Weekly>1</Weekly>
 <Monthly>1</Monthly>
 </Allowed>
</Schedule>

This section will contain the data for the
schedule or schedules for running the
Knowledge Script. You will populate this
section through the Script Properties dialog
box.

<DataSrc></DataSrc> Reserved for future use.

<Parameter></Parameter> When you use the Script Properties dialog
box to add Script Parameters, their definitions
will go here.

<ActionDef></ActionDef> When you use the Script Properties dialog
box to add actions, their definitions will go
here.

<ScriptDef>
 <Script
language="VBScript">
<![CDATA[

XML element tags to open the code section.
Identifies VBScript as the default script
language.

Sub Main

End Sub

This is the section that will hold your code, as
you write and edit it in the Edit View.

]]>
</Script>
</ScriptDef>

XML element tags to close the code section.

Script section Description
56 Developing Custom Knowledge Scripts

The Header tab

You use this tab to set general values such as a tool-tip description of
the Knowledge Script, its type (Normal, Action, Discovery, Install),
the operating system, the scripting language, and the AppManager
version.

Refer to the Help file for the Developer’s Console (choose Contents
from the Help menu) for further information on the fields in the
Script Properties dialog box.
Chapter 3 • Knowledge Script basics 57

The Object Types tab

In this tab you choose the resource object types for this script.

To add an object type, click the Add button. This will open the Add
New Object Type dialog box.
58 Developing Custom Knowledge Scripts

The Default Schedule tab

Every Knowledge Script job must run according to a set schedule. Use
this tab to set the default schedule. If someone creates a job with this
Knowledge Script and does not choose a different schedule, this
default schedule will be used.

The Advanced tab allows you to place restrictions on the allowed
schedules.
Chapter 3 • Knowledge Script basics 59

The Action tab

There are no actions at the outset. You add them with the Add New
Action dialog box that opens when you click the New button.

Users can add actions themselves when they define the properties of a
Knowledge Script job, with a nearly identical dialog box. Usually, you
will leave it to users to define the actions, if any.
60 Developing Custom Knowledge Scripts

The Parameters tab

You select variables in your code whose values can be modified by an
Operator Console user to change the behavior of the script. These
variables are called “Script Parameters.” You write your code as if these
variables are already defined. However, you do not explicitly add them
to your code—AppManager will do that for you when it generates the
final script.

Examples of Script Parameters are user-selected thresholds and limits.
You can also use Script Parameters to specify behavior in your script.
For example, you can add a Script Parameter called DO_EVENT that can
have the values y or n. If the user sets the value to y (yes), then your
script will raise events.

You use the Parameters tab of the Script Properties dialog box to:
● Create a Script Parameter.
● Assign a variable name to the Script Parameter so that your code

may use the user-defined value and act accordingly.
● Assign a description to the Script Parameter that the Operator

Console user will see.
● Assign default values for the Script Parameters.
Chapter 3 • Knowledge Script basics 61

● Define the allowed values for the Script Parameter. For example,
you can allow a user to give DO_EVENT the values y or n, but no
other values.

The variables assigned to the Script Parameters that you define with
the Parameters tab will become constants (Summit BasicScript) or
variables (VBScript and Perl) in your script.
62 Developing Custom Knowledge Scripts

In a new script there are no Script Parameters at all. You use the Add
New Parameters dialog box to add Script Parameters one at a time.

Each Script Parameter has two names:
● The name of the constant (Summit BasicScript) or variable

(VBScript and Perl) that you use in your code. Enter this in the
Variable to use: field. The Operator Console user will not see this
name.

● The name (really more of a description) that is visible to the user
and that the user can set a value for. Enter this in the Description:
field.

The script developer should always define a parameter with a variable
name of AKPID (for VBScript and Summit BasicScript) or $Akpid (for
Perl). The Operator Console user will never see this parameter.

Example of defining a Script Parameter

Assume that you have decided to use a variable called CPU_THRESHOLD,
nominally set to 50, in your script, and also assume that you want the
Chapter 3 • Knowledge Script basics 63

AppManager Operator Console user to have the ability to change the
value of this variable if they want to.

If this constant were not user-definable, you would just define it in
your code like this:
● CPU_THRESHOLD = "50" (VBScript variable)
● Const CPU_THRESHOLD = "50" (Summit BasicScript constant)
● $CPU_THRESHOLD = 50; (Perl variable)

Since CPU_THRESHOLD is going to be user-definable in your code, you
do not define it at all—you leave the definition to AppManager—but you
write your code as if you had defined it. Here is an example of the process
for a Knowledge Script called Samples_Test written in VBScript.

Step 1, What the script developer does: In the Developer’s Console,
you open the Script Properties dialog box, select the Parameters
tab, click Add, and add your variable:
64 Developing Custom Knowledge Scripts

Returning to the Parameters tab, this is what you will see:

Step 2, What the Operator Console user does: When the Operator
Console user drags the script to a target object (in this case a CPU),
the Properties for Samples_Test dialog box opens and the user
selects the Values tab.

Note The Properties for Samples_Test dialog box that the user sees
in the AppManager Operator Console is similar to the Script
Properties dialog box used by the script developer in the Developer’s
Console, but the two are not the same.
Chapter 3 • Knowledge Script basics 65

The user does not need to change the default value of 50, but in this
case it is changed to 75.
66 Developing Custom Knowledge Scripts

After making this change in the value for CPU usage not-to-exceed
(%), the user clicks OK in the Properties for Samples_Test dialog
box and a job is started.

Step 3, What the AppManager infrastructure does: In the process
of starting the job, AppManager adds a definition for CPU_THRESHOLD
to the beginning of the Samples_Test script. The running script now
begins like this:

In summary:

1 The script developer used a variable called CPU_THRESHOLD in the
script and used the Developer’s Console Script Properties dialog
box to:
● Create a Script Parameter.
● Assign the variable named CPU_THRESHOLD to the Script

Parameter.
● Assign a description of “CPU usage not-to-exceed (%).” to the

Script Parameter for the Operator Console user to see.
● Assign a default value of 50 the Script Parameter
Chapter 3 • Knowledge Script basics 67

2 The Operator Console user created a job from the script after
changing the value of CPU usage not-to-exceed (%) to 75.

3 AppManager started the job after adding
 CPU_THRESHOLD=”75”

at the beginning of the script.

Where to go from here

This and prior chapters have provided an overview of the entire
Knowledge Script. Beginning with the next chapter, the book will
concentrate on the code portion of scripts. Examples will be given of
scripts written in Summit BasicScript, VBScript, and Perl. If you plan
to modify existing scripts, you will need to work in the scripting
language in which the file was originally written. For the Windows
environment, this could be either Summit BasicScript or VBScript.
Therefore, if you will be developing scripts for Windows, you should
study the chapters on both Summit BasicScript and VBScript.

Check in the sample scripts

All sample scripts used in this book can be found in your AppManager
installation, or on your AppManager CD, in
documentation\development_tools\developer_guide\scripts. It
would be a good idea at this point to copy these files to a directory of
your own choice and then check them into the AppManager
repository (see “Editing Knowledge Scripts in the Developer’s
Console,” on page 31.)

Note A Knowledge Script must be checked into the AppManager
repository if it is to be visible in the Knowledge Script pane of the
AppManager Operator Console. This does not mean that you will find
it in your AppManager installation in the NetIQ\AppManager\qdb\kp
directory. The files in this directory reflect only the files that were
present when you first installed AppManager. Any new scripts, or
alterations to existing scripts, that have been checked in will not be
68 Developing Custom Knowledge Scripts

copied to NetIQ\AppManager\qdb\kp, unless you put them there
yourself.

Which scripting language to use

For scripts that are to be run by an AppManager UNIX agent, you
have only one choice—Perl.

For scripts that are to be run by an AppManager Windows agent, you
may use either Summit BasicScript or VBScript. The latter is
recommended for new scripts, except in these situations:
● There are some managed objects (e.g., Active Directory) that

cannot be called from VBScript because they require type
declarations that are not available. For example, VBScript supports
the Variant data type, but not the String data type.
Such managed objects are being rewritten so that they use the
Variant data type, but the process is not yet complete. You can
determine which managed objects have this type problem in
VBScript by writing a short script and using the debugger.

● Not all managed objects are “thread safe.” If an AppManager
agent is simultaneously running both BasicScript scripts and
VBScript scripts that call the same managed objects, the different
scripts can corrupt each other’s data. This is discussed in detail in
the Managed Objects Reference Guide.

If you will be modifying scripts in the UNIX environment, you should
read the chapters on Perl, but not necessarily those on Summit
BasicScript and VBScript.

Report scripts are always written in VBScript because they are run on
a Windows computer, irrespective of whether the data they report on
comes from Windows or UNIX computers.
Chapter 3 • Knowledge Script basics 69

70 Developing Custom Knowledge Scripts

Chapter 4

Modifying a monitoring script written
in VBScript
This chapter dissects the code in a sample Knowledge Script called
Samples_FilesOpen.qml. This script is then modified to become
Samples_FilesOpenEx.qml. As this is your first introduction to the
code portion of scripts, the code is relatively simple.

You should open each sample Knowledge Script in your Developer’s
Console where you can look at it in the various views and open its
Script Properties dialog box.

You will also benefit from running the scripts in the AppManager
Operator Console and experimenting with various Properties
choices.

The following topics are covered in this chapter:
● Listing of the Samples_FilesOpen.qml script
● Preliminary discussion
● Syntax of the managed object methods
● Syntax of the Callback functions
● The program logic
● The modified script, Samples_FilesOpenEx.qml
● Performance Monitor counters

Listing of the Samples_FilesOpen.qml script

This sample Knowledge Script, Samples_FilesOpen.qml, is a
complete script. You can check it in and run it as a job.
71

Samples_FilesOpen.qml checks for the number of files currently
opened in the server, an indication of server activity. The script
compares the result to the user-defined threshold. If the threshold is
exceeded, the script generates an event and initiates any actions
defined by the user.

After analyzing this script, you will learn how to modify it to return
different information.
See “The modified script, Samples_FilesOpenEx.qml” on page 86.

Here is a listing of Samples_FilesOpen.qml running as a job. The
sections at the beginning that are added by AppManager are included.
Note that the Script Parameters are declared as variables in VBScript.

'### Begin KP-Version Section

Const AppManID = "4.5.78.0.8"
Const KSVerID = "1.0"

'### End KP-Version Section

'### Begin Type Section

NT_MachineFolder = "SJCRISSERT01"
'### End Type Section

'### Begin KPV Section
Sub KS_INIT ()

End Sub

'### End KPV Section
'### Begin KPP Section

DO_EVENT="y"
DO_DATA="n"

TH_FILES=10
Severity=5

AKPID="AKP_NULL"
'### End KPP Section

Dim NT

Dim SYSTEM
Const UNITNUMBER = "^^#"

Const ErrorSeverity = 35

Sub Main()
 Dim dblValue

 Dim strProgID
72 Developing Custom Knowledge Scripts

 If NQEXT.IterationCount() = 1 Then
 strProgID = NQEXT.GetProgID ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (strProgID)
 Set SYSTEM = NT.System

 End If

 ' Retrieve the counter value for the Server/Files Open
counter

 dblValue = SYSTEM.CounterValue("Server", "Files Open", "")
 If dblValue = -1 Then

 NQEXT.CreateEvent ErrorSeverity, _
 "Failed to retrieve the counter for Server/Files _

 Open.", "AKP_NULL", "", 0, "", "", 0, 0
 Exit Sub

 End If

 ' Check threshold and raise an event if the threshold is

 ' exceeded
 If DO_EVENT = "y" Then

 Dim strDetailMsg

 If dblValue > TH_FILES Then
 strDetailMsg = "# of files open is " & dblValue & _

 "; >TH = " & TH_FILES
 NQEXT.CreateEvent Severity, "High number of files _

 opened.", AKPID, "", 0, _
 strDetailMsg, "", 0, 0

 End If
 End If

 ' Collect data

 If DO_DATA = "y" Then
 NQEXT.CreateData 1, "Files Opened" & UNITNUMBER, "",

"",_
 dblValue, "# of files open = " & _

 dblValue, 0
 End If

End Sub

Chapter 4 • Modifying a monitoring script written in VBScript 73

Preliminary discussion

Recall from Chapter 2 the steps that the script undergoes when it is
run:

1 A user chooses a script and drags it to the target object.

2 The Properties dialog box opens.

3 The user sets Script Parameters, the schedule, actions, etc.—or
accepts the defaults—and closes the dialog box.

4 The Operator Console creates a job (an instance of the script along
with the user configured Script Parameters, schedule, actions, etc.)
in the AppManager repository.

5 The AppManager management server retrieves the job, the
schedule, any action scripts, and so forth from the AppManager
repository and forwards it all to the AppManager agent which will
run the job. The final script has all Script Parameters and object
types defined as constants with assigned values.

User-set Script Parameters

There are four Script Parameters that the user can alter when
launching this script. These Script Parameters will become variables in
the running script. The Script Parameters are:

Variable name
used in the code

Description the Operator
Console user will see

Value

DO_DATA Collect data? (y/n) If = “y”, data will be collected.

DO_EVENT event? (y/n) If = “y”, an event will be raised
when threshold is exceeded.

TH_FILES Number of files open
maximum threshold

Threshold for maximum number of
files open.
74 Developing Custom Knowledge Scripts

Object types

The object type for this script is:
<Type name="NT_MachineFolder"></Type>

When the script is dragged onto the target object the Operator
Console will assign the appropriate value. AppManager will assign the
machine name of the target computer to the variable
NT_MachineFolder and will insert it in the code like this:
 NT_MachineFolder = "SJCRISSERT01"

Here, SJCRISSERT01 is the machine name of the target computer.

Actions

AKPID determines what action scripts, if any, are run. If there are to be
action scripts, they will be run when an event is raised—AKPID is a
parameter of the Callback function CreateEvent(). If no events are
raised, no action scripts will be run.

Note Raising events is the mechanism used to launch action scripts.
Other than calling an event with AKPID as a (required) parameter, you
do not write code to run action scripts.

Severity Event severity level Severity level of event fired (if
DO_EVENT=”y”).

AKPID The “description” of this
variable is “action
taken,” but the user does
not see it. It is hidden in
the Operator Console.

Action script or scripts to run. If
none, the Operator Console
program will set it to the default
(AKP_NULL).

NOTE: The user does not see this
Script Parameter in the Operator
Console Properties dialog box,
although you defined it in your
Script Properties dialog box in the
Developer’s Console. If the user
adds actions, the value of AKPID will
be altered by the Operator Console
program.

Variable name
used in the code

Description the Operator
Console user will see

Value
Chapter 4 • Modifying a monitoring script written in VBScript 75

The default for AKPID in this script is “AKP_NULL” (no action), which is
the default for AKPID in most scripts. If the user adds actions with the
Properties dialog box when setting up the job, the value of AKPID will
be changed to “1,2,3,4,....n” when the user adds n actions
(n >= 1).

Functions called in the code

The code calls two types of functions:
● Callback functions, by which the script requests information or

action from the AppManager agent running the job. See Chapter 11,
“AppManager Callbacks for Summit BasicScript and VBScript.”

● NetIQ managed object methods. Managed objects are COM
objects whose methods are used to get basic information about
hardware, applications, processes, and services on the managed
computer. See the Managed Object Reference Guide.

Here are the functions called in the script, in order of their
appearance:

Function or subroutine Description

NQEXT.IterationCount Callback function that determines the number of
times that the calling Knowledge Script has run
since it was last started or restarted.

NQEXT.GetProgID Callback function that retrieves the versioned Prog
ID of the NetIQAgent.NT COM object that is
required by this Knowledge Script.

SYSTEM.CounterValue() Method call to retrieve a Windows Performance
Monitor counter.

NQEXT.CreateEvent Callback function that raises an event.

NQEXT.CreateData Callback function that sends data points back for
logging and graphing.
76 Developing Custom Knowledge Scripts

Syntax of the managed object methods

Refer to the Managed Objects Reference Guide for more details.

System.CounterValue

The CounterValue function returns the current value of a specified
Performance Monitor counter and (if applicable) instance.

Syntax
System.CounterValue ObjectName, CounterName, InstanceName

CounterValue returns a double that is the current value of the counter
specified by the input parameters. A return value of -1 indicates an
error condition.

Syntax of the Callback functions

Refer to Chapter 11, “AppManager Callbacks for Summit BasicScript
and VBScript,” for more details.

Long IterationCount

Returns the current iteration count.

Syntax
IterationCount

Parameter Data type Setting

ObjectName String Object name as it appears in the Performance
Monitor Add Counters dialog box.

CounterName String Counter name as it appears in the Performance
Monitor Add Counters dialog box.

InstanceName String Instance name as it appears in the Performance
Monitor Add Counters dialog box. Use “” if the
counter does not require an instance name.
Chapter 4 • Modifying a monitoring script written in VBScript 77

GetProgID

Retrieves version information for the managed object installed on the
computer where the Knowledge Script is running. This is used to
ensure that a particular version of a Knowledge Script calls a suitable
version of a managed object.

Syntax
GetProgID progid, scriptver

GetProgID returns the Prog ID as a string.

CreateEvent

Used by a Knowledge Script to send an event to the AppManager
agent. The AppManager agent will apply additional rule processing
and will determine whether to send a new event or a duplicated
(collapsed) event to the AppManager management server.

Syntax
CreateEvent sev, evtmsg, akp, obj, val, agentmsg, evtsrc,
evtid, msgtype [, deletefile]

Parameter Data type Setting

progid String Version independent MO COM progid

scriptver String The associated KS script version string

Parameter Data type Setting

sev Long The event severity. A value from 1 to 40.

evtmsg String The message to be displayed under the Message
column in the Events tab.

akp String Name of the action script to launch as a response to
this event. You would normally create an AKPID
parameter as part of your script. When the job is
dropped and you select an action, the UI will fill in the
AKPID variable with the action name. You will just
need to pass in the AKPID variable to the script.
78 Developing Custom Knowledge Scripts

CreateEvent returns nothing.

obj String Corresponding object name where the event is
raised. This value will determine which object in the
TreeView pane to blink. Format of the value passed
in should be "ObjectTypeName = ObjectValue", e.g.
"UNIX_DiskObject = /mnt/cdrom". The
ObjectValue can normally be obtained by the drop
object variable, e.g. UNIX_MachineFolder.

val Double The current value to raise the event. This parameter
is currently not used. Set to 0.0.

agentmsg String Either the detail message or a file name that contains
the detail message. The detailed message is
displayed in the Message tab of the Event Property
dialog box. If this parameter contains the name of a
file, make sure you set the msgtype parameter to 1.

evtsrc String Not used. Should always be empty.

evtid Long Not used. Should always be 0.

msgtype Long Flag specifying whether the value passed in the
agentmsg parameter is a file name or the detailed
message itself. If it is a file name, then the contents of
the file are read and passed in as the detailed
message. Set to 0 to specify that the value in the
agentmsg parameter is the detailed message. Set to
1 to specify that the value is the file name containing
the detailed message.

deletefile Long Optional. Flag to tell the AppManager agent to delete
the event detail message file after it is done reading
the contents and passing the event to the MSU. This
parameter is ignored if msgtype != 1. Set to 1, which
is default, to delete the file when msgtype = 1. Set to
0 to not delete the file. Be careful when setting this
value to 0, especially if your script generates a
message file each time it wants to send an event
because the files will never be removed.

Parameter Data type Setting
Chapter 4 • Modifying a monitoring script written in VBScript 79

CreateData

Sends data points for dynamic data streams. This function allows you
to collect data for data streams that may be instantiated at each
iteration.

Syntax
CreateData streamId, legend, dynaleg, objlist, val, agentmsg,

msgtype [,schema] [,loglimit] [,lowWM] [,hiWM] [,deletefile]

Parameter Data type Setting

streamId String The data stream ID. For each unique stream ID in
a script, it will generate a Data Source in the
AppManager database. Subsequent calls to
CreateData using the same stream ID will insert
data points to the same Data Source.

legend String The data stream legend. This value will show up
under the Legend column and in the graphs. The
string length limit is 128 characters.

dynaleg String The data stream dynamic legend. Contains the
dynamic information that can be used for
reporting. If a portion of your legend changes
often, then pass that text into this parameter.
Otherwise leave it blank.

objlist String Corresponding object name where the data is
collected on. This value is used for graphing and
reporting. Format of the value passed in should be
"ObjectTypeName = ObjectValue", e.g.
"NT_DiskObject = D:\". The ObjectValue can
normally be obtained by the drop object variable,
e.g. NT_MachineFolder.

val Double The data point value.
80 Developing Custom Knowledge Scripts

CreateData returns nothing.

agentmsg String Either the data detail or a file name that contains
the data detail. The data detail is basically an
annotation of each data point, giving more
information about the data point since the data
point is just a numeric value. For example, the
data point value may be 5 for the number of
processes running, while the data detail may list
the processes that are running. The detailed
message is displayed in the Graph Data Detail
dialog box for each data point. If this parameter
contains the name of a file, make sure you set the
msgtype parameter to 1.

msgtype Long Flag specifying whether the value passed in the
agentmsg is a file name or the detailed message
itself. If it is a file name, then the contents of the file
are passed in as the detailed message. Set to 0 to
specify that the value in the agentmsg parameter
is the detailed message. Set to 1 to specify that the
value is the file name containing the detailed
message.

schema String Optional. XML schema for dynamic table creation
in RDB. Default is an empty string.

loglimit Long Optional. The number of days to keep this data
point in the database. Default is -1, keep forever.
The data points can be removed from the
database by other means.

lowWM Double Optional. Low watermark. Default is -1.0.

hiWM Double Optional. High watermark. Default is -1.0.

deletefile Bool Optional. Flag to tell the AppManager agent to
delete the event detail message file after it is done
reading the contents and passing the event to the
MSU. This parameter is ignored if msgtype != 1.
Set to 1, which is default, to delete the file when
msgtype = 1. Set to 0 to not delete the file. Be
careful when setting this value to 0, especially if
your script generates a message file each time it
wants to send an event because the files will never
be removed.

Parameter Data type Setting
Chapter 4 • Modifying a monitoring script written in VBScript 81

The program logic

Samples_FilesOpen.qml raises an event whenever the number of files
that are open exceeds a threshold, TH_FILES, set by the user. The
default is TH_FILES = 200.

The Windows NT/2000 managed object method
SYSTEM.CounterValue() is used to obtain the number of open files.

Sub Main()

IterationCount() returns the number of times that the Knowledge
Script job has run. If this is the first time that the script has been run,
IterationCount() will return 1. In that case, the body of the
If NQEXT.IterationCount() = 1 Then block will be executed in
order to:
● Obtain the ID of the COM Object that contains the managed

object method, SYSTEM.CounterValue(), that will be used in the
Knowledge Script.

● Create the NT.SYSTEM object so that this method can be called.

If NQEXT.IterationCount() = 1 Then

 strProgID = NQEXT.GetProgID ("NetiQAgent.NT", AppManID)
 Set NT = CreateObject (strProgID)

 Set SYSTEM = NT.System
 End If

The Callback function NQEXT.GetProgID() constructs the COM
object ID from the string “NetIQAgent.NT” and the value AppManID.

AppManID is the AppManager build number that is appropriate for this
Knowledge Script. It is defined in the non-code XML section of the
Knowledge Script, and appears in the header section of the final,
generated script:

'### Begin KSID Section

Const AppManID = "4.0.15.1"
Const KSVerID = "1.0"

'### End KSID Section.
82 Developing Custom Knowledge Scripts

Note The COM ID will be of the form NetIQAgent.NT.n, where n is
an integer. In general, n will not be equal to the actual value of
AppManID. For example, in this script AppManID=4.0.15.1, while the
ID of the COM object for AppManager 5 is NetIQAgent.NT.4. The
Callback function NQEXT.GetProgID() translates the AppManID into
the proper value for the COM ID.

The next section of the code calls SYSTEM.CounterValue() to get the
number of open files. When the ObjectName parameter is set to
“Server” and the CounterName parameter is set to “Files Open,”
SYSTEM.CounterValue returns the number of files that are currently
open.

If the call to SYSTEM.CounterValue fails, it will return -1. In this case,
the If dblValue = -1 Then block is executed. An event is raised
indicating failure to obtain the counter value and the code exits.

' Retrieve the counter value for the Server/Files Open
counter

 dblValue = SYSTEM.CounterValue("Server", "Files Open", "")
 If dblValue = -1 Then

 NQEXT.CreateEvent ErrorSeverity, _
 "Failed to retrieve the counter for Server/Files _

 Open.", "AKP_NULL", "", 0, "", "", 0, 0
 Exit Sub

 End If
If the call to SYSTEM.CounterValue() succeeds, then an event

will be raised only if DO_EVENT = “Y” and the TH_FILES
threshold is exceeded.

' Check threshold and raise an event if the threshold is

 ' exceeded
 If DO_EVENT = "y" Then

 Dim strDetailMsg
 If dblValue > TH_FILES Then

 strDetailMsg = "# of files open is " & dblValue & _
 "; >TH = " & TH_FILES

 NQEXT.CreateEvent Severity, "High number of files _
 opened.", AKPID, "", 0, _

 strDetailMsg, "", 0, 0
 End If

 End If
Chapter 4 • Modifying a monitoring script written in VBScript 83

In this case, the event message will report the number of open files
and the threshold that was exceeded under the Message heading in
the Event pane of the Operator Console. If a user double-clicks on
the event in the Event pane to open the Event Properties dialog
box, and then chooses the Message tab, they will see the
strDetailMsg.

The CreateEvent() parameters are:

The last block of code in the script handles data collection, provided
that the user has set DO_DATA to “y” (the default is “n”).

' Collect data
 If DO_DATA = "y" Then

 NQEXT.CreateData 1, "Files Opened" & UNITNUMBER, "",
"",_

 dblValue, "# of files open = " & _
 dblValue, 0

 End If

Parameter Setting

Severity Event severity.

"High number of
files opened."

Event message.

AKPID Actions to execute, if any. Value of AKPID depends on
whether the user requested actions. If not, it will have the
default value of “AKP_NULL”, which means no action.

"" Corresponding object name where the event is raised. An
empty string is used here means to blink the
NT_MachineFolder level.

0 The current value (to raise the event). Not used here.

strDetailMsg The plain text message, defined in the line of code just
before call to CreateEvent().

"" Event source. Should always be empty.

0 Event ID. Should always be 0.

0 Indicates that strDetailMsg is plain text, as opposed to a
file.
84 Developing Custom Knowledge Scripts

The CreateData() parameters are:

Parameter Value Meaning

1 The ID of the data stream—becomes important when there is
more than one stream.

"Files Opened" &
UNITNUMBER

Text for the Legend heading in the Graph Data tab of the List
pane = Files Opened #
UNITNUMBER is a defined constant:
const UNITNUMBER = "^^#"

where the carets represent spaces

"" Dynamic legend, contains dynamic information that can be
used for reporting. Not used here.

"" Corresponding object name where the data is collected. Not
used here.

dblValue Current data point value.

"# of files open
= " &
dblValue

This is a message created (agentmsg) by the developer that
appears in the data detail dialog box.

0 0 means that agentmsg is plain text (as opposed to a file).
Chapter 4 • Modifying a monitoring script written in VBScript 85

The modified script, Samples_FilesOpenEx.qml

Here is the listing for Samples_FilesOpenEx.qml, a modified version
of Samples_FilesOpen.qml. The modification, shown in bold, is very
simple. The Performance Monitor counter value returned is changed
from “Server”, “Files Open” to “Server”, “Files Opened Total.”

Note There is no reason whatsoever why you could not modify this
script to obtain both measures of served files. Go ahead and try it.

Microsoft defines “Files Opened Total” as “The number of successful
open attempts performed by the server on behalf of clients (since the
last reboot). Useful in determining the amount of file I/O,
determining overhead for path-based operations, and for determining
the effectiveness of open locks.”

By comparison, “Files Open” is defined as “The number of files
currently opened in the server. Indicates current server activity.”

In other words, Samples_FilesOpen.qml checks for the number of
files opened in the server that are still open. Samples_FilesOpenEx.qml
checks for the number of files that have been opened in the server
since your computer was last rebooted, whether or not they are still open.

Dim NT

Dim SYSTEM
Const UNITNUMBER = "^^#"

Const ErrorSeverity = 35

Sub Main()
 Dim dblValue

 Dim strProgID

 If NQEXT.IterationCount() = 1 Then
 strProgID = NQEXT.GetProgID ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (strProgID)
 Set SYSTEM = NT.System

 End If

 ' Retrieve the counter value for the Server/Files Open
counter
86 Developing Custom Knowledge Scripts

dblValue = SYSTEM.CounterValue("Server", _
 "Files Opened Total", "")

 If dblValue = -1 Then
 NQEXT.CreateEvent ErrorSeverity, _

 "Failed to retrieve the counter for Server/Files _
 Open.", "AKP_NULL", "", 0, "", "", 0, 0

 Exit Sub
 End If

 ' Check threshold and raise an event if the threshold is

 ' exceeded
 If DO_EVENT = "y" Then

 Dim strDetailMsg

 If dblValue > TH_FILES Then

 strDetailMsg = "# of files open is " & dblValue & _
 "; >TH = " & TH_FILES

 NQEXT.CreateEvent Severity, "High number of files _
 opened.", AKPID, "", 0, _

 strDetailMsg, "", 0, 0
 End If

 End If

 ' Collect data
 If DO_DATA = "y" Then

 NQEXT.CreateData 1, "Files Opened" & UNITNUMBER, "",
"",_

 dblValue, "# of files open = " & _
 dblValue, 0

 End If
End Sub

Performance Monitor counters

The managed object method SYSTEM.CounterValue(), used in this
script to obtain Performance Monitor data, is a very powerful general
method. You can use it in your own scripts to obtain a wide range of
performance metrics.

To get an idea of the possibilities, do the following:
Chapter 4 • Modifying a monitoring script written in VBScript 87

1 Choose Programs > Administrative Tools > Performance from
the Windows Start menu to open the Performance window.
(Alternatively, you can run perfmon from the command line.)

2 When the Performance window opens, right-click in the right-
hand pane and choose Add Counters... from the pop-up menu.

The Add Counters dialog will open

The counters are identified by three things:
● The Performance Object, which you choose from the

Performance Object drop-down list.
● The counter itself, which you choose from the Select counters

from list text box.
● The Instance (lower right in the picture).

When you call SYSTEM.CounterValue() from your scripts, the
Performance Object name is the first parameter and the counter
name is the second parameter. The third parameter is the instance,
if any.
88 Developing Custom Knowledge Scripts

3 When you have highlighted a counter, click the Explain button to
learn about the counter. For example:
Chapter 4 • Modifying a monitoring script written in VBScript 89

90 Developing Custom Knowledge Scripts

Chapter 5

Modifying a monitoring script written
in Summit BasicScript
This chapter dissects the code in a sample Knowledge Script called
Samples_CpuLoaded.qml. This script is then modified to become
Samples_CpuLoadedEx.qml.

You should open each sample Knowledge Script in your Developer’s
Console where you can look at it in the various views and open its
Script Properties dialog box.

You will also benefit from running the scripts in the AppManager
Operator Console and experimenting with various Properties
choices.

The following topics are covered in this chapter:
● Listing of the NT_CpuLoaded.qml script
● Preliminary discussion
● Syntax of the managed object methods
● Syntax of the Callback functions
● The program logic
● The modified script, NT_CpuLoadedEx.qml

Listing of the NT_CpuLoaded.qml script

This sample Knowledge Script, Samples_CpuLoaded.qml, is the same
as NT_CpuLoaded.qml, except for several minor changes and the
addition of numerous comments. Samples_CpuLoaded.qml is a
complete script. You can check it in and run it as a job.
91

Samples_CpuLoaded.qml checks the current values for CPU total
processor time, CPU user time, and CPU queue length against the
user-defined thresholds. If the thresholds are exceeded, the subroutine
CpuCheck() generates events and initiates any actions defined by the
user.

After analyzing this script, you will learn how to modify it to return
more information. See “The modified script,
NT_CpuLoadedEx.qml” on page 111.

Here is a listing of Samples_CpuLoaded.qml running as a job. The
sections at the beginning that are added by AppManager are included.
Note that the Script Parameters are declared as constants in Summit
BasicScript.

'### Begin KP-Version Section
Const AppManID = "4.5.78.0.8"

Const KSVerID = "1.0"
'### End KP-Version Section

'### Begin Type Section

Const NT_CPUFolder = "CPU"
Const NT_CPUNumber = "0"

'### End Type Section
'### Begin KPV Section

Sub KS_INIT ()
End Sub

'### End KPV Section

'### Begin KPP Section
Const DO_EVENT="y"

Const DO_DATA="n"
Const DO_OVERALL="n"

Const TH_UTIL=90
Const TH_QLEN=2

Const Severity=5
Const PRM_KSERR=35

Const AKPID="AKP_NULL"
'### End KPP Section

Dim NT As Object

Dim CPU As Object
Const UNITPERCENT = "^^%"
92 Developing Custom Knowledge Scripts

' This sub routine checks for the processor time, user time,
' and queue length to see if they exceed the given

' thresholds for a given cpu, or the overall cpu
Sub CpuCheck(sCPUName As String)

Dim dUserTime#, dPrivilegeTime#, dTotalTime#, dQueueLen#
Dim sDetailMsg$, sObjectList$, sCPUMsg$

Dim lStreamID As Long

 If (sCPUName = "") Then
 ' Set the machine object as the resource. This will cause

 ' the machine object to blink if there is an event.
 sObjectList = "NT_CPUFolder = " + NT_CPUFolder

 lStreamID = 0
 sCPUMsg = "Overall CPU"

 Else

 ' Set the individual cpu name as the resource. This will
 ' cause the individual cpu object to blink if there is

 ' an event for each individual cpu
 sObjectList = "NT_CPUNumber = " + sCPUName

 lStreamID = Val(sCPUName)
 sCPUMsg = "CPU# " + sCPUName

 End If

 dTotalTime = CPU.UtilValue("PROCESSOR", sCPUName)
 dUserTime = CPU.UtilValue("USER", sCPUName)

 If dTotalTime = -1 Or dUserTime = -1 Then
 ' A return value of -1 indicates a failure to

 ' retrieve the value of the counter
 MSActions PRM_KSERR, "Counter not found", "AKP_NULL", _

 sObjectList,"Processor or User counter not found _
 (Proc: " & Cstr(dTotalTime) & ", User: " & _

 Cstr(dUserTime) & ")"
 Exit Sub

 End If

 If dTotalTime > dUserTime Then
 dPrivilegeTime = dTotalTime - dUserTime

 Else
 dPrivilegeTime = 0

 End If

 If IterationCount() = 1 Then
 If DO_DATA = "y" Then

 DataHeader "PROCESSOR Utilization - " & sCPUMsg _
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 93

 & UNITPERCENT, 0, lStreamID

 End if
 End If

 If DO_EVENT = "y" And dTotalTime > TH_UTIL Then

 dQueueLen = CPU.QueueLengthValue
 If dQueueLen = -1 Then

 MSActions PRM_KSERR, "Counter not found", "AKP_NULL",
_

 sObjectList, "The queue length counter could _
 not be found"

 Exit Sub
 End If

 ' if TH_QLEN = -1 ignore query length value and raise

event
 ' else if query length value exceeds threshold value then

 ' raise event
 If TH_QLEN = -1 Then

 sDetailMsg = sCPUMsg + " utilization% is " & _
 Format$(dTotalTime, "0.00") & _

 "; >TH = " & Cstr(TH_UTIL)
 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _

 sObjectList, sDetailMsg
 Elseif dQueueLen > TH_QLEN Then

 sDetailMsg = sCPUMsg + " utilization% is " & _
 Format$(dTotalTime, "0.00") & "; >TH = " & _

 Cstr(TH_UTIL) & " AND" & chr$(10) & "CPU queue _
 length is " & Cstr(dQueueLen) & "; >TH = " & _

 Cstr(TH_QLEN)
 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _

 sObjectList, sDetailMsg
 End If

 End If

 If DO_DATA = "y" Then
 sDetailMsg = sCPUMsg + " utilization% is: " & chr$(10)

& _
 "Privileged " & Format$(dPrivilegeTime, "0.00") & _

 chr$(10) & "User " & Format$(dUserTime, "0.00") & _
 chr$(10) & "Total " & Format$(dTotalTime, "0.00")

 DataLog lStreamID, dTotalTime, sDetailMsg
 End If

End Sub
94 Developing Custom Knowledge Scripts

Sub Main()
 Dim sCPUName$, sProgID$

 Dim iNumberCPU As Integer

 If IterationCount() = 1 Then
 ' Retrieve the prog id of the NetIQ NT MO COM object

 sProgID = MCGetMOID ("NetiQAgent.NT", AppManID)
 Set NT = CreateObject (sProgID)

 Set CPU = NT.CPU
 End If

 iNumberCPU = ItemCount(NT_CPUNumber, ",")

 If iNumberCPU = 1 Or DO_OVERALL = "n" Then
 ' Check each individual CPU in the object list

 For I = 1 To iNumberCPU

 sCPUName = Item$(NT_CPUNumber, I,, ",")
 CpuCheck sCPUName

 Next I
 Else

 ' Just check the overall CPU usage
 CpuCheck ""

 End If
End Sub

Preliminary discussion

Recall from Chapter 2 the steps that the script undergoes when it is
run:

1 A user chooses a script and drags it to the target object.

2 The Properties dialog box opens.

3 The user sets Script Parameters, the schedule, actions, etc.—or
accepts the defaults—and closes the dialog box.

4 The Operator Console creates a job (an instance of the script along
with the user configured Script Parameters, schedule, actions, etc.)
in the AppManager repository.
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 95

5 The AppManager management server retrieves the job, the
schedule, any action scripts, and so forth from the AppManager
repository and forwards it all to the AppManager agent which will
run the job. The final script has all Script Parameters and object
types defined as constants with assigned values.

User-set Script Parameters

There are seven Script Parameters that the user can alter when
launching this script. These Script Parameters will become constants
in the running script. The Script Parameters are:

Variable name
used in the code

Description the Operator
Console user will see

Value

DO_DATA Collect data? (y/n) If = “y”, event will be fired when
thresholds are exceeded.

DO_EVENT Event? (y/n) If = “y”, data will be collected.

DO_OVERALL Overall load? (y/n) If = “y”, script will be run only to
obtain the % usage of all CPUs
aggregated together. If = “n”,
script will be run for each individual
CPU.

TH_UTIL %CPU maximum threshold Threshold for maximum CPU %
usage.

TH_QLEN CPU queue length
maximum threshold

Threshold for maximum CPU
queue length.

Severity Event severity level Severity level of event fired (if
DO_EVENT = ”y”).
96 Developing Custom Knowledge Scripts

Object types

The object types for this script are:
<Type name="NT_CPUFolder"></Type>

<Type name="NT_CPUNumber"></Type>

When the script is dragged onto the target object, AppManager will
assign the appropriate values:
● NT_CPUFolder will be assigned the name of the top-level folder.
● NT_CPUNumber will be assigned a comma-delimited string listing all

the individual CPUs.

AppManager will insert these constants in the code of the final,
generated script like this:
 Const NT_CPUFolder = "CPU"

 Const NT_CPUNumber = "0"

In this case, there is only one CPU in the CPU folder.

PRM_KSERR Severity for an
unexpected KS error

Severity level to assign to errors in
executing the Knowledge Script,
that do not have anything to do
with exceeded thresholds.

AKPID The “description” of this
variable is “action
taken,” but the user does
not see it. It is hidden in
the Operator Console.

Action script or scripts to run. If
none, the Operator Console
program will set it to the default
(AKP_NULL).

NOTE: The user does not see this
Script Parameter in the Operator
Console Properties dialog box,
although you defined it in your
Script Properties dialog box in the
Developer’s Console. If the user
adds actions, the value of AKPID
will be altered by the Operator
Console program.

Variable name
used in the code

Description the Operator
Console user will see

Value
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 97

Actions

Akpid determines what action scripts, if any, are run. If there are to be
action scripts, they will be run when an event is raised—Akpid is a
parameter of the Callback function CreateEvent(). If no events are
raised, no action scripts will be run.

Note Raising events is the mechanism used to launch action scripts.
Other than calling an event with Akpid as a (required) parameter, you
do not write code to run action scripts.

The default for Akpid in this script is “AKP_NULL” (no action), which is
the default for Akpid in most scripts. If the user adds actions with the
Properties dialog box when setting up the job, the value of Akpid will
be changed to “1,2,3,4,....n” when the user adds n actions
(n >= 1).

Functions called in the code

The code calls three types of functions:
● Summit BasicScript built-in functions. See the BasicScript

documentation in
appmanager\documentation\development_tools\

 summit_basicscript\documentation.

● Callback functions, by which the script requests information or
action from the AppManager agent running the job. See Chapter 11,
“AppManager Callbacks for Summit BasicScript and VBScript.”

● NetIQ managed object methods. Managed objects are COM
objects whose methods are used to get basic information about
hardware, applications, processes, and services on the managed
computer. See the Managed Object Reference Guide.
98 Developing Custom Knowledge Scripts

Here are the functions called in the script, in order of their
appearance:

Function or subroutine Description

CPU.UtilValue Windows NT managed object that obtains
information about CPU utilization.

MSActions Callback function that reports events and initiates
actions.

IterationCount Callback function that determines the number of
times that the calling Knowledge Script has run.

DataHeader Callback function that sends the data header for
logging and graphing data streams.

CPU.QueueLengthValue Windows NT managed object that obtains
information about the CPU queue length.

CStr Summit BasicScript built-in function that converts an
expression to a string.

Chr$ Summit BasicScript built-in function that returns the
character whose value is its argument. In this script,
Chr$(10) returns a carriage return.

Format$ Summit BasicScript built-in function that formats a
string to a user’s specification.

DataLog Callback function that sends points back for logging
and graphing.

MCGetMOID Callback function that retrieves the versioned ProgID
of the COM object that is required by this Knowledge
Script.

ItemCount Summit BasicScript built-in function that returns the
number of items in a delimited text string list.

Item$ Summit BasicScript built-in function that returns a
discrete item in a delimited text string list.
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 99

Syntax of the managed object methods

Refer to the Managed Objects Reference Guide for more details.

CPU.UtilValue

This function reports the percentage of CPU utilization for the entire
system. You specify the type of CPU utilization to return (total,
privileged time, or user time). On a multiprocessor, the value returned
is the average CPU utilization for all system processors.

Syntax
CPU.UtilValue What, CpuInstance

Returns a double representing the percentage of time that the
specified processor(s) is busy. A return value of -1 indicates an error
condition.

CPU.QueueLengthValue

Syntax
CPU.QueueLengthValue

This function has no parameters. It returns the length of the processor
queue in number of threads, as a double representing the number of

Parameter Data type Setting

What String Type of CPU usage to monitor. Valid settings are
(case sensitive):
• PROCESSOR for utilization of both privileged and

user CPU modes.

• PRIVILEGED for utilization in privileged mode by
the NT operating system.

• USER for utilization in user mode by the
application.

CpuInstance String Processor number. For a single processor system,
this number should be “0”. For the average of all
processors, use an empty string (“”).
100 Developing Custom Knowledge Scripts

process threads in the processor queue. A return value of -1 indicates
an error condition.

Syntax of the Callback functions

Refer to Chapter 11, “AppManager Callbacks for Summit BasicScript
and VBScript” for more details.

MSActions

Allows a Knowledge Script to report events and initiate actions.

Syntax
MSActions severity, shortmsg, akpid, objlist, detailmsg

[,detailmsg2,,detailmsg6] [, value]

Parameter Data type Setting

severity Long Severity of the event.

shortmsg String Event message displayed in the List pane.

akpid String Action name or identifier for the action to be taken.

objlist String Objects that report the event (their icons will be set
to blinking in the Operator Console’s TreeView
pane).

detailmsg String Detail message from the AppManager agent(s)
displayed in the event’s Properties dialog. At least
one detailmsg or an empty string is required. The
maximum size of the string is 32K.

To pass additional information beyond the 32K,
you can specify up to 6 message strings, each with
a maximum size of 32K, to define the entire detail
message for an event. For example, if the
message you want to return is 64K, the message
would be stored in two strings:
MSActions Severity, “High", AKPID, "",
detailmsg, detailmsg2

value Double Optional. The current value to raise an event.
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 101

IterationCount

Returns a Long representing the current iteration count.

Syntax
IterationCount

This function has no parameters.

DataHeader

Sends the data header for logging and graphing data streams (short
form).

Syntax
DataHeader legend, graph_id, stream_id [, objlist]

Parameter Data type Setting

legend String Graphing legend displayed in the List and Graph
panes. For example, the legend for one data
stream created by NT_CpuResource is User CPU.
The string length limit is 128 characters.

graph_id Long Graph ID. This parameter is not currently used. It
is always set to the value 0.

stream_id Long or
String

Data stream identifier. This identifier should be
unique for each data stream collected by a single
Knowledge Script. The identifier does not need to
be unique across Knowledge Scripts.

objlist String Optional. Matching object where the data is
collected.
102 Developing Custom Knowledge Scripts

DataLog

Sends data points back for logging and graphing. This call is always
used in conjunction with a DataHeader call.

Syntax
DataLog stream_id, data, datapointmsg

MCGetMOID

Retrieves version information for the managed object installed on the
computer where the Knowledge Script is running. This is used to
ensure that a particular version of a Knowledge Script calls a suitable
version of a managed object.

Syntax
MCGetMOID (programid, version)

Returns a String representing the managed object version.

Parameter Data type Setting

stream_id Long or
String

Data stream identifier. This identifier should be the
same identifier used in the associated DataHeader
call for each data stream.

data Double Data point value.

datapointmsg String Detail message displayed in the Graph Data Detail
dialog. The maximum size for this string is 32K.

Parameter Data type Setting

programid String Managed object program identifier. For example,
NetiQAgent.NT.

version String Knowledge Script version (for example, AppManID
or KSVerID parameter).
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 103

The program logic

The main work in this script is done by the CpuCheck() subroutine.
This subroutine is called from Main() with an argument that depends
on the value of DO_OVERALL and the number of CPUs. If there is only
one CPU, or if DO_OVERALL = "n", CpuCheck is called for each CPU
individually (argument = name of CPU). If, on the other hand, there
are multiple CPUs and DO_OVERALL = "y", CpuCheck is called for all
CPUs aggregated together (argument = “”).

CpuCheck() checks the current values for CPU total processor time,
CPU user time, and CPU queue length against the user-defined
thresholds. If the thresholds are exceeded, CpuCheck() generates
events (and may initiate actions if the user defined any).

CpuCheck() requires sCPUName as an input parameter. sCPUName is a
string that is defined in Main(). Its value is either the name of a CPU
or an empty string, the latter signifying that CpuCheck() should check
only the sum of all CPUs.

Sub Main()

IterationCount() returns the number of times that the Knowledge
Script job has run. If this is the first time that the script has been run,
IterationCount() will return 1. In that case, the body of the
If IterationCount() = 1 Then block will be executed to:
● Obtain the ID of the COM Object that contains the managed

objects that will be used in the Knowledge Script (CPU.UtilValue
and CPU.QueueLengthValue).

● Create the NT.CPU object so that these two methods can be
called.

If IterationCount() = 1 Then

 ' Retrieve the prog id of the NetIQ NT MO COM object
 sProgID = MCGetMOID ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (sProgID)
 Set CPU = NT.CPU

End If
104 Developing Custom Knowledge Scripts

The Callback function MCGetMOID() constructs the COM object ID
from the string “NetIQAgent.NT” and the parameter AppManID.

AppManID is the AppManager build number that is appropriate for this
Knowledge Script. It is defined in the non-code XML section of the
Knowledge Script, and appears in the header section of the final,
generated script that the AppManager agent runs:

'### Begin KSID Section
Const AppManID = "4.0.15.1"

Const KSVerID = "1.0"
'### End KSID Section.

Note The COM ID will be of the form NetIQAgent.NT.n, where n is
an integer. In general, n will not be equal to the actual value of
AppManID. For example, in this script AppManID=4.0.15.1, while the ID
of the COM object for AppManager 5 is NetIQAgent.NT.4. The
Callback function MCGetMOID() translates the AppManID into the
proper value for the COM ID.

The object type NT_CPUNumber contains a comma-delimited string
listing all the individual CPUs (the names of all the CPU objects on
which the script was dropped—determined by the Operator Console
when the script is dropped). The Summit BasicScript function
ItemCount() returns the number of items in the list, given that the
comma (“,”) is the delimiter, and assigns the value to iNumberCPU.

 iNumberCPU = ItemCount(NT_CPUNumber, ",")

If there is only one CPU or if DO_OVERALL is set to “n”, the For I = 1
To iNumberCPU loop is executed. This loop uses the Summit
BasicScript function Item$() to step through the individual CPUs,
calling the CpuCheck() subroutine on each one in turn:

If iNumberCPU = 1 Or DO_OVERALL = "n" Then

 ' Check each individual CPU in the object list
 For I = 1 To iNumberCPU

 sCPUName = Item$(NT_CPUNumber, I,, ",")
 CpuCheck sCPUName

 Next I
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 105

If there is more than one CPU and DO_OVERALL is set to “y”,
CpuCheck() is called with an empty string to check only the sum of all
CPUs:
Else
 ' Just check the overall CPU usage

 CpuCheck ""
End If

Sub CpuCheck()

The parameter passed to this subroutine is either the name of the
individual CPU or “”. When an empty string is passed in, CpuCheck
checks only the sum of all CPUs.

To fire an event, both the CPU total usage and the CPU queue length
thresholds set by the user must be exceeded. An exception to this is
that the CPU queue length is ignored if the user has set its threshold
to -1.

The program will exit the CpuCheck() subroutine if any calls to the
managed object methods CPU.UtilValue or CPU.QueueLengthValue
fail (return -1).

The subroutine declares variables for the four quantities that will be
checked (actually, only three will be checked—dPrivilegeTime will be
calculated from dTotalTime and dUserTime):
 Dim dUserTime#, dPrivilegeTime#, dTotalTime#, dQueueLen#

Then, the subroutine creates:
● sObjectList, a string that is used to tell the Operator Console

which object icon to blink when an event is raised.
● lStreamID, an ID for tagging any data streams that are created.

lStreamID=0 for the sum of all CPUs or lStreamID=n for
individual CPU n.

● sCPUMsg for identifying the CPU# (or “OVERALL CPU”) when
returning messages.

If (sCPUName = "") Then
106 Developing Custom Knowledge Scripts

 ' Set the machine object as the resource. This will

 ' cause the machine object to blink
 ' if there is an event.

 sObjectList = "NT_CPUFolder = " + NT_CPUFolder
 lStreamID = 0

 sCPUMsg = "Overall CPU"
Else

 ' Set the individual cpu name as the resource.
 ' This will cause the individual cpu object

 ' to blink if there is an event for each individual cpu.
 sObjectList = "NT_CPUNumber = " + sCPUName

 lStreamID = Val(sCPUName)
 sCPUMsg = "CPU# " + sCPUName

End If

Next, CpuCheck() calls the NT.CPU.UtilValue() managed object to
get the “total CPU time” for the processor or processors identified by
sCPUName:

 dTotalTime = CPU.UtilValue("PROCESSOR", sCPUName)

Then, CpuCheck() calls the NT.CPU.UtilValue() managed object to
get the “user CPU time” for the processor or processors identified by
sCPUName:

 dUserTime = CPU.UtilValue("USER", sCPUName)

If NT.CPU.UtilValue() fails, it returns -1. Here, if either call to
NT.CPU.UtilValue() fails, the Callback function MSActions returns
an event with an error message and blinks the correct object icon.
Then the subroutine exits:

If dTotalTime = -1 Or dUserTime = -1 Then

 ' A return value of -1 indicates a failure to
 ' retrieve the value of the counter

 MSActions PRM_KSERR, "Counter not found", "AKP_NULL", _
 sObjectList,"Processor or User counter not found _

 Proc: " & Cstr(dTotalTime) & ", User: " & _
 Cstr(dUserTime) & ")"

 Exit Sub
End If
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 107

If both NT.CPU.UtilValue() calls succeed, dPrivilegeTime is
calculated from dTotalTime and dUserTime:

If dTotalTime > dUserTime Then
 dPrivilegeTime = dTotalTime - dUserTime

Else
 dPrivilegeTime = 0

End If

Next, the Callback function IterationCount() returns the number of
times the Knowledge Script job has been run, including the current
job. If this is the first time, and if the script is to collect data (DO_DATA
= “y”), then a heading for the data to be collected is created with the
Callback function DataHeader:

If IterationCount() = 1 Then

 If DO_DATA = "y" Then
 DataHeader "PROCESSOR Utilization - " & sCPUMsg _

 & UNITPERCENT, 0, lStreamID
 End if

End If

Next, the If DO_EVENT = "y" And dTotalTime > TH_UTIL Then
block is executed only if both these conditions are true:
● the CPU threshold is exceeded (dTotalTime > TH_UTIL), and
● events are to be sent (DO_EVENT = “y”).

If DO_EVENT = "y" And dTotalTime > TH_UTIL Then

 dQueueLen = CPU.QueueLengthValue
 If dQueueLen = -1 Then

 MSActions PRM_KSERR, "Counter not found", "AKP_NULL", _
 sObjectList, "The queue length counter could _

 not be found"
 Exit Sub

 End If

 ' if TH_QLEN = -1 ignore query length value and raise event
 ' else if query length value exceeds threshold value then

 ' raise event
 If TH_QLEN = -1 Then

 sDetailMsg = sCPUMsg + " utilization% is " & _
 Format$(dTotalTime, "0.00") & _
108 Developing Custom Knowledge Scripts

 "; >TH = " & Cstr(TH_UTIL)

 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _
 sObjectList, sDetailMsg

 Elseif dQueueLen > TH_QLEN Then
 sDetailMsg = sCPUMsg + " utilization% is " & _

 Format$(dTotalTime, "0.00") & "; >TH = " & _
 Cstr(TH_UTIL) & " AND" & chr$(10) & "CPU queue _

 length is " & Cstr(dQueueLen) & "; >TH = " & _
 Cstr(TH_QLEN)

 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _
 sObjectList, sDetailMsg

 End If
End If

In the block of code above, the managed object
NT.CPU.QueueLengthValue retrieves the CPU queue length and
assigns it to dQueueLength, provided that the user is interested in the
queue length (TH_QLEN <> -1):

 dQueueLen = CPU.QueueLengthValue

If QueueLengthValue fails (returns -1) the Callback function
MSActions returns an event with an error message and blinks the
correct object icon. Then the program exits the CpuCheck()
subroutine:

If dQueueLen = -1 Then
 MSActions PRM_KSERR, "Counter not found", "AKP_NULL", _

 sObjectList, "The queue length counter could _
 not be found"

 Exit Sub
End If

If the user is uninterested in dQueueLength (TH_QLEN = -1), then the
Callback function MSActions is used to raise an event with a message
that the CPU threshold has been exceeded:
If TH_QLEN = -1 Then

 sDetailMsg = sCPUMsg + " utilization% is " & _
 Format$(dTotalTime, "0.00") & _

 "; >TH = " & Cstr(TH_UTIL)
 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _

 sObjectList, sDetailMsg
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 109

If the user has asked to include the queue length threshold
(TH_QLEN <> -1) and the queue length threshold has been exceeded
(dQueueLength > TH_QLEN), then the Callback function MSActions is
used to raise an event with a message that the CPU and queue length
thresholds have been exceeded:

Elseif dQueueLen > TH_QLEN Then
 sDetailMsg = sCPUMsg + " utilization% is " & _

 Format$(dTotalTime, "0.00") & "; >TH = " & _
 Cstr(TH_UTIL) & " AND" & chr$(10) & "CPU queue _

 length is " & Cstr(dQueueLen) & "; >TH = " & _
 Cstr(TH_QLEN)

 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _
 sObjectList, sDetailMsg

End If

Finally, if the user has asked to collect data, then the Callback function
DataLog is used to return the current values of CPU usage and queue
length. This data is returned whether or not the thresholds have been
exceeded:
If DO_DATA = "y" Then

 sDetailMsg = sCPUMsg + " utilization% is: " & chr$(10) & _
 "Privileged " & Format$(dPrivilegeTime, "0.00") & _

 chr$(10) & "User " & Format$(dUserTime, "0.00") & _
 chr$(10) & "Total " & Format$(dTotalTime, "0.00")

 DataLog lStreamID, dTotalTime, sDetailMsg
End If
110 Developing Custom Knowledge Scripts

The modified script, NT_CpuLoadedEx.qml

Now that you know how Samples_CpuLoaded.qml works, you can
modify it to obtain more information. The expanded Knowledge
Script is called Samples_CpuLoadedEx.qml.

In Samples_CpuLoadedEx.qml, the managed object method
CPU.TopUsageValue() will be used to return information about the
five processes that use the most CPU resources. The syntax of this
method is:
 CPU.TopUsageValue HowMany, AgtMsg, Flags

This function reports the total CPU consumption of all processes and,
optionally, details about the processes consuming the most CPU. You
can also use this function to check whether a particular application
process is running or consuming an unexpected amount of CPU time
(run-away process).

The function returns a double representing the overall CPU
percentage used by all processes. A return value of -1 indicates an
error condition.

The text string, AgtMsg, returns a list of process names and overall
utilization numbers, sorted by the utilization percentage.

Parameter Data type Setting

HowMany Long Number of top CPU-consuming processes to
include in the detail message (AgtMsg). If 0 is
specified, all processes are returned. The default
used in most Knowledge Scripts is 5, for example,
to return details about the top 5 processes
consuming the most CPU.

Note that the return value for this function is the
total CPU consumption (summation of all
processes’ CPU) irrespective of this setting.

Flags Long Set to 1 to return the detail message, AgtMsg, with
details about top processes. If set to 0, no AgtMsg
is returned.
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 111

Listing of Samples_CpuLoadedEx.qml

Samples_CPULoadedEx.qml is exactly the same as
Samples_CPULoaded.qml, except that it calls CPU.TopUsageValue()
to obtain the top five processes.

The new code is shown in bold and larger font:
Dim NT As Object

Dim CPU As Object
Const UNITPERCENT = "^^%"

' This sub routine checks for the processor time, user time,

' and queue length to see if they exceed the given
' thresholds for a given cpu, or the overall cpu

Sub CpuCheck(sCPUName As String)
Dim dUserTime#, dPrivilegeTime#, dTotalTime#, dQueueLen#

Dim sDetailMsg$, sObjectList$, sCPUMsg$
Dim lStreamID As Long

Dim sProcessNames As String
Dim lRetCode As Long

 If (sCPUName = "") Then

 ' Set the machine object as the resource. This will cause
 ' the machine object to blink if there is an event.

 sObjectList = "NT_CPUFolder = " + NT_CPUFolder
 lStreamID = 0

 sCPUMsg = "Overall CPU"
 Else

 ' Set the individual cpu name as the resource. This will
 ' cause the individual cpu object to blink if there is

 ' an event for each individual cpu
 sObjectList = "NT_CPUNumber = " + sCPUName

 lStreamID = Val(sCPUName)
 sCPUMsg = "CPU# " + sCPUName

 End If

 dTotalTime = CPU.UtilValue("PROCESSOR", sCPUName)
 dUserTime = CPU.UtilValue("USER", sCPUName)

 If dTotalTime = -1 Or dUserTime = -1 Then
 ' A return value of -1 indicates a failure to

 ' retrieve the value of the counter
112 Developing Custom Knowledge Scripts

 MSActions PRM_KSERR, "Counter not found", "AKP_NULL", _

 sObjectList,"Processor or User counter not found _
 (Proc: " & Cstr(dTotalTime) & ", User: " & _

 Cstr(dUserTime) & ")"
 Exit Sub

 End If

 If dTotalTime > dUserTime Then
 dPrivilegeTime = dTotalTime - dUserTime

 Else
 dPrivilegeTime = 0

 End If

 If IterationCount() = 1 Then
 If DO_DATA = "y" Then

 DataHeader "PROCESSOR Utilization - " & sCPUMsg _

 & UNITPERCENT, 0, lStreamID
 End if

 End If

 If DO_EVENT = "y" And dTotalTime > TH_UTIL Then
 dQueueLen = CPU.QueueLengthValue

 If dQueueLen = -1 Then
 MSActions PRM_KSERR, "Counter not found", "AKP_NULL",

_
 sObjectList, "The queue length counter could _

 not be found"
 Exit Sub

 End If

 ' if TH_QLEN = -1 ignore query length value and raise
event

 ' else if query length value exceeds threshold value then
 ' raise event

 If TH_QLEN = -1 Then

lRetCode = CPU.TopUsageValue(5, sProcessNames, 1)

 sDetailMsg = sCPUMsg + " utilization% is " & _

 Format$(dTotalTime, "0.00") & _
 "; >TH = " & Cstr(TH_UTIL) _

& chr$(10) & chr$(10) & “top 5 processes _
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 113

are: ” & sProcessNAMES

 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _
 sObjectList, sDetailMsg

 Elseif dQueueLen > TH_QLEN Then

lRetCode = CPU.TopUsageValue(5, sProcessNames, 1)

 sDetailMsg = sCPUMsg + " utilization% is " & _
 Format$(dTotalTime, "0.00") & "; >TH = " & _

 Cstr(TH_UTIL) & " AND" & chr$(10) & "CPU queue _
 length is " & Cstr(dQueueLen) & "; >TH = " & _

 Cstr(TH_QLEN) _

& chr$(10) & chr$(10) & “top 5 processes _
are: ” & sProcessNAMES

 MSActions Severity, sCPUMsg & " Overloaded", AKPID, _
 sObjectList, sDetailMsg

 End If
 End If

 If DO_DATA = "y" Then

 sDetailMsg = sCPUMsg + " utilization% is: " & chr$(10)
& _

 "Privileged " & Format$(dPrivilegeTime, "0.00") & _
 chr$(10) & "User " & Format$(dUserTime, "0.00") & _

 chr$(10) & "Total " & Format$(dTotalTime, "0.00")
 DataLog lStreamID, dTotalTime, sDetailMsg

 End If
End Sub

Sub Main()
 Dim sCPUName$, sProgID$

 Dim iNumberCPU As Integer

 If IterationCount() = 1 Then
 ' Retrieve the prog id of the NetIQ NT MO COM object

 sProgID = MCGetMOID ("NetiQAgent.NT", AppManID)
 Set NT = CreateObject (sProgID)
114 Developing Custom Knowledge Scripts

 Set CPU = NT.CPU

 End If

 iNumberCPU = ItemCount(NT_CPUNumber, ",")
 If iNumberCPU = 1 Or DO_OVERALL = "n" Then

 ' Check each individual CPU in the object list
 For I = 1 To iNumberCPU

 sCPUName = Item$(NT_CPUNumber, I,, ",")
 CpuCheck sCPUName

 Next I
 Else

 ' Just check the overall CPU usage
 CpuCheck ""

 End If
End Sub
Chapter 5 • Modifying a monitoring script written in Summit BasicScript 115

116 Developing Custom Knowledge Scripts

Chapter 6

Modifying a monitoring script written
in Perl
This chapter dissects the code in a sample Knowledge Script called
Samples_HTTPHealth.qml. This script sends an HTTP command to
each URL in a user-specified list and reports when the Web server
does not respond.

In the final section of this chapter, Samples_HTTPHealth.qml is
modified to become Samples_HTTPHealthEx.qml. In this modified
script, the user can elect to be informed if the Web server is unable to
supply a particular HTML page of the user’s choice.

You should open each sample Knowledge Script in your Developer’s
Console where you can look at it in the various views and open its
Script Properties dialog box.

You will also benefit from running them in the AppManager Operator
Console and experimenting with various Properties choices.

The following topics are covered in this chapter:
● Listing of the Samples_HTTPHealth.qml script
● Preliminary discussion
● Syntax of the Callback functions
● The program logic
● The modified script, Samples_HTTPHealthEx.qml

Listing of the Samples_HTTPHealth.qml script

Here is a listing of the code section of the script. The Script
Parameters, included by AppManager as variables, are not shown.
117

begin main script

use strict;
use NetIQ::Nqext;

use IO::Socket;
our $resmsg;

our @address_array;
our $address;

my $connection;
our $datavalue;

our $line;
our $idx;

format_list($AddressList);

$resmsg = "UNIX_MachineFolder = $UNIX_MachineFolder";

if ($AddressList eq ''){
 NetIQ::Nqext::CreateEvent($Severity, "The supplied address

 list is empty", “AKP_NULL”, $resmsg,
 0, "Enter a list of addresses

 separated by a comma. E.g.
 www.netiq.com,www.microsoft.com",

 "", 0, 0);
}

$idx = 0;
@address_array = split (',',$AddressList);

foreach $address (@address_array){
 $datavalue = 100;

 $idx++;
 # Create a socket connection to the specified address

 $connection = IO::Socket::INET->new (Proto => "tcp",
 PeerAddr => $address,

 PeerPort => "http(80)");
 unless ($connection){

 NetIQ::Nqext::CreateEvent($Severity, "Failed to connect
 to HTTP server $address",

 $Akpid, $resmsg, 0, "Failed
 to connect to HTTP server

 $address", "", 0, 0);
 if ($Do_data eq "y"){

 NetIQ::Nqext::CreateData($idx . "$address", "HTTP
 health for $address", "",

 $resmsg, 0, "", 0);
 }

next;
 }
118 Developing Custom Knowledge Scripts

 # Send a head command to the specified address to see

 # if it is a valid web server
 $connection->autoflush (1);

 print $connection "HEAD /index.html HTTP/1.0\n\n";

 $line = <$connection>;
 unless ($line){

 if ($Do_event eq "y"){
 NetIQ::Nqext::CreateEvent($Severity, "Failed to

 connect to HTTP server
 $address", $Akpid,

 $resmsg, 0, "Failed to
 connect to HTTP server

 $address", "", 0, 0);
 }

 $datavalue = 0;

 }
 if ($Do_data eq "y"){

 NetIQ::Nqext::CreateData($idx . "$address", "HTTP
 health for $address", "",

 $resmsg, $datavalue, "", 0);
 }

 close ($connection);
}

End main script

get rid of extraneous commas, extra white spaces, etc.
sub format_list {

 my ($input) = @_;
 $input =~ s/\s+,/,/g;

 $input =~ s/,\s+/,/g;
 $input =~ s/^\s+//g;

 $input =~ s/\s+$//g;
 $input =~ s/,+/,/g;

 $input =~ s/^,//g;
 $input =~ s/,$//g;

 chomp($input);
 $_[0] = $input;

}

Preliminary discussion

Recall from Chapter 2 the steps that the script undergoes when it is
run:
Chapter 6 • Modifying a monitoring script written in Perl 119

1 A user chooses a script and drags it to the target object.

2 The Properties dialog box opens.

3 The user sets Script Parameters, the schedule, actions, etc.—or
accepts the defaults—and closes the dialog box.

4 The Operator Console creates a job (an instance of the script along
with the user configured Script Parameters, schedule, actions, etc.)
in the AppManager repository.

5 The AppManager management server retrieves the job, the
schedule, any action scripts, and so forth from the AppManager
repository and forwards it all to the AppManager agent which will
run the job. The final script has all Script Parameters and object
types defined as variables with assigned values.

User-set Script Parameters

There are four Script Parameters that the user can alter when
launching this script. These Script Parameter will become variables
(with values assigned) in the running script. The code must provide
alternatives that depend on the values the user chose for these Script
Parameters. The Script Parameters are:

Variable name
used in the code

Description the Operator
Console user will see

Value

$Do_data Collect data? (y/n) If = “y”, data will be collected.

$Do_event Event? (y/n) If = “y”, an event will be fired
when threshold is exceeded.

$AdressList Web server address
list (separated by
commas and no spaces)

Comma-delimited list of
connections (URLs) to test.
120 Developing Custom Knowledge Scripts

Object types

The object type for this script is:
<Type name="UNIX_MachineFolder"></Type>

When the script is dragged onto the target object the Operator
Console will assign the appropriate value:
● UNIX_MachineFolder will be assigned the name of the target

computer.

Actions

$Akpid determines what action scripts, if any, are run. If there are to
be action scripts, they will be run when an event is raised—$Akpid is a
parameter of the Callback function CreateEvent(). If no events are
raised, no action scripts will be run.

Note Raising events is the mechanism used to launch action scripts.
Other than calling an event with $Akpid as a (required) parameter, you
do not write code to run action scripts.

$Severity Event severity level Severity level of event fired (if
DO_EVENT=”y”).

$Akpid The “description” of this
variable is “action
taken,” but the user does
not see it. It is hidden in
the Operator Console.

Action script or scripts to run. If
none, the Operator Console
program will set it to the default
(AKP_NULL).

NOTE The user does not see this
Script Parameter in the Operator
Console Properties dialog box,
although you defined it in your
Script Properties dialog box in
the Developer’s Console. If the
user adds actions, the value of
Akpid will be altered by the
Operator Console program.

Variable name
used in the code

Description the Operator
Console user will see

Value
Chapter 6 • Modifying a monitoring script written in Perl 121

The default for $Akpid in this script is “AKP_NULL” (no action), which
is the default for $Akpid in most scripts. If the user adds actions with
the Properties dialog box when setting up the job, the value of
$Akpid will be changed to “1,2,3,4,....n” when the user adds n
actions (n >= 1).

Functions called in the code

The code calls three types of functions:
● NetIQ Callback functions, by which the script requests

information or action from the AppManager agent running the job.
See Chapter 12, “AppManager Callbacks for Perl.”

● Built-in Perl functions. See http://www.Perl.com.
● Socket functions. See http://www.perldoc.com/perl5.6.1/lib/

IO/Socket.html and http://www.perldoc.com/perl5.6.1/lib/
IO/Socket/INET.html.

Here are the functions called in the code, in order of their appearance:

Function or subroutine Description

NetIQ::NQEXT::CreateEvent Callback function that raises an event.

split Built-in Perl function that splits a delimited string
into a list (array) of strings.

IO::Socket::INET->new Instantiates the class IO::Socket::INET to
open a socket connection.

NetIQ::NQEXT::CreateData Callback function that sends data points back
for logging and graphing.

autoflush A method of the IO::Socket::INET class that
deletes cached data in a socket connection.

print Built-in Perl function that (in this case) prints to
the socket connection.

close A method of the IO::Socket::INET class that
closes the socket connection.

chomp Built-in Perl function that removes a newline
character from the end of a string.
122 Developing Custom Knowledge Scripts

Syntax of the Callback functions

Refer to Chapter 12, “AppManager Callbacks for Perl” for more
details.

CreateData

Sends data points for dynamic data streams. This function allows you
to collect data for data streams that may be instantiated at each
iteration.

Syntax
NetIQ::Nqext::CreateData (streamId, legend, dynaleg,

objlist, val, agentmsg, msgtype [,schema] [,loglimit]
[,lowWM] [,hiWM] [,deletefile])

CreateData returns nothing.

Parameter Data type Setting

streamId Long, String Data stream ID

legend String Data stream legend. The string length limit is 128
characters.

dynaleg String Dynamic legend, contains the dynamic information
that can be used for reporting.

objlist String Corresponding object name where the data is
collected.

val Double Current data point value.

agentmsg String Contains either a plain text or a message file
name.

msgtype Long Related to agentmsg: 0 for plain text, 1 for
message file.

schema String XML schema for dynamic table creation in RDB.
Default is an empty string.

loglimit Long Datalog limit in # of days. Default is -1.

lowWM Double Low watermark. Default is -1.0.

hiWM Double High watermark. Default is -1.0.

deletefile Bool Used only when msgtype=1. Default is TRUE.
Chapter 6 • Modifying a monitoring script written in Perl 123

CreateEvent

Used by a Knowledge Script to send an event to the AppManager
agent. The AppManager agent will apply additional rule processing
and will determine whether to send a new event or a duplicated
(collapsed) event to the AppManager management server.

Syntax

NetIQ::Nqext::CreateEvent(sev, evtmsg, akp, obj, val,

agentmsg, evtsrc, evtid, msgtype [,deletefile])

CreateEvent returns nothing.

The program logic

Recall that the running script will include the user-defined Script
Parameters. For example, if the user accepts the defaults, the following
will be pre-pended to the script’s code (with the UNIX machine name
filled in by AppManager):
Begin KSID Section

Parameter Data type Setting

sev Long Event severity

evtmsg String Event message

akp String Action name

obj String Corresponding object name where the event is
raised

val Double The current value (to raise the event)

agentmsg String Either a plain text detail message or a message
file name

evtsrc String Event source

evtid Long Event ID

msgtype Long Agent message type: 0 for plain text, 1 to refer to a
file

deletefile Bool Only used when msgtype=1. Default is TRUE
124 Developing Custom Knowledge Scripts

our $AppManID = "4.1u.6.0.1";

our $KSVerID = "1.0";
End KSID Section

Begin Type Section

our $UNIX_MachineFolder = "";
End Type Section

Begin KPP Section

our $Do_event="y";
our $Do_data="n";

our $AddressList="www.netiq.com";
our $Severity=8;

our $Akpid="AKP_NULL";
End KPP Section

The main script

The lines
 use NetIQ::Nqext;
 use IO::Socket;

include the libraries for the AppManager Callback functions and the
socket functions that we need.

Then, after declaring variables, the code begins with
 format_list($AddressList);

This is a call to the function format_list, which will be discussed
after the main part of the script. This function strips all white space
and extraneous commas from $AddressList, which is the list of
URLs entered by the user.

Next, the $resmsg variable is assigned the “object type” string. This
string is a CreateEvent parameter that identifies the source of the
event and tells AppManager which icon in the TreeView pane should
blink when an event has occurred.

$resmsg = "UNIX_MachineFolder = $UNIX_MachineFolder";

If the string variable that lists the URLs to test is empty, meaning that
the user did not enter a list as they should have, an event is raised that
reports this:
Chapter 6 • Modifying a monitoring script written in Perl 125

if ($AddressList eq ''){

 NetIQ::Nqext::CreateEvent($Severity, "The supplied address
 list is empty", "AKP_NULL", $resmsg,

 0, "Enter a list of addresses
 separated by a comma. E.g.

 www.netiq.com,www.microsoft.com",
 "", 0, 0);

}

In the block of code immediately above, note two things:
● The action variable is "AKP_NULL", so that no action scripts will be

run at this time (this event is created because of an error condition,
not because the user-defined threshold has been exceeded).

● Even if the URL list is empty, script execution continues.

The URL list entered by the user, $AddressList, is a comma-
delimited string of URLs. The next statement converts this string to
an array of URLs:
@address_array = split (',',$AddressList);

The entire remainder of the main script is a foreach loop that steps
through the array of URLs, one URL at a time. If the list is empty, the
loop will not execute. At the beginning of each pass through the loop,
$datavalue is set to 100 which represents a “healthy” URL. If the
URL is later found to not be healthy, $datavalue will be reset to 0.
These values only have meaning if data is to be collected ($Do_data =
"y").

foreach $address (@address_array){

 $datavalue = 100;
 $idx++;

Now it is time to open a socket connection to $address. This is done
by instantiating a new IO::Socket::INET connection with $address
as a parameter in the constructor.

Create a socket connection to the specified address

$connection = IO::Socket::INET->new (Proto => "tcp",
 PeerAddr => $address,

 PeerPort => "http(80)");
126 Developing Custom Knowledge Scripts

If creation of the socket fails, the constructor will return undef. We
test for this. If undef is returned, then:
● An event is raised signaling failure.
● A datapoint with a value of 0 is sent to the data stream for that

URL, but only if $Do_data eq "y". The data stream ID is the
URL preceded by its place in the list—for example, if the fourth
URL in the list is www.netiq.com, its stream ID will be:
$idx . "$address" = 4www.netiq.com.

● Execution returns to the beginning of the foreach loop.
 unless ($connection){
 NetIQ::Nqext::CreateEvent($Severity, "Failed to connect

 to HTTP server $address",
 $Akpid, $resmsg, 0, "Failed

 to connect to HTTP server
 $address", "", 0, 0);

 if ($Do_data eq "y"){

 NetIQ::Nqext::CreateData($idx . "$address", "HTTP
 health for $address", "",

 $resmsg, 0, "", 0);
 }

 next;
 }

If execution of the foreach loop continues at this point, we know that
the socket connection to the remote computer hosting the Web server
has been created successfully, but we still do not know if a connection
to the Web server itself has succeeded. To test the Web server we send
an HTTP HEAD command requesting the URLs index.html page.
Before sending the HEAD command, we flush any cached data from the
socket.
 # Send a head command to the specified address to see
 # if it is a valid web server

 $connection->autoflush (1);
 print $connection "HEAD /index.html HTTP/1.0\n\n";

If there is no response, it means that the Web server is absent or is not
able to answer. In such a case, attempting to read the first line of the
reply (i.e., <$connection>) will return undef. We assign the first line
Chapter 6 • Modifying a monitoring script written in Perl 127

of the answer to $line and test it. Unless it is not undef (that is, unless
it has contents), we raise an event reporting failure and also set
$datavalue to 0.

Note It isn’t important that the Web server can serve the index.html
page. If the Web server can respond, but cannot serve index.html, it
will return an error message, not undef. This means that the Web
server is “healthy,” which is what we are looking for.

 $line = <$connection>;

 unless ($line){
 if ($Do_event eq "y"){

 NetIQ::Nqext::CreateEvent($Severity, "Failed to
 connect to HTTP server

 $address", $Akpid,
 $resmsg, 0, "Failed to

 connect to HTTP server
 $address", "", 0, 0);

 }
 $datavalue = 0;

 }

At this point in the script, the value of $datavalue is 100 for a
successful connection to the Web server, or 0 for a failed connection.
We send back a datapoint to the $idx . "$address" data stream,
provided that $Do_data eq "y". Then, the socket connection is
closed and the main script is finished.
 if ($Do_data eq "y"){
 NetIQ::Nqext::CreateData($idx . "$address", "HTTP

 health for $address", "",
 $resmsg, $datavalue, "", 0);

 }

 close ($connection);
}

End main script

Note This script raises events only upon failure of a connection to a
Web server on the list of URLs. If all connections succeed, the script
does not send events. A connection is considered successful if the Web
server responds to the HEAD command—it is not a requirement that the
128 Developing Custom Knowledge Scripts

Web server can return the index.html page, only that it responds.

The format_list subroutine

This subroutine, which is called on the user-input list of URLs at the
beginning of the main script, uses the regular expression operator to
make sure that the string listing the URLs is properly formatted: a list
of URLs, separated by commas, with no white space and no empty
elements (an empty element is two successive commas with nothing
between them).

get rid of extraneous commas, extra white spaces, etc.

sub format_list {

 my ($input) = @_;
 $input =~ s/\s+,/,/g;

 $input =~ s/,\s+/,/g;
 $input =~ s/^\s+//g;

 $input =~ s/\s+$//g;
 $input =~ s/,+/,/g;

 $input =~ s/^,//g;
 $input =~ s/,$//g;

 chomp($input);
 $_[0] = $input;

}

Here is what each line does:

Line Function

$input =~ s/\s+,/,/g; Substitutes a comma for one or more
white spaces followed by a comma.

$input =~ s/,\s+/,/g; Substitutes a comma for a comma
followed by one or more white spaces.

$input =~ s/^\s+//g; Substitutes nothing for any white space
at the beginning of the string.

 $input =~ s/\s+$//g; Substitutes nothing for any white space
at the end of the string.

 $input =~ s/,+/,/g; Substitutes one comma for two or more
consecutive commas.

$input =~ s/^,//g; Substitutes nothing for a comma at the
beginning of the string.
Chapter 6 • Modifying a monitoring script written in Perl 129

The modified script, Samples_HTTPHealthEx.qml

The code in Samples_HTTPHealth.qml checks to verify that the Web
server at each URL in the user-supplied string $AddressList is
responding. The Web server does not need to return a particular page
to be considered healthy. The HEAD command is used to ask for the
index.html page, but the script does not raise an event if the Web
server reports failure to serve that page. An event is raised only if the
Web server fails to respond at all.

In Samples_HTTPHealth.qml, the user can specify the name of a page
in the Script Parameter $Html_page and the script will report a “health
problem” if the Web server cannot return that page (only if another
new user-defined Script Parameter, $Do_OkEvent, is set to "y"). In this
case, it is not sufficient that the Web server simply responds—it must
respond that it can serve the desired page.

The HEAD command in Samples_HTTPHealth.qml
 print $connection "HEAD /index.html HTTP/1.0\n\n";

is changed to
 print $connection "HEAD /$Html_page HTTP/1.0\n\n";

in the Samples_HTTPHealthEx.qml script.

In Samples_HTTTPHealthEx.qml, whenever $Do_OkEvent is set to
"y", the HEAD command must report success. If the HEAD command
succeeds, the first line returned will be “HTTP/1.1 200 OK” (by
comparison, a typical failure would return something like
“HTTP/1.1 500 Server Error”). We assign the first line of the
returned message to $line and then test it. The condition in the
statement
 if ($line !~ /HTTP\/1\.1 200/)

$input =~ s/,$//g; Substitutes nothing for a comma at the
end of the string.

chomp($input); Deletes a newline character at the end
of the string.

Line Function
130 Developing Custom Knowledge Scripts

will be true if the string “HTTP/1.1 200” is not found in the Web
server response to the HEAD command.

Altered code

The portion of Samples_HTTPHealth.qml that is altered to produce
Samples_HTTPHealthEx.qml is shown below. The new code is shown
in a larger font and in bold.

 # Send a head command to the specified address to see
 # if it is a valid web server

 $connection->autoflush (1);
 print $connection "HEAD /$Html_page HTTP/
 1.0\n\n";
 while (<$connection>){
 # Need to remove the ^M character
 # because it doesn't display well in
 # the operator console.
 s/\cM//;
 $line .= $_;
 }

 $line = <$connection>;
 unless ($line){

 if ($Do_event eq "y"){
 NetIQ::Nqext::CreateEvent($Severity, "Failed to

 connect to HTTP server
 $address", $Akpid,

 $resmsg, 0, "Failed to
 connect to HTTP server

 $address", "", 0, 0);
 }

 $datavalue = 0;
 }

 else {
 if ($line !~ /HTTP\/1\.1 200/) {
 if ($Do_OkEvent eq "y") {
 NetIQ::Nqext::CreateEvent($Severity,
 "Bad page, $Html_page, for
 $address", $Akpid, $resmsg,
 0, "This job successfully
 connected to HTTP server
Chapter 6 • Modifying a monitoring script written in Perl 131

 $address, however, the
 requested page,
 $Html_page, returned:
 \n$line", "", 0, 0);
 }
 }
}

There is one new feature in the Samples_HTTPHealth.qml code above
that needs explanation. In the altered script, there is a new user-
defined Script Parameter called $Do_OkEvent. If this Script Parameter
is set to “y”, then the script will raise an event when the HEAD
command reports failure to serve $Html_page. Further, this event will
supply the error message returned by the HEAD command as a message
string. The error message returned by the HEAD command will contain
^M (that is, Ctrl + M) characters. These characters will display poorly
in the AppManager Console, so the script removes them with the
code:

while (<$connection>){
 # Need to remove the ^M character

 # because it doesn't display well in
 # the operator console.

 s/\cM//;
 $line .= $_;

 }

This loop steps through each line in the message returned by the HEAD
command and substitutes nothing for \cM characters. Note that the
$line string is empty when the loop begins.
132 Developing Custom Knowledge Scripts

Chapter 7

Modifying an action script written in
VBScript
In AppManager, “performing an action” means running an action
Knowledge Script as a result of an event being raised in some other
type of script.

This chapter describes an action script, Action_WriteToFile, that
does what its name implies—it writes a message to a file. This
Knowledge Script, written in VBScript, is similar to the Summit
BasicScript action script, Action_WriteMsgToFile.

Action_WriteMsgToFile and Action_WriteToFile will write either of
two messages to a file: a default message or a custom message. In the
last part of this chapter, Action_WriteToFile will be modified so that
the script can also write both of the custom and default messages. The
modified script is called Action_WriteToFileEx.

This chapter covers the following topics:
● Setting up to perform actions
● Invoking actions
● Events without actions
● Ending actions
● XML messages
● Listing of the Action_WriteToFile.qml script
● User-set Script Parameters
● Parameters supplied by AppManager
● Functions called in the code
● Syntax of the Callback functions
133

● The program logic
● The modified script, Action_writeToFileEx.qml

Setting up to perform actions

Actions can be defined for “normal” (monitoring and report),
discovery, and install scripts. It is not possible to define further actions
for action scripts.

Actions for a Knowledge Script can be defined either:
● by the script developer, using the Script Properties dialog box in

the Developer’s Console, or
● by users of the AppManager Operator Console, using the

Properties dialog box that opens when a script is dragged to a
target object in the TreeView pane.

Script developers

When developing a monitoring, reporting, or discovery Knowledge
Script, you should use the Parameters tab of the Script Properties
dialog box in the Developer’s Console to define a Script Parameter
called AKPID. You should also give this Script Parameter the default
value “AKP_NULL”. You are not forced to do this, but trouble can arise
if you do not.

You, the script developer, can also define actions for your script using
the Script Properties dialog box. This is hardly ever done by script
developers, as it is difficult to predict what type of action a user will
want performed. You should define actions rarely, if ever.

Note If you do, in fact, define actions yourself, you might think that
setting a default value of “AKP_NULL” for AKPID is unnecessary.
However, a user can undo your choices of actions when setting up a
Knowledge Script job, so that a default value will be required in any
case.
134 Developing Custom Knowledge Scripts

AppManager Operator Console users

When an AppManager Operator Console user drags a script to a
target object in the TreeView pane, the Properties dialog box opens.
For every type of Knowledge Script except action scripts, the dialog
box will have an Actions tab. In this tab, users can add as many
actions as they desire. In the rare event that the script writer associated
actions with this script, the user can delete them.

Caution You must choose Action for the Knowledge Script type in
the Header tab of the Script Properties dialog box of the Developer’s
Console. If you fail to make this choice for an action script, it will not
be available as a new action to an Operator Console user in the Action
tab of the Knowledge Script Properties dialog box:
Chapter 7 • Modifying an action script written in VBScript 135

Invoking actions

It is the responsibility of non-action scripts to invoke actions.

Action scripts are executed only when events are raised. More
specifically, when:
● actions have been associated with a monitoring, discovery, install,

or reporting Knowledge Script job,
● an event is raised by one of those scripts, and
● the event Callback’s action parameter is set to AKPID.

When you are developing a script, you can choose to raise an event
that does not call any action scripts that may be chosen by a user. In
the Callback function that raises the event (CreateEvent in VBScript,
MSActions in Summit BasicScript), you set the action parameter to
“AKP_NULL” rather than AKPID.

Thus, for any given event, you can choose to have all action scripts
executed or none. If you set the action parameter of CreateEvent or
MSActions to AKPID, all actions chosen by a user will be executed. If
the parameter is set to “AKP_NULL” no action script will be executed.

Note There is no mechanism for you to associate several different
actions with a script and choose which one should be executed when a
particular event is raised.

Events without actions

In general, you want to generate events without invoking actions when
your script detects an error condition that you feel the user should be
aware of. For example, if the user enters an invalid script parameter,
the script should raise an event, but not invoke an action.

Monitoring scripts should invoke actions only if the conditions or
thresholds that the user wants to monitor have been met or exceeded.
136 Developing Custom Knowledge Scripts

Ending actions

It is the responsibility of the action script itself to signal the end of an
action.

Toward the end of your action script, your code should signal the
completion of the action script by raising an event with the action
parameter set to “AKP_COMPLETE.” For example, in the
Action_WriteToFile script, the final statement in the code is:

NQEXT.CreateEvent 2, "", "AKP_COMPLETE", "", 0, "", "", 0, 0

An event that sets the AKPID parameter to “AKP_COMPLETE” will cause
the Message in the Action tab of the Event Properties dialog box to
read:
● “Action Complete” if the event message (second parameter in the

event parameter list) is an empty string, as it is in the example
immediately above, or

● the event message, if it is not an empty string.

If you do not raise an event with the action parameter set to
“AKP_COMPLETE”, the Message in the Action tab of the Event
Properties dialog box will continue to read “<Location> Action in
Progress,” even though the action has, in fact, completed.

Note Any event raised with an action parameter other than
“AKP_COMPLETE” will create a new event.

XML messages

Beginning with AppManager 5.0, you can write custom event
messages for your monitoring scripts in XML format. AppManager
will parse these XML messages to create formatted tables in the
Message pane of the Event Properties dialog box. Here is an
example from an event raised by the WebServices_LinkSummary
Knowledge Script.
Chapter 7 • Modifying an action script written in VBScript 137

By comparison, the screen below shows an event message that is not
in XML format.
138 Developing Custom Knowledge Scripts

The importance of XML messages in this chapter is this: You must
take the XML format possibility into account in your action scripts.
The event message will be passed to the action script—since this
message may be in either plain text or in XML format, the action
script will need to take this into consideration. The
Action_WriteToFile and Action_WriteToFileEx examples in this
chapter show how to do this.
Chapter 7 • Modifying an action script written in VBScript 139

Listing of the Action_WriteToFile.qml script

Here is a listing of the code section of Action_WriteToFile.qml. The
Script Parameters, included by AppManager as variables, are not
shown.

Const MIN_MC_VERSION = "4.5"

Dim strAgtVersion ' The NetIQmc agent version

' Function converts the detail message from XML into
' normal text if needed

Function PreProcessForXML (strXMLMsg)
 Dim strProcessedMsg

 Dim lngRetCode

 NQEXT.GetVersion "netiqmc.exe", strAgtVersion
 ' Conversion of XML text to normal text is only supported

 ' in AppManager agent version 5.0 and higher
 If (strAgtVersion >= MIN_MC_VERSION) Then

 lngRetCode = NQEXT.EventXMLToPlainText(strXMLMsg, _
 strProcessedMsg)

 Select Case lngRetCode
 Case 0

 PreProcessForXML = strProcessedMsg

 Case -1 'Malformed XML Doc
 NQEXT.CreateEvent 2, "EventXMLToPlainText _

 Failed.", "AKP_COMPLETE", "The XML is a _
 malformed XML document", 0, "", "", 0, 0

 PreProcessForXML = strXMLMsg

 Case -2 'Not event XML Doc
 PreProcessForXML = strXMLMsg

 Case -3 ' Miscellaneous

 NQEXT.CreateEvent 2, "EventXMLToPlainText _
 Failed.", "AKP_COMPLETE", "XML Translation _

 failed with unknown reason", 0, "", "", 0, 0
 PreProcessForXML = strXMLMsg

 Case Else

 PreProcessForXML = strXMLMsg
 End Select

 Else
140 Developing Custom Knowledge Scripts

 PreProcessForXML = strXMLMsg

 End If
End Function

Sub Main
 Dim objFso, objFile

 Dim strMessage
 Dim lngIoMode

 Const ForReading = 1

 Const ForWriting = 2
 Const ForAppending = 8

 ' Check to see if we would like to append to the file _

 ' or overwrite it

 If Append = "y" Then
 lngIoMode = ForAppending

 Else
 lngIoMode = ForWriting

 End If

 If Filename = "" Then
 NQEXT.CreateEvent 2, "No file name was specified to _

 write to.","AKP_COMPLETE", "", 0, "", "", 0, 0
 Exit Sub

 End If

 On Error Resume Next
 Set objFso = CreateObject("Scripting.FileSystemObject")

 If Err.Number <> 0 Then
 NQEXT.CreateEvent 2, "Failed to create file system _

 object: " & Err.Description, "AKP_COMPLETE", _
 "", 0,"", "", 0, 0

 Exit Sub
 End If

 ' Open the text file or create it if necessary

 Set objFile = objFso.OpenTextFile(Filename, _
 lngIoMode, True)

 If Err.Number <> 0 Then
 NQEXT.CreateEvent 2, "Failed to create file: " _

 & Filename & " Error: " & Err.Description, _
 "AKP_COMPLETE", "", 0, "", "", 0, 0

 Exit Sub
Chapter 7 • Modifying an action script written in VBScript 141

 End If

 On Error Goto 0

 If Message = "" Then
 ' No message was supplied so use the default message

 objFile.WriteLine("JobID = " + JobID)
 objFile.WriteLine("KSName = " + KPName)

 objFile.WriteLine("Object Name = <" + ObjList + ">")
 objFile.WriteLine("EventMsg = " + EventMsg)

 objFile.WriteLine("LongMsg = " + _
 PreProcessForXML (AgentMsg))

 Else
 ' Use the messaged that was supplied

 objFile.WriteLine(Message)
 End If

 objFile.Close
 NQEXT.CreateEvent 2, "", "AKP_COMPLETE", _

 "", 0, "", "", 0, 0
End Sub

User-set Script Parameters

Users can set action script properties when the “calling script” is
dragged and dropped. As an example, assume you drag the
Knowledge Script NT_CPULoaded (the “calling script”) to a target CPU
in the AppManager Operator Console TreeView pane. In the
Properties dialog box, you select the Actions tab and add the
Action_WriteToFile script as your action for NT_CPULoaded.
142 Developing Custom Knowledge Scripts

After you have chosen Action_WriteToFile as your action, click the
Properties button. This opens the Properties dialog box for
Action_WriteToFile:
Chapter 7 • Modifying an action script written in VBScript 143

Here you must enter values for the Script Parameters required by
Action_WriteToFile. The Script Parameters are:

Variable name
used in the code

Description the Operator
Console user will see

Value

Filename Name of the file to
write to.

The name of the file to write to. If
this Script Parameter is not given a
value, the action will abort.
144 Developing Custom Knowledge Scripts

Parameters supplied by AppManager

For action scripts, unlike other types of scripts, AppManager adds a
number of variables (constants in Summit BasicScript action scripts)
to the beginning of the script when it is run. The variables have to do
with the event that caused the action script to be launched.

You can use these AppManager-added variables in your script, but you
cannot see them in any of the Developer’s Console views. You simply
have to know that they are there and what they are:

Message Message to write to
the file. Leave blank
for default message.

An optional custom message.

Append Append to the file?
(y/n)

If = “y”, the new message
(custom or default) will be
appended to whatever is already in
the file. If = “n”, the file will be
overwritten with the message.

AppManager-added variable Description

JobID The JobID of the “calling script” (the
script that raised the error that caused
the action script to execute).

Severity The severity of the calling script event
that caused execution of the action
script.

MachineName The name of the machine running the
calling script whose event caused
execution of the action script.

KPName The Knowledge Script name of the
“calling script” (the script that raised the
error that caused the action script to
execute).

Variable name
used in the code

Description the Operator
Console user will see

Value
Chapter 7 • Modifying an action script written in VBScript 145

Note These variables are added when the action script is run on either
the management server or the managed client.

Functions called in the code

The code calls two types of functions:
● Callback functions, by which the script requests information or

action from the AppManager agent running the job. See Chapter 11,
“AppManager Callbacks for Summit BasicScript and VBScript.”

● Methods of VBScript objects such as the file system and error
objects. Refer to Microsoft’s online documentation for VBScript,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vtoriVBScript.asp.

Here are the functions and objects called in the script, in order of their
appearance:

ObjList The obj parameter of the calling script
event that caused execution of the
action script.

EventMsg The evtmsg parameter (event
message) of the calling script event that
caused execution of the action script.

AgentMsg The agentmsg parameter (optional long
message) of the calling script event that
caused execution of the action script.

Function or subroutine Description

NQEXT.GetVersion Callback function that retrieves the version
number of the AppManager agent or
component where the action is running.

NQEXT.EventXMLToPlainText Callback function that converts XML event
messages to plain text.

NQEXT.CreateEvent Callback function that raises an event.

AppManager-added variable Description
146 Developing Custom Knowledge Scripts

Syntax of the Callback functions

Refer to Chapter 11, “AppManager Callbacks for Summit BasicScript
and VBScript” for more details.

GetVersion

Obtains the latest version string for the specified file name.

Syntax
GetVersion file, verstr

GetVersion returns nothing.

CreateObject(“Scripting.
FileSystemObject”)

VBScript function that creates the file system
object needed to open files and write to
them.

Err.Number Method that obtains the number of any error
thrown by the VBScript Error object.

Err.Description Method that obtains a text description of any
error thrown by the VBScript Error object.

objFso.OpenTextFile Method of the VBScript file system object.

objFile.WriteLine Method of the VBScript text file object.

objFile.Close Method of the VBScript text file object.

Parameter Data type Setting

file String Name of NetIQ file, or any other file.

verstr String The returned version string (passed by reference).

Function or subroutine Description
Chapter 7 • Modifying an action script written in VBScript 147

EventXMLToPlainText

Converts event messages in XML format to plain text. AppManager
5.0 only.

Syntax
EventXMLToPlainText XMLMsg, ProcessedMsg

EventXMLToPlainText returns 0 for success, -1 for malformed XML,
-2 if the message is not XML, or -3 if translation failed for some other
reason. Any other value represents failure for an unknown reason.

CreateEvent

Used by a Knowledge Script to send an event to the AppManager
agent. The AppManager agent will apply additional rule processing
and will determine whether to send a new event or a duplicated
(collapsed) event to the AppManager management server.

Syntax
CreateEvent sev, evtmsg, akp, obj, val, agentmsg, evtsrc,

evtid, msgtype [,deletefile]

Parameter Data type Setting

XMLMsg String Message in XML format.

ProcessedMsg String The message after translation to plain text.
(passed by reference).

Parameter Data type Setting

sev Long The event severity. A value from 1 to 40.

evtmsg String The message to be displayed under the Message
column in the Events tab.
148 Developing Custom Knowledge Scripts

CreateEvent returns nothing.

akp String Name of the action script to launch as a response to this
event. You would normally create an AKPID parameter
as part of your script. When the job is dropped and you
select an action, the UI will fill in the AKPID variable with
the action name. You will just need to pass in the AKPID
variable to the script.

obj String Corresponding object name where the event is raised.
This value will determine which object in the TreeView
pane to blink. Format of the value passed in should be
"ObjectTypeName = ObjectValue", e.g.
"UNIX_DiskObject = /mnt/cdrom". The ObjectValue
can normally be obtained by the drop object variable,
e.g. UNIX_MachineFolder.

val Double The current value to raise the event. This parameter is
currently not used. Set to 0.0.

agentmsg String Either the detail message or a file name that contains
the detail message. The detailed message is displayed
in the Message tab of the Event Property dialog box. If
this parameter contains the name of a file, make sure
you set the msgtype parameter to 1.

evtsrc String Not used. Should always be empty.

evtid Long Not used. Should always be 0.

msgtype Long Flag specifying whether the value passed in the
agentmsg parameter is a file name or the detailed
message itself. If it is a file name, then the contents of
the file are read and passed in as the detailed message.
Set to 0 to specify that the value in the agentmsg
parameter is the detailed message. Set to 1 to specify
that the value is the file name containing the detailed
message.

deletefile Long Optional. Flag to tell the AppManager agent to delete
the event detail message file after it is done reading the
contents and passing the event to the MSU. This
parameter is ignored if msgtype != 1. Set to 1, which is
default, to delete the file when msgtype = 1. Set to 0 to
not delete the file. Be careful when setting this value to
0, especially if your script generates a message file
each time it wants to send an event because the files
will never be removed.

Parameter Data type Setting
Chapter 7 • Modifying an action script written in VBScript 149

The program logic

The function PreProcessForXML is at the beginning of the file. This is
used to convert any custom messages in XML to plain text. This
function is discussed after Sub Main is analyzed.

Sub Main

Recall that there are three user-definable Script Parameters used as
constants in the script: Filename, Message, and Append.

Sub Main begins with this code:

 Dim objFso, objFile

 Dim strMessage
 Dim lngIoMode

 Const ForReading = 1

 Const ForWriting = 2
 Const ForAppending = 8

 ' Check to see if we would like to append to the file _

 ' or overwrite it
 If Append = "y" Then

 lngIoMode = ForAppending
 Else

 lngIoMode = ForWriting
 End If

The declared variables are:

The constants ForWriting and ForAppending will be used as input
parameters to the VBScript FileSystemObject method

Variable Description

objFSO The VBScript file system object.

objFile The VBScript text file object.

lngIoMode Variable to hold the file I/O constant that
represents the user’s choice of
appending to the file or overwriting it.
150 Developing Custom Knowledge Scripts

OpenTextFile, to determine whether to overwrite the contents of the
file or append to its existing contents.

Note The constant ForReading is included for completeness, but is
not used.

Then, with the overwrite/append constants defined, the script
chooses the appropriate constant and assigns it to lngIoMode:
● If the user kept the default for Append (=“y”), lngIoMode is set to

ForAppending.
● If the user changed the value of Append to “n”, lngIoMode is set to

ForWriting.

The next section of code checks to see if Filename is defined (the user
should have given this Script Parameter a value).

If Filename = "" Then

 NQEXT.CreateEvent 2, "No file name was specified to _
 write to.","AKP_COMPLETE", "", 0, "", "", 0, 0

 Exit Sub
End If

If Filename is not defined, the Callback function CreateEvent is
called to create an event that:
● Transmits the message “No file name was specified”
● Sets the action variable to “AKP_COMPLETE,” indicating that the

action script is ending.

Then Sub Main, and the script, exits.

The next section of code is going to call CreateObject to create a
VBScript object and then call one of the object’s methods. Either of
these calls could result in an error. A VBScript run-time error will be
reported to the operating system and will end execution, unless the
script handles the errors. For this reason, the code is written to handle
the errors.

 On Error Resume Next
 Set objFso = CreateObject("Scripting.FileSystemObject")
Chapter 7 • Modifying an action script written in VBScript 151

 If Err.Number <> 0 Then

 NQEXT.CreateEvent 2, "Failed to create file system _
 object: " & Err.Description, "AKP_COMPLETE", _

 "", 0,"", "", 0, 0
 Exit Sub

 End If

The statement, On Error Resume Next, enables error handling by the
script and informs VB to continue execution on the line that follows
an error’s occurrence.

Set objFso = CreateObject("Scripting.FileSystemObject")

creates the FileSystemObject of the Scripting type library and
assigns it to the object variable objFso.

If the object creation succeeds, no error will be thrown and
Err.Number will be equal to 0. If an error occurs, Err.Number will be
non-zero. The next line of code tests for this. If an error occurred, the
Callback function CreateEvent is called to create an event that:
● Transmits the message “Failed to create file system

object” along with the VBScript error description
Err.Description.

● Sets the action variable to “AKP_COMPLETE,” indicating that the
action script is ending.

Then Sub Main, and the script, is exited.

 Assuming that the FileSystemObject was created successfully, the
code goes on to open a text file (actually a text file object) for
overwriting or appending, depending on the value of lngIoMode.

 ' Open the text file or create it if necessary
 Set objFile = objFso.OpenTextFile(Filename, _

 lngIoMode, True)
 If Err.Number <> 0 Then

 NQEXT.CreateEvent 2, "Failed to create file: " _
 & Filename & " Error: " & Err.Description, _

 "AKP_COMPLETE", "", 0, "", "", 0, 0
 Exit Sub

 End If
 On Error Goto 0
152 Developing Custom Knowledge Scripts

The last parameter of the OpenTextFile method call, when True, tells
the method to create a new file if it does not already exist.

Once again, if the OpenTextFile fails (Err.Number is non-zero), an
event is raised with a failure message and the action variable set to
“AKP_COMPLETE.” Then Sub Main is exited.

The last statement, On Error Goto 0, disables error handling for the
subsequent code.

At this point a file is opened for overwriting or appending, and all that
remains to be done is to write the desired message to the file. Two text
file object (objFile) methods will be called in the remaining code,
objFile.WriteLine and objFile.Close. Neither of these two
methods are likely to throw errors, so the script does not bother with
further error handling.

If Message = "" Then
 ' No message was supplied so use the default message

 objFile.WriteLine("JobID = " + JobID)
 objFile.WriteLine("KSName = " + KPName)

 objFile.WriteLine("Object Name = <" + ObjList + ">")
 objFile.WriteLine("EventMsg = " + EventMsg)

 objFile.WriteLine("LongMsg = " + _
 PreProcessForXML (AgentMsg))

Else
 ' Use the message that was supplied

 objFile.WriteLine(Message)
End If

Note This code uses the AppManager-added variables discussed in
“Parameters supplied by AppManager” on page 145.

There are two possible messages that can get written to the file:

1 The contents of user-defined Script Parameter Message.

2 In the case that Message is empty, a “default message” that was
created by the action script writer (in the script).
Chapter 7 • Modifying an action script written in VBScript 153

WriteLine writes a string plus a newline character, so the default
message is written out line-by-line:

Finally, the text file object is closed, a “success” event is raised, and the
Main subroutine exits.

This CreateEvent call differs from all the previous calls in this script.
The previous calls were all in response to an error or failure and their
evtmsg parameter (the second parameter) contained an error message.
In this case, since the action completed successfully, you should pass
in an empty string, "", instead of an error message. As a result, the user
will see "Action Complete" for the action status in the Event
Properties window.

objFile.Close

 NQEXT.CreateEvent 2, "", "AKP_COMPLETE", _
 "", 0, "", "", 0, 0

End Sub

Note Do not confuse “Action Complete” with “AKP_COMPLETE”.

Message Line Description

"JobID = " + JobID The JobID of the “calling script” (the script that raised
the error that caused the action script to execute).
This is provided by the AppManager infrastructure.

"KSName = " + KPName The Knowledge Script name of the “calling script” (the
script that raised the error that caused the action
script to execute). This is provided by the
AppManager infrastructure.

"Object Name = <" +
ObjList + ">"

The obj parameter of the calling script event that
caused execution of the action script.

"EventMsg = " + EventMsg The evtmsg parameter (event message) of the calling
script event that caused execution of the action script.

"LongMsg = " +
PreProcessForXML
(AgentMsg)

The agentmsg parameter (optional long message) of
the calling script event that caused execution of the
action script.

NOTE: This message, defined by the author of the
calling script, may have been written in XML format.
Therefore, the PreProcessForXML function is used to
convert it to plain text, if necessary.
154 Developing Custom Knowledge Scripts

“AKP_COMPLETE” signals to AppManager that your script has
completed. “Action Complete” is written to the Event Properties
dialog box only when the script has completed successfully.

Function PreProcessForXML

Beginning with AppManager 5.0, Knowledge Script developers can
create monitoring script event messages in XML. AppManager will
parse these XML messages to create formatted tables in the Message
pane of the Event Properties dialog box.

We do not want messages that we write to a text file to contain XML
tags, so we want some way of stripping these tags before writing the
message to the file.

The Callback function NQEXT.EventXMLToPlainText converts a
NetIQ XML-formatted message to plain text. The AppManager agent
on the computer running the script containing this function must be
version 5.0 or later.
Chapter 7 • Modifying an action script written in VBScript 155

The optional long message for any particular monitoring script may or
may not be written in XML. Since we have no way of knowing which
it is, we must call NQEXT.EventXMLToPlainText for every such
message. The Action_WriteMessageToFile script includes a function
that checks the AppManager agent version number, calls the Callback
function NQEXT.EventXMLToPlainText, and handles any errors
returned by the Callback.

NQEXT.EventXMLToPlainText(strXMLMsg) takes one parameter, the
message text to convert.The function begins by checking that the
AppManager version number is greater than or equal to 4.5 (this is the
version number for AppManager 5.0). If the version number is less
than 4.5, the function simply returns the name of the input text,
without attempting conversion, and then exits.

Const MIN_MC_VERSION = "4.5"
Dim strAgtVersion ' The NetIQmc agent version

' Function converts the detail message from XML into

' normal text if needed
Function PreProcessForXML (strXMLMsg)

 Dim strProcessedMsg
 Dim lngRetCode

 NQEXT.GetVersion "netiqmc.exe", strAgtVersion

 ' Conversion of XML text to normal text is only supported
 ' in AppManager agent version 5.0 and higher

 If (strAgtVersion >= MIN_MC_VERSION) Then

If the version number is sufficient, NQEXT.EventXMLToPlainText is
called to convert the input message, strXMLMsg, to plain text output,
strProcessedMsg.

Since NQEXT.EventXMLToPlainText can return several different values,
a Select block is used to handle the alternatives.

lngRetCode = NQEXT.EventXMLToPlainText(strXMLMsg, _
 strProcessedMsg)

 Select Case lngRetCode
 Case 0

 PreProcessForXML = strProcessedMsg
156 Developing Custom Knowledge Scripts

 Case -1 'Malformed XML Doc

 NQEXT.CreateEvent 2, "EventXMLToPlainText _
 Failed.", "AKP_COMPLETE", "The XML is a _

 malformed XML document", 0, "", "", 0, 0
 PreProcessForXML = strXMLMsg

 Case -2 'Not event XML Doc

 PreProcessForXML = strXMLMsg

 Case -3 ' Miscellaneous
 NQEXT.CreateEvent 2, "EventXMLToPlainText _

 Failed.", "AKP_COMPLETE", "XML Translation _
 failed with unknown reason", 0, "", "", 0, 0

 PreProcessForXML = strXMLMsg

 Case Else

 PreProcessForXML = strXMLMsg
 End Select

In two cases, -1 and -3, where the input file is XML but could not be
converted, CreateEvent is used to raise an event and return an error

Return value Meaning Result

0 The input message was in the
proper XML format and was
successfully converted.

The PreProcessForXML
function returns the
converted text,
strProcessedMsg.

-1 The input message is in XML
format, but it is not well-formed
XML. Conversion failed.

The PreProcessForXML
function returns the input
text, strXMLMsg.

-2 The input message is not in XML
format. Conversion failed.

The PreProcessForXML
function returns the input
text, strXMLMsg.

-3 The input message is in XML
format, but something unknown
caused conversion to fail.

The PreProcessForXML
function returns the input file,
strXMLMsg.

Any other integer Conversion failed for some other
reason.

The PreProcessForXML
function returns the input file,
strXMLMsg.
Chapter 7 • Modifying an action script written in VBScript 157

message. In the other cases, where the message is not XML, no event
is raised.

Note In the event that the optional long message is indeed in XML, but
the conversion by NQEXT.EventXMLToPlainText fails, the Sub Main
line of code

objFile.WriteLine("LongMsg = " + _
 PreProcessForXML (AgentMsg))

will print the XML message to the text file.

The modified script, Action_writeToFileEx.qml

In the Action_WriteToFile script, the message written to file is either
a “default” (defined by the script writer, in the script) or a user-
supplied message. This is the code to make this choice:

If Message = "" Then

 ' No message was supplied so use the default message
 objFile.WriteLine("JobID = " + JobID)

 objFile.WriteLine("KSName = " + KPName)
 objFile.WriteLine("Object Name = <" + ObjList + ">")

 objFile.WriteLine("EventMsg = " + EventMsg)
 objFile.WriteLine("LongMsg = " + _

 PreProcessForXML (AgentMsg))
Else

 ' Use the message that was supplied
 objFile.WriteLine(Message)

End If

In many cases, a user may want to write both of these messages. The
Action_WriteToFileEx script is a modification of the
Action_WriteToFile script that does this. A new user-definable
Script Parameter has been added, PrependMsg. If the user sets this
Script Parameter to “y” (default = “n”), that means that the user’s
message should be written first, followed by the default message.
Then, the code immediately above is altered (new code shown in
larger font and bold) like this:
158 Developing Custom Knowledge Scripts

If Message = "" Or PrependMsg = “y” Then
 ' No message was supplied so use the default message
 objFile.WriteLine(Message)
 objFile.WriteLine("JobID = " + JobID)
 objFile.WriteLine("KSName = " + KPName)

 objFile.WriteLine("Object Name = <" + ObjList + ">")
 objFile.WriteLine("EventMsg = " + EventMsg)

 objFile.WriteLine("LongMsg = " + _
 PreProcessForXML (AgentMsg))

Else
 ' Use the message that was supplied

 objFile.WriteLine(Message)
End If

With this simple modification, the first part of the If block will write
both messages if PrependMsg = “y,” irrespective of the value of
Message. If PrependMsg = “y” and Message is empty, an empty line
will be written before the default message.

The Else block, where only Message is written, will be reached only if
Message has a value and PrependMsg = “n.”

Note This script will behave exactly like Action_WriteToFile if
PrependMsg = “n,” except for an extra blank line before the default
message.
Chapter 7 • Modifying an action script written in VBScript 159

160 Developing Custom Knowledge Scripts

Chapter 8

Modifying an action script written in
Summit BasicScript
This chapter presumes that you have read all of the introductory
material in the previous chapter. If you have not already done so,
please read Chapter 7 through the end of the section titled “XML
Messages.”

This chapter describes an action script, Action_Messenger, that sends
a message using the Windows Message Service. This Knowledge
Script, written in Summit BasicScript, is very similar to the
AppManager action script of the same name.

Action_Messenger will send either of two messages: a default message
or a custom message. In the last part of this chapter, the script will be
modified so that the script can also send both the custom and the
default messages. The modified script is called Action_MessengerEx.

This chapter covers the following topics:
● Listing of the Action_Messenger.qml script
● User-set Script Parameters
● Parameters supplied by AppManager
● Functions called in the code
● Syntax of the Callback functions
● The program logic
● The modified script, Action_MessengerEx.qml
161

Listing of the Action_Messenger.qml script

Here is a listing of the code section of Action_Messenger.qml. The
Script Parameters, included by AppManager as constants, are not
shown.

Const QUO = chr$(34) ' a double quote

Const NL = chr$(10) ' newline
Const MAX_RETRY = 5 ' maximum number of times to retry

 ' sending the message

Declare Function NetMessageBufferSend Lib "netapi32.dll" _
(ByVal pszServer As String, ByVal pszRecipient As String,_

ByVal pszSender As String, ByVal pbBuffer As String, _
ByVal cbBuffer As Long) As Long

Const V3GSP1 = "3.0.370.0"

Const MIN_MC_VERSION = "4.5"
Dim sAgtVersion$ ' The NetIQmc agent version

Function PreProcessForXML (sXMLMsg As String) As String

 Dim sProcessedMsg As String

 Dim lRetCode As Long

 If (sAgtVersion >= MIN_MC_VERSION) Then
 lRetCode = EventXMLToPlainText(sXMLMsg, sProcessedMsg)

 Select Case lRetCode
 Case 0

 PreProcessForXML = sProcessedMsg

 Case -1 'Malformed XML Doc
 MSActions 2, "EventXMLToPlainText Failed.", _

 "AKP_COMPLETE", "", "The XML is a _
 malformed XML document"

 PreProcessForXML = sXMLMsg

 Case -2 'Not event XML Doc
 PreProcessForXML = sXMLMsg

 Case -3 ' Miscellaneous

 MSActions 2, "EventXMLToPlainText Failed.", _
 "AKP_COMPLETE", "", "XML Translation _

 failed with unknown reason"
162 Developing Custom Knowledge Scripts

 PreProcessForXML = sXMLMsg

 Case Else

 PreProcessForXML = sXMLMsg
 End Select

 Else
 PreProcessForXML = sXMLMsg

 End If
End Function

Sub Main()

 Const vbUnicode = 64
 Dim lResult As Long

 Dim lMsgLen As Long
 Dim lRetry As Long

 Dim sTargetName As String

 Dim sMessage As String
 Dim sHostname As String

 Dim sErrMsg As String
 Dim bError As Boolean

 'Get MC version

 sAgtVersion = ""
 MCVersion "netiqmc.exe", sAgtVersion

 sErrMsg = "Obj/Err: "

 bError = False

 If Message = "" Then
 ' No message was supplied so use the default message

 sMessage = "JobID = " + JobID + NL + _
 "KSName = " + KPName + NL + _

 "MC MachineName = " + MachineName + NL + _
 "Object Name = <" + ObjList + "> " + NL + _

 "EventMsg = " + EventMsg + NL + "LongMsg = _
 " + PreProcessForXML (AgentMsg) + NL

 Else
 ' Use the messaged that was supplied

 sMessage = Message
 End If

 For I = 1 To ItemCount(Recipient, ",")

 sTargetName = Item$(Recipient, I,, ",")
 lMsgLen = Len(sMessage)

 lRetry = 0
Chapter 8 • Modifying an action script written in Summit BasicScript 163

 'Truncate message if too long

 If lMsgLen > 1024 Then
 lMsgLen = 1024

 sMessage = Mid(sMessage, 1, lMsgLen) & "..."
 End If

 sHostname = GetMachName

resend:
 If sAgtVersion < V3GSP1 Then

 lResult = NetMessageBufferSend (_
 StrConv("",vbUnicode), _

 StrConv(sTargetName,vbUnicode), _
 StrConv(sHostname,vbUnicode),_

 StrConv(sMessage,vbUnicode), _
 Len(StrConv(sMessage,vbUnicode)))

 Else
 lResult = MCNetMessageBufferSend ("", _

 sTargetName, _
 sHostname,_

 sMessage)
 End If

 If lResult <> 0 Then

 lRetry = lRetry + 1
 If (lRetry < MAX_RETRY) Then

 MCSleep 100
 GoTo resend

 End If

 If (bError = True) Then
 sErrMsg = sErrMsg & ","

 Else
 bError = True

 End If
 sErrMsg = sErrMsg & sTargetName & "/" & CStr(lResult)

 End If
 Next I

 If bError=True Then

 MSActions 2, sErrMsg, "AKP_COMPLETE", "", ""
 MSActions 2, "Action_Messenger failed", "AKP_NULL", _

 "", sErrMsg
 Else

 MSActions 2, "", "AKP_COMPLETE", "", ""
 End If
164 Developing Custom Knowledge Scripts

 Exit Sub

End Sub

User-set Script Parameters

Users can set action script properties when the “calling script” is
dragged and dropped. As an example, assume you drag the
Knowledge Script NT_CPULoaded (the “calling script”) to a target CPU
in the AppManager Operator Console TreeView pane. In the
Properties dialog box, you select the Actions tab and add the
Action_Messenger script as your action for NT_CPULoaded.
Chapter 8 • Modifying an action script written in Summit BasicScript 165

After you have chosen Action_Messenger as your action, you click
the Properties button. This opens the Properties dialog box for
Action_Messenger:

Here you must enter values for the Script Parameters used in the
Action_Messenger code. The Script Parameters are:

Variable name
used in the code

Description the Operator
Console user will see

Value

Recipient List of computers to
receive message

A comma-delimited list of the
computers that should receive the
Windows Message Service
message (required).

Message Custom Message A custom message (optional).
166 Developing Custom Knowledge Scripts

Parameters supplied by AppManager

For action scripts, unlike other types of scripts, AppManager adds a
number of constants (variables in VBScript action scripts) to the
beginning of the script when it is run. The variables have to do with
the event that caused the action script to be launched.

You can use these AppManager-added variables in your script, but you
cannot see them in any of the Developer’s Console views. You simply
have to know that they are there and what they are:

Note These variables are added when the action script is run on either
the management server or the managed client.

AppManager-added constant Description

JobID The JobID of the “calling script” (the
script that raised the error that caused
the action script to execute).

Severity The severity of the calling script event
that caused execution of the action
script.

MachineName The name of the machine running the
calling script whose event caused
execution of the action script.

KPName The Knowledge Script name of the
“calling script” (the script that raised the
error that caused the action script to
execute).

ObjList The obj parameter of the calling script
event that caused execution of the
action script.

EventMsg The evtmsg parameter (event
message) of the calling script event that
caused execution of the action script.

AgentMsg The agentmsg parameter (optional long
message) of the calling script event that
caused execution of the action script.
Chapter 8 • Modifying an action script written in Summit BasicScript 167

Functions called in the code

The code calls three types of functions:
● Windows API functions (see http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/winprog/winprog/
windows_api_reference.asp).

● Callback functions, by which the script requests information or
action from the AppManager agent running the job. See Chapter 11,
“AppManager Callbacks for Summit BasicScript and VBScript.”

● Built-in functions of Summit BasicScript. See the BasicScript
documentation in
appmanager\documentation\development_tools\

 summit_basicscript\documentation.

Here are the functions called in the script, in order of their
appearance:

Function or subroutine Description

EventXMLToPlainText Callback function that converts XML event
messages to plain text.

MCVersion Callback function that retrieves the version
number of the AppManager agent or
component where the action is running.

ItemCount Summit BasicScript built-in function that
returns the number of items in a delimited
text string list.

Item$ Summit BasicScript built-in function that
returns a discrete item in a delimited text
string list.

Len Summit BasicScript built-in function that
returns the number of characters in a string.

Mid Summit BasicScript built-in function that
finds a sub-string within a string.

GetMachName Callback function that returns the name of
the computer running this script.
168 Developing Custom Knowledge Scripts

Syntax of the Callback functions

Refer to Chapter 11, “AppManager Callbacks for Summit BasicScript
and VBScript” for more details.

EventXMLToPlainText

Converts event messages in XML format to plain text (AppManager
5.0 only).

Syntax
EventXMLToPlainText XMLMsg, ProcessedMsg

NetMessageBufferSend A Win32 API function that sends a message
through the Windows Messenger Service.
Must be declared before being used.

MCNetMessageBufferSend Callback function equivalent to the Win32
API function NetMessageBufferSend. Only
works with AppManager agents later than
3.0.370.0.

StrConv Summit BasicScript built-in function that
converts a string to a different format, such
as UNICODE.

MCSleep Callback function that requests the
AppManager agent to sleep for the specified
interval during execution of the Knowledge
Script.

Cstr Summit BasicScript built-in function that
converts an expression to a string.

MSActions Callback function that reports events and
initiates actions.

Parameter Data type Setting

XMLMsg String Message in XML format.

ProcessedMsg String The message after translation to plain text.
(passed by reference).

Function or subroutine Description
Chapter 8 • Modifying an action script written in Summit BasicScript 169

EventXMLToPlainText returns 0 for success, -1 for malformed XML,
-2 if the message is not XML, or -3 if translation failed for some other
reason. Any other value represents failure for an unknown reason.

GetMachName

Returns the machine name (host name) of a managed computer as a
string.

Syntax
GetMachName

Parameters

None.

MCNetMessageBufferSend

Sends a message using the Windows Messenger Service. Essentially
the same as the Win32 API function NetMessageBufferSend.

Syntax
MCNetMessageBufferSend ("", TargetName, Hostname, Message)

Note The Win32 API function NetMessageBufferSend has a fifth
parameter, the length of Message in bytes.

Parameter Data type Description

ServerName String Name of the remote server on which the function is
to execute. If this parameter is empty, the local
computer is used.

TargetName String Name of computer to which the message is sent.

Hostname String Name of computer from which the message is
sent.

Message String Message to be sent.
170 Developing Custom Knowledge Scripts

MCSleep

Requests the AppManager agent to sleep for an interval during
execution of the calling Knowledge Script.

Syntax
MCSleep intv

Returns 1 when sleep completes, -1 if sleep aborts.

MCVersion

Requests the AppManager agent to obtain the version string for the
specified component file name.

Syntax
MCVersion component, verstr [,fullpath]

MCVersion returns nothing.

Parameter Data type Description

intv Long Sleep interval in msec.

Parameter Data type Description

component String Component file name.

verstr String The returned corresponding version string (passed
by reference).

fullpath Bool If TRUE, component contains the full path to the
filename; if FALSE, the component's location is
relative to the AppManager\bin directory. By
default, this value is FALSE.
Chapter 8 • Modifying an action script written in Summit BasicScript 171

MSActions

Allows a Knowledge Script to report events and initiate actions.

Syntax
MSActions severity, shortmsg, akpid, objlist, detailmsg
[,detailmsg2,, detailmsg6] [,value]

MSAction returns nothing.

Parameter Data type Setting

severity Long Severity of the event.

shortmsg String Event message displayed in the List pane.

akpid String Action name or identifier for the action to be taken.

objlist String Objects that report the event (their icons will be set
to blinking in the Operator Console’s TreeView
pane).

detailmsg String Detail message from the AppManager agent(s)
displayed in the event’s Properties dialog. At least
one detailmsg is required. The maximum size of
the string is 32K.

To pass additional information beyond the 32K,
you can specify up to 6 message strings, each with
a maximum size of 32K, to define the entire detail
message for an event. For example, if the
message you want to return is 64K, the message
would be stored in two strings:
MSActions Severity, “High", AKPID, "",
detailmsg, detailmsg2

Note: Within your Knowledge Script, the variable
name you use for the detail message string can
vary. For example, in viewing sample scripts you
may see names such as detailmsg, agtmsg,
agentmsg, or longm.

value Double Optional. The current value to raise an event.
172 Developing Custom Knowledge Scripts

The program logic

The Win32 API function NetMessageBufferSend is declared at the
beginning of the file. This must be done so that it can be called in the
code that follows.

Declare Function NetMessageBufferSend Lib "netapi32.dll" _

(ByVal pszServer As String, ByVal pszRecipient As String,_
ByVal pszSender As String, ByVal pbBuffer As String, _

ByVal cbBuffer As Long) As Long

The function PreProcessForXML is at the beginning of the file, right
after the declaration of NetMessageBufferSend. PreProcessForXML is
used to convert any custom messages in XML to plain text. This
function will be discussed after Sub Main is analyzed.

Sub Main

Recall that there are two user-definable Script Parameters used as
constants in the script: Recipient and Message.
● Recipient is a comma-delimited string that lists all the computers

that should receive the Messenger Service message.
● Message, an optional Script Parameter, is a string—if the user does

not enter a value, Message will be an empty string.

Global constants and variables are:

Const QUO = chr$(34) ' a double quote

Const NL = chr$(10) ' newline
Const MAX_RETRY = 5 ' maximum number of times to retry

 ' sending the message
Const V3GSP1 = "3.0.370.0"

Const MIN_MC_VERSION = "4.5"
Dim sAgtVersion$ ' The NetIQmc agent version

Sub Main begins with this code:
 Const vbUnicode = 64

 Dim lResult As Long
 Dim lMsgLen As Long

 Dim lRetry As Long
Chapter 8 • Modifying an action script written in Summit BasicScript 173

 Dim sTargetName As String

 Dim sMessage As String
 Dim sHostname As String

 Dim sErrMsg As String
 Dim bError As Boolean

 'Get MC version
 sAgtVersion = ""

 MCVersion "netiqmc.exe", sAgtVersion

The declared variables are:

The Callback function MCVersion is used to get the AppManager
agent version number, which is returned as sAgtVersion (passed by
reference).

The next section of code prepares for error reporting if the API
function NetMessageBufferSend fails. Upon failure, bError will be
reset to True and sErrMsg will become the basis for an error message
string. This error handling is internal to the script—it has nothing to
do with error handling or reporting by Summit BasicScript or the
Win32 API.

Variable Description

lResult Variable to store the value returned by the API function
NetMessageBufferSend (or the Callback function
MCNetMessageBufferSend).

lMsgLen The number of characters in sMessage.

lRetry The number of attempts to send sMessage to a given
computer.

sTargetName Name of a computer to which sMessage should be sent.

sMessage The message to be sent by the Windows Messenger
Service.

sHostname Name of the computer running the script (sending the
message).

sErrMsg Error message for event if message delivery fails for
one or more computers.

bError Will become True if message delivery fails for one or
more computers.
174 Developing Custom Knowledge Scripts

sErrMsg = "Obj/Err: "

bError = False

The code now forms the message (sMessage) to be sent to the target
computers. The variable Message contains the message supplied by
the user, or an empty string if the user chose not to provide a message.

If Message = "" Then

 ' No message was supplied so use the default message
 sMessage = "JobID = " + JobID + NL + _

 "KSName = " + KPName + NL + _
 "MC MachineName = " + MachineName + NL + _

 "Object Name = <" + ObjList + "> " + NL + _
 "EventMsg = " + EventMsg + NL + "LongMsg = _

 " + PreProcessForXML (AgentMsg) + NL
Else

 ' Use the messaged that was supplied
 sMessage = Message

End If

There are two possible messages that can get sent by the messenger:

1 The contents of user-defined Script Parameter Message.

2 In the case that Message is empty, a “default message” that was
created by the action script writer (in the script).

Because of the + NL inclusions in sMessage, the default message is
written out line-by-line:

Message Line Description

"JobID = " + JobID The JobID of the “calling script” (the script that raised the
error that caused the action script to execute). This is
provided by the AppManager infrastructure.

"KSName = " +
KPName

The Knowledge Script name of the “calling script” (the script
that raised the error that caused the action script to execute).
This is provided by the AppManager infrastructure.

"MC MachineName =
" + MachineName

The name of the computer that is sending the message. This
is provided by the AppManager infrastructure.

"Object Name = <" +
ObjList + ">"

The obj parameter of the calling script event that caused
execution of the action script.
Chapter 8 • Modifying an action script written in Summit BasicScript 175

Now that the message has been determined, the code steps through
each computer in the list of recipients (recall that Recipient is a
comma-delimited string that lists all the computers that should receive
the Messenger Service message). Two built-in functions of Summit
BasicScript are used for the loop:
● ItemCount returns the number of computers in the list (requires

delimiter, in this case a comma, as one input parameter).
● Item$ returns the name of individual computer number I.

For I = 1 To ItemCount(Recipient, ",")

 sTargetName = Item$(Recipient, I,, ",")
 lMsgLen = Len(sMessage)

 lRetry = 0
 'Truncate message if too long

 If lMsgLen > 1024 Then
 lMsgLen = 1024

 sMessage = Mid(sMessage, 1, lMsgLen) & "..."
 End If

The Windows Messenger service will only accept messages of 1024
characters or less. The Summit BasicScript function Len returns the
length of sMessage and assigns it to lMsgLen. If lMsgLen is, in fact,
greater than 1024, then sMessage will be truncated. The truncation is
achieved by using Summit BasicScript function Mid to find the sub-
string in sMessage that begins with the first character and is 1024
characters long.

Once sMessage is truncated, we have the exact message we want to
send. We are in a loop where we have the name of one of the

"EventMsg = " +
EventMsg

The evtmsg parameter (event message) of the calling script
event that caused execution of the action script.

"LongMsg = " +
PreProcessForXML
(AgentMsg)

The agentmsg parameter (optional long message) of the
calling script event that caused execution of the action script.

NOTE: This message, defined by the author of the calling
script, may have been written in XML format. Therefore, the
PreProcessForXML function is used to convert it to plain text,
if necessary.

Message Line Description
176 Developing Custom Knowledge Scripts

computers on the list of recipients. The next step is to send the
message. There is a Callback function (MCNetMessageBufferSend)
that can be used to send the message, provided that the AppManager
agent version number is later than V3GSP1 (= 3.0.370.0). If the agent
is an earlier version, we use the Win32 API function
NetMessageBufferSend, which requires that the input strings are in
UNICODE. Both NetMessageBufferSend and MCNetMessageBufferSend
require the name of the computer sending the message (sHostname).

We are prepared to re-send this message up to MAX_RETRY (= 5 in this
code) times.

 sHostname = GetMachName

resend:
 If sAgtVersion < V3GSP1 Then

 lResult = NetMessageBufferSend (_
 StrConv("",vbUnicode), _

 StrConv(sTargetName,vbUnicode), _
 StrConv(sHostname,vbUnicode),_

 StrConv(sMessage,vbUnicode), _
 Len(StrConv(sMessage,vbUnicode)))

 Else
 lResult = MCNetMessageBufferSend ("", _

 sTargetName, _
 sHostname,_

 sMessage)
 End If

Both MCMessageBufferSend and NetMessageBufferSend return 0 in
lResult if they are successful. We test for success. If the function
fails, we sleep for 100 milliseconds, go to the resend:label, and try
again—up to MAX_RETRY attempts.

 If lResult <> 0 Then

 lRetry = lRetry + 1
 If (lRetry < MAX_RETRY) Then

 MCSleep 100
 GoTo resend

 End If

At this point, we are still in the If lResult <> 0 Then block. If we
reach the next statement, If (bError = True) Then, it means that all
Chapter 8 • Modifying an action script written in Summit BasicScript 177

MAX_RETRY (= 5 in this script) attempts to send have failed for this
computer.

If this is the first time we have reached this point, bError will be False
and we change it to True (it will remain True for the rest of the script).

If this is not the first time we have reached this point, bError will be
True and a comma will be added to sErrMsg.

Then, the name of the destination computer for which the message
sending function failed is added to ErrMsg, along with the error
number returned by the function.

The For I = 1 To ItemCount(Recipient, ",") loop continues until
the list of destination computers is exhausted.

 If (bError = True) Then

 sErrMsg = sErrMsg & ","
 Else

 bError = True
 End If

 sErrMsg = sErrMsg & sTargetName & "/" & CStr(lResult)
 End If

 Next I

At this point in the script, if one or more message deliveries fails,
bError will be True and sErrMsg will have a comma-separated list of
all the target computers for which delivery failed.

If the message delivery has succeeded for all computers on the
delivery list, then bError will be False.

When bError is True, two events are raised:
● An "AKP_COMPLETE" event, with the list of unsuccessful deliveries,

is sent to complete the action.
● An “AKP_NULL” event is sent to the Operator Console to report a

failure of Action_Messenger.

If bError is False, all deliveries have succeeded and we raise only one
event. This event reports “Action Complete” as an Event Property
because the second parameter of MSActions is an empty string.
178 Developing Custom Knowledge Scripts

 If bError=True Then
 MSActions 2, sErrMsg, "AKP_COMPLETE", "", ""

 MSActions 2, "Action_Messenger failed", "AKP_NULL", _
 "", sErrMsg

 Else
 MSActions 2, "", "AKP_COMPLETE", "", ""

 End If
 Exit Sub

End Sub

Note Do not confuse “Action Complete” with “AKP_COMPLETE.” The
latter signals to AppManager that your script has completed. The
former is written to the Event Properties dialog box when the script
has completed successfully.
Chapter 8 • Modifying an action script written in Summit BasicScript 179

Function PreProcessForXML

Beginning with AppManager 5.0, Knowledge Script developers can
create monitoring script event messages in XML. AppManager will
parse these XML messages to create formatted tables in the Message
pane of the Event Properties dialog box.

We do not want messages to contain XML tags, so we want some way
of stripping these tags.

The Callback function EventXMLToPlainText converts a NetIQ
XML-formatted message to plain text. The AppManager agent on the
computer running the script containing this function must be version
5.0 or later.

The optional long message for any particular monitoring script may or
may not be written in XML. Since we have no way of knowing which
it is, we must call EventXMLToPlainText for every such message. The
Action_Messenger script includes a function that checks the
AppManager agent version number, calls the Callback function
EventXMLToPlainText, and handles any errors returned by the
Callback.

EventXMLToPlainText(strXMLMsg) takes one parameter, the name of
the message text to convert. The function begins by checking that the
AppManager version number is greater than or equal to 4.5 (this is the
version number for AppManager 5.0). If the version number is less
than 4.5, the function simply returns the name of the input text,
without attempting conversion, and then exits.

Note The PreProcessForXML function does not obtain the agent
version itself. Sub Main obtains a value for the global variable
strAgtVersion before it calls PreProcessForXML.

Const MIN_MC_VERSION = "4.5"
Dim sAgtVersion$ ' The NetIQmc agent version

Function PreProcessForXML (sXMLMsg As String) As String

 Dim sProcessedMsg As String

 Dim lRetCode As Long
180 Developing Custom Knowledge Scripts

 If (sAgtVersion >= MIN_MC_VERSION) Then

If the version number is sufficient, EventXMLToPlainText is called to
convert the input message, strXMLMsg, to plain text output,
strProcessedMsg.

Since EventXMLToPlainText can return several different values, a
Select block is used to handle the alternatives.

 lRetCode = EventXMLToPlainText(sXMLMsg, sProcessedMsg)
 Select Case lRetCode

 Case 0

 PreProcessForXML = sProcessedMsg

 Case -1 'Malformed XML Doc
 MSActions 2, "EventXMLToPlainText Failed.", _

 "AKP_COMPLETE", "", "The XML is a _
 malformed XML document"

 PreProcessForXML = sXMLMsg

 Case -2 'Not event XML Doc
 PreProcessForXML = sXMLMsg

 Case -3 ' Miscellaneous

 MSActions 2, "EventXMLToPlainText Failed.", _
 "AKP_COMPLETE", "", "XML Translation _

 failed with unknown reason"
 PreProcessForXML = sXMLMsg

 Case Else

 PreProcessForXML = sXMLMsg

 End Select

If the agent is an older one, the input string is returned without calling
the EventXMLToPlainText function.

Else

 PreProcessForXML = sXMLMsg
 End If

End Function
Chapter 8 • Modifying an action script written in Summit BasicScript 181

In two cases, -1 and -3, where the input file is XML but could not be
converted, CreateEvent is used to raise an event and return an error
message. In the other cases, where the message is not XML, no event
is raised.

Note In the event that the optional long message is indeed in XML, but
the conversion by EventXMLToPlainText fails, the default message will
include the unconverted XML message.

Return value Meaning Result

0 The input message was in the
proper XML format and was
successfully converted.

The PreProcessForXML
function returns the
converted file,
strProcessedMsg.

-1 The input message is in XML
format, but it is not well-formed
XML. Conversion failed.

The PreProcessForXML
function returns the input file,
strXMLMsg.

-2 The input message is not in XML
format. Conversion failed.

The PreProcessForXML
function returns the input file,
strXMLMsg.

-3 The input message is in XML
format, but something unknown
caused conversion to fail.

The PreProcessForXML
function returns the input file,
strXMLMsg.

Any other integer Conversion failed for some other
reason.

The PreProcessForXML
function returns the input file,
strXMLMsg.
182 Developing Custom Knowledge Scripts

The modified script, Action_MessengerEx.qml

In the Action_Messenger script, the message is either a “default”
(defined by the script writer, in the script) or a user-supplied message.
This is the code to make this choice:

 If Message = "" Then

 ' No message was supplied so use the default message
 sMessage = "JobID = " + JobID + NL + _

 "KSName = " + KPName + NL + _
 "MC MachineName = " + MachineName + NL + _

 "Object Name = <" + ObjList + "> " + NL + _
 "EventMsg = " + EventMsg + NL + "LongMsg = _

 " + PreProcessForXML (AgentMsg) + NL
Else

 ' Use the messaged that was supplied
 sMessage = Message

End If

In many cases, a user may want to send both of these messages. The
Action_MessengerEx script is a modification of the
Action_Messenger script that does this. A new user-definable Script
Parameter has been added, PrependMsg. If the user sets this Script
Parameter to “y” (default = “n”), that means that the user’s message
should be written first, followed by the default message. Then, the
code immediately above is altered (new code shown in larger font and
bold) like this:

If Message = "" Or PrependMsg = "y" Then
 ' Prepend the custom message to the
 ' default message
 sMessage = Message + NL + _
 "JobID = " + JobID + NL + _
 "KSName = " + KPName + NL + _

 "MC MachineName = " + MachineName + NL + _
 "Object Name = <" + ObjList + "> " + NL + _

 "EventMsg = " + EventMsg + NL + "LongMsg = _
 " + PreProcessForXML (AgentMsg) + NL

Else
 ' Use the messaged that was supplied

 sMessage = Message
End If
Chapter 8 • Modifying an action script written in Summit BasicScript 183

With this simple modification, the first part of the If block will send
both messages if PrependMsg = “y,” irrespective of the value of
Message. If PrependMsg = “y” and Message is empty, an empty line
will be added before the default message.

The Else block, where only Message is written, will be reached only if
Message has a value and PrependMsg = “n.”

Note This script will behave exactly like Action_Messenger if
PrependMsg = “n,” except for an extra blank line before the default
message.
184 Developing Custom Knowledge Scripts

Chapter 9

Modifying an action script written in
Perl
In AppManager, “performing an action” means running an action
Knowledge Script as a result of an event being raised in some other
type of script.

This chapter describes an action script, Action_UXCommand.qml, that
does what its name implies—it runs a non-interactive UNIX
command (no user input is allowed) at the command line. This
Knowledge Script, written in Perl for UNIX, is similar in function to
Action_DOSCommand.qml for Windows.

Both Action_DOSCommand.qml and Action_UXCommand.qml are very
powerful Knowledge Scripts, even though they are quite short. You
can use them to run entire programs at the command line.

In the last part of this chapter, Action_UXCommand.qml will be
extended so that the script can also write to a log file. The modified
script is called Action_UXCommandEx.qml.

This chapter covers the following topics:
● Setting up to perform actions
● Invoking actions
● Events without actions
● Ending actions
● Listing of the Action_UXCommand.qml script
● User-set Script Parameters
● Parameters supplied by AppManager
● Functions called in the code
● Syntax of the Callback functions
185

● The program logic
● The modified script, Action_UXCommandEx.qml

Setting up to perform actions

Actions can be defined for “normal” (monitoring and report),
discovery, and install scripts. It is not possible to define further actions
for action scripts.

Actions for a Knowledge Script can be defined either:
● by the script developer, using the Script Properties dialog box in

the Developer’s Console.
● by users of the AppManager Operator Console, using the

Properties dialog box that opens when a script is dragged to a
target object in the TreeView pane.

Script developers

When developing a monitoring, reporting, or discovery Knowledge
Script, you should use the Parameters tab of the Script Properties
dialog box in the Developer’s Console to define a Script Parameter
with a variable name of $Akpid. You should also give this Script
Parameter the default value “AKP_NULL”. You are not forced to do
this, but trouble can arise if you do not.

You, the script developer, can also define actions for your script using
the Script Properties dialog box. This is hardly ever done by script
developers, as it is difficult to predict what type of action a user will
want performed. You should define actions rarely, if ever.

Note If you do, in fact, define actions yourself, you might think that
setting a default value of “AKP_NULL” for $Akpid is unnecessary.
However, a user can undo your choices of actions when setting up a
Knowledge Script job, so that a default value will be required in any
case.
186 Developing Custom Knowledge Scripts

AppManager Operator Console users

When an AppManager Operator Console user drags a script to a
target object n the TreeView pane, the Properties dialog box opens.
For every type of Knowledge Script except action scripts, the dialog
box will have an Actions tab. In this tab, users can add as many
actions as they desire. In the rare event that the script writer associated
actions with this script, the user can delete them.

Caution You must choose Action for the Knowledge Script type in
the Header tab of the Script Properties dialog box of the Developer’s
Console. If you fail to make this choice for an action script, it will not
be available as a new action to an Operator Console user in the Action
tab of the Knowledge Script Properties dialog box:
Chapter 9 • Modifying an action script written in Perl 187

Invoking actions

It is the responsibility of non-action scripts to invoke actions.

Action scripts are executed only when events are raised. More
specifically, when:
● actions have been associated with a monitoring, discovery, install,

or reporting Knowledge Script job,
● an event is raised by one of those scripts, and
● the event Callback’s action parameter is set to $Akpid.

When you are developing a script, you can choose to raise an event
that does not call any action scripts that may be chosen by a user. In
the NetIQ::Nqext::CreateEvent Callback function that raises the
event, you set the action parameter to “AKP_NULL” rather than $Akpid.

Thus, for any given event, you can choose to have all action scripts
executed or none, depending on the value you use for the action
parameter. If you set this parameter of NetIQ::Nqext::CreateEvent
to $Akpid, all actions chosen by a user will be executed. If the
parameter is set to “AKP_NULL” no action script will be executed.

Note There is no mechanism for you to associate several different
actions with a script and choose which one should be executed when a
particular event is raised.

Events without actions

In general, you want to generate events without invoking actions when
your script detects an error condition that you feel the user should be
aware of. For example, if the user enters an invalid script parameter,
the script should raise an event, but not invoke an action.

Monitoring scripts should invoke actions only if the conditions or
thresholds that the user wants to monitor have been met or exceeded.
188 Developing Custom Knowledge Scripts

Ending actions

It is the responsibility of the action script itself to signal the end of an
action.

Toward the end of your action script, your code should signal the
completion of the action script by raising an event with the action
parameter set to “AKP_COMPLETE.” For example:

NetIQ::Nqext::CreateEvent(25, "", AKP_COMPLETE",

 $resmsg, 0, "", "", 0, 0);

An event that sets the $Akpid parameter to “AKP_COMPLETE” will
cause the Message in the Action tab of the Event Properties dialog
box to read:
● “Action Complete” if the event message (second parameter in the

event parameter list) is an empty string, as it is in the example
immediately above, or

● the event message, if it is not an empty string.

If you do not raise an event with the action parameter set to
“AKP_COMPLETE”, the Message in the Action tab of the Event
Properties dialog box will continue to read “<Location> Action in
Progress,” even though the action has, in fact, completed.

Note Any event raised with an action parameter other than
“AKP_COMPLETE” will create a new event.

XML messages

Beginning with AppManager 5.0, you can write custom event
messages for your monitoring scripts in XML format. AppManager
will parse these XML messages to create formatted tables in the
Message pane of the Event Properties dialog box. Here is an
example from an event raised by the WebServices_LinkSummary
Knowledge Script.
Chapter 9 • Modifying an action script written in Perl 189

By comparison, the screen below shows an event message that is not
in XML format.
190 Developing Custom Knowledge Scripts

The importance of XML messages in this chapter is this: You must
take the XML format possibility into account in your action scripts.
The event message will be passed to the action script—since this
message may be in either plain text or in XML format, the action
script will need to take this into consideration. It is not necessary to do
this for the sample script in this chapter, but it often arises (see, for
example, “Function PreProcessForXML” on page 155).
Chapter 9 • Modifying an action script written in Perl 191

Listing of the Action_UXCommand.qml script

Here is a listing of the code section of Action_UXCommand.qml. The
Script Parameters, included by AppManager as variables, are not
shown.

#main

 use strict;
 use NetIQ::Nqext;

 our $msg;
 our $resmsg = "";

 NetIQ::Nqext::ExecCmd("$Cmd",2);

 $msg = "Action Completed";

 NetIQ::Nqext::CreateEvent(22, $msg,
 "AKP_COMPLETE",

 $resmsg, 0, "",
 "", 0, 0);

#end of main

User-set Script Parameters

Users can set action script properties when the “calling script” is
dragged and dropped. As an example, assume you drag the
UNIX_TopCpuProcs Knowledge Script (the “calling script”) to a target
UNIX CPU in the AppManager Operator Console TreeView pane.
In the Properties dialog box, you select the Actions tab and add the
Action_UXCommand.qml script as your action for UNIX_TopCpuProcs.

After you have chosen Action_UXCommand.qml as your action, you
click the Properties button. This opens the Properties dialog box for
Action_UXCommand.qml:
192 Developing Custom Knowledge Scripts

Here you must enter a value for the one Script Parameter required by
Action_UXCommand.qml:

Parameters supplied by AppManager

For action scripts, unlike other types of scripts, AppManager adds a
number of variables to the beginning of the script when it is run. The
variables have to do with the event that caused the action script to be
launched.

You can use these AppManager-added variables in your script, but you
cannot see them in any of the Developer’s Console views. You simply
have to know that they are there and what they are:

Variable name
used in the code

Description the Operator
Console user will see

Value

$cmd Non-interactive UNIX
command

Non-interactive UNIX command
(no user input allowed).

AppManager-added variable Description

$JobID The JobID of the “calling script” (the
script that raised the error that caused
the action script to execute).

$Severity The severity of the calling script event
that caused execution of the action
script.
Chapter 9 • Modifying an action script written in Perl 193

Note These variables are added when the action script is run on either
the management server or the managed client.

Functions called in the code

The code calls two AppManager Callback functions, by which the
script requests information or action from the AppManager agent
running the job.

Here are the Callback functions called in the script, in order of their
appearance:

$MachineName The name of the machine running the
calling script whose event caused
execution of the action script.

$KPName The Knowledge Script name of the
“calling script” (the script that raised the
error that caused the action script to
execute).

$ObjList The obj parameter of the calling script
event that caused execution of the
action script.

$EventMsg The evtmsg parameter (event
message) of the calling script event that
caused execution of the action script.

$AgentMsg The agentmsg parameter (optional long
message) of the calling script event that
caused execution of the action script.

Function or subroutine Description

NetIQ::NQEXT::ExecCmd Callback function that runs a non-interactive
command.

NetIQ::NQEXT::CreateEvent Callback function that raises an event.

AppManager-added variable Description
194 Developing Custom Knowledge Scripts

Syntax of the Callback functions

Refer to Chapter 12, “AppManager Callbacks for Perl,” for more
details.

ExecCmd

The Perl language allows invocation of external commands by using
back quotes (``) to substitute the output of the enclosed command.
The NetIQ UNIX agent does not support this. Instead, use the
NetIQ::Nqext::ExecCmd to instruct the agent to execute an external
command on behalf of the Knowledge Script.

Syntax
NetIQ::Nqext::ExecCmd (cmd [, flag])

Return value

String. Depending on the flag passed in, this Callback will either return
the stdout and/or stderr results or a filename containing the
stdout/ stderr results from executing the external command.

CreateEvent

Used by a Knowledge Script to send an event to the AppManager
agent. The agent will apply additional rule processing and will
determine whether to send a new event or a duplicated (collapsed)
event to the AppManager management server.

Parameter Data type Description

cmd String The non-interactive command.

flag Long Optional. 0: the Callback returns the stdout. 1: the
Callback returns the temporary file name containing the
stdout. 2: the Callback returns the stdout along with
the stderr. 3: the Callback returns the temporary file
name containing both the stdout and stderr. Default is
0.

NOTE: If flag == 1 or 3, then the Knowledge Script
must remove the temporary file after it is used.
Chapter 9 • Modifying an action script written in Perl 195

Syntax
NetIQ::Nqext::CreateEvent(sev, evtmsg, akp, obj, val,
agentmsg, evtsrc, evtid, msgtype [,deletefile])

Parameter Data type Description

sev Long The event severity. A value from 1 to 40.

evtmsg String The message to be displayed under the Message
column in the Events tab.

akp String Name of the action script to launch as a response to this
event. You would normally create a Script Parameter
and associate it with a variable named $Akpid as part of
your script. When the job is dropped and you select an
action, the UI will fill in the $Akpid variable with the
action name. You will just need to pass in the $Akpid
variable to the script.

obj String Corresponding object name where the event is raised.
This value will determine which object in the TreeView
pane to blink. Format of the value passed in should be
"ObjectTypeName = ObjectValue", e.g.
"UNIX_DiskObject = /mnt/cdrom". The
ObjectValue can normally be obtained by the drop object
variable, e.g. the machine name.

val Double The current value to raise the event. This parameter is
currently not used. Set to 0.0.

agentmsg String Either the detail message or a file name that contains
the detail message. The detailed message is displayed
in the Message tab of the Event Property dialog box. If
this parameter contains the name of a file, make sure
you set the msgtype parameter to 1.

evtsrc String Reserved for future use. Set to ““.

evtid Long Reserved for future use. Set to 0.
196 Developing Custom Knowledge Scripts

CreateEvent returns nothing.

The program logic

The Action_UNIXCommand is a very simple, yet very powerful
Knowledge Script. Using Action_UNIXCommand, you can run anything
that can be run on the command line that does not require user
interaction. This could, for example, include Perl script or shell scripts,
as long as the computer running Action_UNIXCommand can access the
Perl or shell script.

Note Even though NetIQ::Nqext::ExecCmd can return the stdout
and/or stderr, this script contains no code to test whether execution
on the command line succeeds. That is because the user will decide
what command to run and the script developer does not know what
that will be.

The code does just two things:

1 It calls NetIQ::Nqext::ExecCmd. The Script Parameter $cmd is the
user-defined string that is the command to run.

msgtype Long Flag specifying whether the value passed in the
agentmsg parameter is a file name or the detailed
message itself. If it is a file name, then the contents of
the file are read and passed in as the detailed message.
Set to 0 to specify that the value in the agentmsg
parameter is the detailed message. Set to 1 to specify
that the value is the file name containing the detailed
message.

deletefile Long Optional. Flag to tell the AppManager agent to delete the
event detail message file after it is done reading the
contents and passing the event to the MSU. This
parameter is ignored if msgtype != 1. Set to 1, which is
default, to delete the file when msgtype = 1. Set to 0 to
not delete the file. Be careful when setting this value to
0, especially if your script generates a message file each
time it wants to send an event because the files will
never be removed.

Parameter Data type Description
Chapter 9 • Modifying an action script written in Perl 197

2 It calls NetIQ::Nqext::CreateEvent to inform the AppManager
console that the script has been run (the action is complete).

#main

 use strict;
 use NetIQ::Nqext;

 our $msg;
 our $resmsg = "";

 NetIQ::Nqext::ExecCmd("$Cmd",2);

 $msg = "Action Completed";

 NetIQ::Nqext::CreateEvent(22, $msg,
 "AKP_COMPLETE",

 $resmsg, 0, "",
 "", 0, 0);

#end of main

This CreateEvent call differs from calls in response to an error or
failure, where the evtmsg parameter (the second parameter) contains
an error message. In this case, since the action completed successfully,
you should pass in an empty string ("") instead of an error message. As
a result, the user will see "Action Complete" for the action status in
the Event Properties window:
198 Developing Custom Knowledge Scripts

The modified script, Action_UXCommandEx.qml

It was noted previously that Action_UXCommand does not provide any
error handling, and does not report on the success or failure of the
command that is run on the command line. It is impossible to provide
for error handling in Action_UXCommand because we have no idea
what command a user will choose to execute. Action_UXCommandEx
partially compensates for the lack of error handling by writing to a log
file. The log file will not tell us if the command line command
succeeded, but it will at least tell us why the action script was run.

In Action_UXCommandEx.qml, we add the ability to write to a file. This
includes the addition of two new Script Parameters: $LogToFile and
$filename. $LogToFile can take the values “y” or “n” (default).
When the value is “y”, the script will write to a log file. In this case,
$filename, the path and name of the file to be written, must also be
provided.

Recall that the running script will include the user-defined Script
Parameters as variables with defined values. For example, if the user
accepts the defaults, the following will be pre-pended to the script’s
code (with the UNIX machine name filled in by AppManager):

Begin KSID Section

our $AppManID = "4.5.78.0.8";
our $KSVerID = "1.0";

End KSID Section

Begin Type Section
our $UNIX_MachineFolder = "";

End Type Section

Begin KPP Section
our $Cmd="rm /tmp/foo";

our $LogToFile="n";
our $Filename="";

End KPP Section

Begin KPS Section
Chapter 9 • Modifying an action script written in Perl 199

Following this is the code portion of the Knowledge Script. The
changes from Actions_UXCommand.qml are shown in bold and in a
larger font.

#main

 use strict;
 use NetIQ::Nqext;

 our $msg;
 our $resmsg = "";

 our $file_ok = 0;

 # Check to see
 if ($LogToFile eq 'y') {
 if ($Filename eq '') {
 NetIQ::Nqext::CreateEvent(22, "No file
 name was
 specified",
 "AKP_COMPLETE",
 $resmsg,
 0, "", "", 0, 0);
 }

 $file_ok = open (LOG, ">>$Filename");

 unless ($file_ok) {
 NetIQ::Nqext::CreateEvent(22, "Failed to
 open file
 $Filename for
 writing.",
 "AKP_COMPLETE",
 $resmsg,
 0, "", "", 0, 0);
 }
 }

 NetIQ::Nqext::ExecCmd("$Cmd",2);

 $msg = "Action Completed";

 if ($file_ok) {
 print LOG "Job ID = $JobID\n";
 print LOG "Severity = $Severity\n";
 print LOG "Object List = $ObjList\n";
200 Developing Custom Knowledge Scripts

 print LOG "Machine Name = $MachineName\n";
 print LOG "KP Name = $KPName\n";
 print LOG "Event Msg = $EventMsg\n";
 print LOG "Agent Msg = $AgentMsg\n";
 print LOG "Command = $Cmd\n";
 close (LOG);
 }

 NetIQ::Nqext::CreateEvent(22, $msg, "AKP_COMPLETE",
 $resmsg, 0, "", "", 0, 0);

#end of main

End KPS Section

Chapter 9 • Modifying an action script written in Perl 201

202 Developing Custom Knowledge Scripts

Chapter 10

Modifying a report script written in
VBScript
This chapter describes how to modify a report script to customize it.
All report scripts are exclusively run on Windows computers and are
always written in VBScript.

Unlike other types of scripts, report scripts are written with the
expectation that they will be customized by the user for a wide variety
of different reporting needs. Report scripts are quite complex and
contain a very large number of Script Parameters (typically more than
70). Changing the values of these Script Parameters offers a great deal
of flexibility. Therefore, modifying a report script will most likely
involve changing its value set (Script Parameters) rather than changing
its code.

The first part of this chapter shows how to copy a basic report script
(ReportAM_AvgValueByDay), change its value set, and rename it as a
specialized report script (MyReports_AvgMemByDay).

There are a few situations in which you will need to make minor
alterations to the code or to the non-code XML elements of a report
script in order to accomplish your goals. In the second part of this
chapter, the report script MyReports_AvgMemByDay is modified to
report over a time period (MyReports_AvgMemByMonth) that is not
available simply by changing the value of Script Parameters.

The following topics are covered in this chapter:
● About report scripts
● Discovering the Report agent
● Altering the value set of an existing script
● Modifying the code of an existing script
203

About report scripts

Report scripts are similar to other types of Knowledge Scripts (for
example, monitoring scripts) insofar as they provide a similar
framework for implementing the script. In creating both types of
scripts, you can use the Developer Console to define header
information, define the type of object on which the script can run, set
a default schedule, define Script Parameters for the script, and define
actions associated with events raised by the script.

Report scripts differ, though, in the nature of the logic. The logic of a
monitoring script is generally geared toward calling the appropriate
managed object to extract system or application data from a
performance object and then measuring that data against a threshold.
The logic of a report script is geared toward getting raw information
from a database via a stored procedure, using COM objects to
manipulate that information into some meaningful form, and
presenting it in a graphical context like a table or chart.

Report scripts employ a number of COM objects that help you
retrieve, manipulate, and display data:
● The ADODataSource object is used to connect to a SQL database,

query the database, and return a recordset.
● The filter objects (CROSSTAB, HISTOGRAM, STATISTICS,

TIMEFILTER, PERCENT) are used to manipulate the data in the
recordset returned by ADODataSource, for example, to provide an
average hourly value of the data.

● The Report object is used to format the data returned by the filter
objects, generate an HTML report, and render the charts in a
report.

By employing the filter objects, the manipulation of data has been
moved from the stored procedure to the client side of the transaction,
freeing up your SQL Server resources.

Specific information about the properties and methods for the COM
objects used in report scripts can be found in the
204 Developing Custom Knowledge Scripts

appManager\documentation\development_tools directory on your
AppManager CD. There you will find information about the following
objects:
● AMChart

● AMLayout

● Report (including ADODataSource and the filter objects)
● NetIQOLE (used to run AppManager from the command line)

What approach do I take?

You have two options for modifying a report script:
● Make a copy of an existing script and use the Properties dialog box

to set the default Script Parameter values to meet your specific
purpose.

● Modify the properties and logic of an existing script.

Discovering the Report agent

Before you begin to work with report scripts, make sure that the
scripts you want are visible in the Scripts pane of the AppManager
Console. There are four groups of report scripts:
● AppManager repository (“ReportAM”)
● Analysis Center (“ReportAC”)
● Active Directories (“ReportADSI”)
● SAP Proxy Server (“ReportSAP”)

All users should be able to see the ReportAM Knowledge Script
Group. If you are part of an Active Server domain, you should also be
able to see the ReportADSI group. To see the ReportAC, you must
have installed NetIQ Analysis Center, and to see the ReportSAP
group, a SAP Proxy Server must be reporting to your AppManager
repository.

Before any of these Knowledge Script Groups will be visible in the
Scripts pane of your Operator Console, you must discover them. Do
Chapter 10 • Modifying a report script written in VBScript 205

this by dragging the Discovery_ReportAgent script to your
computer’s icon in the TreeView pane. The Properties for
Discovery_ReportAgent dialog box will open. Select the Values tab
and enter “y” for each group you want to discover:

Running the Discovery_ReportAgent script with all values = “y” will
discover all the report script groups that are available to you. You will
get an event with a message informing you of failure for the groups
that are not available.
206 Developing Custom Knowledge Scripts

Altering the value set of an existing script

Say, for example, you want a report to give you the average daily value
for physical memory usage by a group of your SQL Servers. (This
presumes that you have SQL Servers organized into one or more
Server Groups and are using the NT_MemUtil script to collect memory
usage data from those servers.) You can make a copy of
ReportAM_AvgValueByDay, and set new default values for the Data
source Script Parameters to specify which data is included in the
report, and the method by which that data is aggregated.

Making a copy of the script

First, make a copy of ReportAM_AvgValueByDay:

1 Open the AppManager Console and select the ReportAM tab in
the Scripts pane.
Chapter 10 • Modifying a report script written in VBScript 207

2 Right-click ReportAM_AvgValueByDay, and click Copy Knowledge
Script.

3 Type a new name and description for the script (by default, the new
script is named ReportAM_CopyOfAvgValueByDay).

In this case, rename the script as MyReports_AvgMemByDay, and
change the description to “Average Memory By Day Report.”

4 Click OK.

Selecting the data streams for the new report

After you’ve made a copy of the script, configure it to report on a
specific set of data streams:

1 In the Knowledge Script pane, double-click the icon for the new
script MyReports_SQLAvgMemByDay. The Properties for
MyReports_AvgMemByDay dialog box will open.

To Do this

Display the script in the same tab
as the original

Keep the ReportAM_ prefix.

Create a new tab for your custom
report script

Use a new prefix. For example,
MyReports_. This example uses
MyReports_SQLAvgMemByDay as the
new name for the script.
208 Developing Custom Knowledge Scripts

2 Choose the Values tab.

3 Under Data Source, click the Browse [...] button next to the
Select data wizard Script Parameter.
Chapter 10 • Modifying a report script written in VBScript 209

4 In the Select An AppManager DataSource browser, select the
AppManager repository that holds the data for your SQL Server
group, and click OK.

5 On the first page of the data wizard, select the Master view and the
Server Group filter, and click Next.
210 Developing Custom Knowledge Scripts

6 Select the Server Group for which you want reports, and click
Next.

7 Select By Data Stream, and click Next.
Chapter 10 • Modifying a report script written in VBScript 211

8 Select NT_MemUtil - MemPhysUsage %, and click Finish.

When you run the script, it will query the AppManager repository for
the information in this data stream as it was collected from all
computers in your Server Group.

The selections you make using the data wizard are used to provide
values for some of the Script Parameters in the stored procedure used
by this script.
212 Developing Custom Knowledge Scripts

Selecting the way data is presented in the new report

You select the style of data presentation with the Values tab
Properties for MyReports_AvgMemByDay dialog box.

Configure the Select the style Script Parameter to accommodate the
way you intend to use the report. For example, if you want a separate
page of the report devoted to each computer, use the By computer
style. If you want to make a comparison of memory use across all
computers in the group, use the All data streams on one page style.

For this example, select All data streams on one page.

The style of presentation you select for the report is used to provide a
value for one of the Script Parameters in the stored procedure used by
this script.
Chapter 10 • Modifying a report script written in VBScript 213

Selecting the time range for the new report

You select the time range of data presentation with, once again, the
Values tab of the Properties for MyReports_AvgMemByDay
dialog box.
214 Developing Custom Knowledge Scripts

For this example, we’re going to configure the report to include a
week’s worth of data.

Configure the Select time range Script Parameter to use a Sliding
date/time range of 7 Days.

Do not use the End now Script Parameter.

With this configuration, each time the report runs, it will include seven
whole days’ worth of data (for example, if you run the report each
Saturday, it will include data from midnight of the previous Saturday
to 11:59:59 P.M. Friday).

The time range setting is used to provide a value for one of the Script
Parameters in the stored procedure used by this script.
Chapter 10 • Modifying a report script written in VBScript 215

Selecting days of the week to include in the report

Again, you use the Values tab of the Properties for
MyReports_AvgMemByDay dialog box to select the days of the
week.

For this example, use the default setting for the Select peak
weekday(s) Script Parameter. The default setting includes all seven
days of the week.

The settings for this Script Parameter are used to pass information to
the TIMEFILTER object via the DayOfWeekFilter property. The
TIMEFILTER object helps determine which data returned by the stored
procedure is used in the report. The DayOfWeekFilter property is
used to specify data from particular weekdays.
216 Developing Custom Knowledge Scripts

Selecting the aggregation interval

You select the aggregation interval with the Values tab of the same
Properties for MyReports_AvgMemByDay dialog box (see the
preceding graphic). For this example, use the default setting for the
Aggregation interval Script Parameter. The default setting is 1 day.

The setting for this Script Parameter is used to pass information to the
TIMEFILTER object via the TimePeriodPerPoint property. The
TIMEFILTER object helps determine which data returned by the stored
procedure is used in the report. The TimePeriodPerPoint property is
used to determine the time range by which data is grouped (in this
case, 1 day).

Modifying the Report settings and Event Script
Parameters

Using the same dialog box, you can set both report settings and event
notification Script Parameters. Use the following Script Parameters to

include or exclude a parameter help card, table, and chart:
● Include parameter help card?
● Include table?
● Include chart?

Note The “parameter help card” is a table of the script value settings
that you can optionally add to your report.
Chapter 10 • Modifying a report script written in VBScript 217

Use the Select chart style Script Parameter to set the graphical
properties for charts in the report (for example, rotation, series style,
and threshold indicator).

Use the Select output folder Script Parameter to set the type of
output folder (unique, unique with specified prefix, specific name),
and the output path.

Use the Select properties Script Parameter to set grouping properties
and the title and description of the report.

See the Reporting Guide for more information about these Script
Parameters.

The same dialog box allows you to modify the event notification
Script Parameters to raise events associated with generation of the
report, and to change event severity levels.

See the Reporting Guide for more information about these Script
Parameters.

Saving your new report script

Once you have defined the Script Parameter settings for your new
report, click OK to close the Properties dialog box and save the
settings.

You can now drop the report script and have it generate exactly the
report you want without having to configure any of the Script
Parameters.
218 Developing Custom Knowledge Scripts

Modifying the code of an existing script

Another method for creating a custom report script is to modify the
non-code XML elements or code of an existing script.

In the following example, we’ll modify the script we created in the
previous example, MyReports_SQLAvgMemByDay, to create a report that
gives us an average monthly value for physical memory usage by a
group of SQL Servers. The aggregation interval value in the Values
tab of the Properties for MyReports_AvgMemByDay dialog box is
restricted to days by default. Looking through the various scripts in
the ReportAM group, we see that there are report scripts for average
values by minute, hour, and day but not for longer intervals. If we
want to aggregate data for a week or a month, we will have to modify
an existing script.

This new report uses the average daily values collected during a month
to figure the month’s average, regardless of how many daily averages
are collected (for example, if you collect 15 days worth of data one
month, and 30 days the next, the monthly averages are based on 15
values and 30 values respectively).

In order to modify your example script from reporting on daily
averages to reporting on monthly averages, you need to make minor
modifications to several different parts of the script, including:
● The non-code XML elements
● The script properties
● The script logic
● The Values tab in the UI

Modifying the non-code XML elements of the script

The only change that you must make to the non-code XML elements
of the script is to change the aggregation interval from days to
months. To do this:
Chapter 10 • Modifying a report script written in VBScript 219

1 Open the script MyReports_SQLAvgMemByDay in the Developer’s
Console.

2 Choose Properties from the View menu.

3 Choose the Parameters tab and highlight the Script Parameter
called PRM_TIMEPERIOD.
220 Developing Custom Knowledge Scripts

4 Click Modify.

5 In the Units field, change Day(s) to Month(s) and then click Save.

6 In the Script Properties dialog box, click OK.

7 Save the script as MyReports_SQLAvgMemByMonth.

Note In the procedure we just completed, we changed the basic units
of a Script Parameter—this is a modification to the script. In the first
part of the chapter, we changed the values of Script Parameters, but did
not alter the script itself.

Modifying the script properties

A number of other script properties must be modified to change the
text that appears in the report.

1 Open MyReports_SQLAvgMemByMonth in the Developer’s Console.

2 Click View > Properties.
Chapter 10 • Modifying a report script written in VBScript 221

3 On the Header tab, change the Knowledge Script description to
Average Memory Value By Month Report.

4 On the Parameters tab, change the Script Parameters description to
Displays the average values by month of physical memory use
on SQL Servers.
222 Developing Custom Knowledge Scripts

5 Select the Script Parameter PRM_CHARTTITLE, then click Modify.

6 In the Default value field, type Average By Month, then click
Save.

7 Select the Script Parameter PRM_FOLDERDISPLAY, then click
Modify.

8 In the Default value field, type AvgValueByMonth And unique
folder name, then click Save.

9 Select the Script Parameter PRM_LAYOUTFOLDER, then click Modify.

10 In the Default value field, type AvgValueByMonth, then click
Save.

11 Select the Script Parameter PRM_FOLDERPREFIX, then click Modify.

12 In the Default value field, type AvgValueByMonth, then click
Save.

13 Select the Script Parameter PRM_INDEXREPORTTITLE, then click
Modify.

14 In the Default value field, type SQL Average Memory By
Month, then click Save.

15 Select the Script Parameter PRM_INDEXDESCRIPTION, then click
Modify.

16 In the Default value field, type Displays the average value by
month of physical memory use on SQL Servers, then click Save.

17 Click OK to close the Script Properties dialog box.

Modifying the code

After modifying the Script Parameters, you need to make some
changes to the VBScript portion of the script.
Chapter 10 • Modifying a report script written in VBScript 223

To properly manipulate the data for this report, you need to create an
additional instance of the STATISTICS object and the TIMEFILTER
object.

Adding variables

Two new local variables must be added to the main routine.

Local variables are declared just after the main routine is declared:
Sub Main()
 Dim Detailmsg

 Dim ReportObj
 Dim IncludeType

 Dim CrossTableObj
 Dim StatsFilterObj

 Dim TimeFilterObj
 Dim DataSourceObj

 Dim Displaytype

Add the following two variables:
Dim StatsFilterOjb2

Dim TimeFilterObj2

Manipulating data

The next modification to the script logic involves setting up the filter
objects that manipulate the data that is returned by the
ADODataSource object.

As the script is currently written, the filter objects are set up to return
average daily values. You need to make an additional calculation that
takes the average daily values for a month and finds their average
value. This second calculation is why you created additional variables
for the STATISTICS and TIMEFILTER objects.

Find the following section of the code:

Set CrossTableObj = CreateObject("NETIQFILTERS.CROSSTAB")
Set StatsFilterObj = CreateObject("NETIQFILTERS.STATISTICS")

Set TimeFilterObj = CreateObject("NETIQFILTERS.TIMEFILTER")

With TimeFilterObj
.TimePeriodPerPoint = PRM_TIMEPERIOD * 24 * 3600
224 Developing Custom Knowledge Scripts

If (PRM_PEAKHRSTART <> "") And (PRM_PEAKHREND <> "") Then

 .AddTimeofDayFilter CDate(PRM_PEAKHRSTART),
CDate(PRM_PEAKHREND)

End If
.SetDaysOfTheWeekFilter intWDSun, intWDMon, intWDTue, _

intWDWed, intWDThu, intWDFri, intWDSat
.PreFilter = CrossTableObj

End With

With StatsFilterObj
.Output("AVG") = True

.Grouping = True

.PreFilter = TimeFilterObj

End With

This section of the code is used to calculate the average value per day
of the data returned in the recordset.

The first three lines create the CROSSTAB, STATISTICS, and
TIMEFILTER objects.

The next section of code, from With TimeFilterObj to the first End
With statement, prepares the TimeFilter object and its properties and
methods to manipulate data passed from the CROSSTAB object.

The TimePeriodPerPoint property defines the time period by which
data is grouped. In this case, it’s one day (24 hours x 3600 seconds).

The next few lines are an If statement that checks to see if the daily
peak time range option is in effect, and if it is, what the daily time
range is.

The next line checks to see which days of the week are included in the
report.

The next line identifies the CROSSTAB object as the first filter used on
the recordset. The CROSSTAB object changes a row-oriented recordset
to a column-oriented recordset. Once the data is reoriented, it is then
passed to the TIMEFILTER object.

At this point, the TIMEFILTER object is prepared to give each data
point collected during the same day the same time stamp.
Chapter 10 • Modifying a report script written in VBScript 225

The next section of code, from With StatsFilterObj to the next End
With statement, prepares the STATISTICS object and its properties to
manipulate data passed from the TIMEFILTER object.

The Output property determines which type of data is included in the
report. In this case, it is an average value of the daily values.

The Grouping property groups like types of data so that calculations
can be performed. For example, the Grouping property groups all
data labeled June 1, 2002 so that an average can be found for that data,
and groups all data labeled June 2, 2002 so that an average can be
found for that data.

After the End With statement, add the following bit of logic:

 With TimeFilterObj2
 .MonthAggregate = True

 .PreFilter = StatsFilterObj
 End With

 With StatsFilterObj2

 .Output("AVG") = True
 .Grouping = True

 .PreFilter = TimeFilterObj2
 End With

The first new section of code, from With TimeFilterObj2 to the next
End With statement, prepares the TIMEFILTER object to take the last
output of the STATISTICS object (average daily values) and aggregate
those values by month (give all values for the same month the same
time stamp).

The next section, from With StatsFilterOjb2 to the next End With
statement, prepares the STATISTICS object to take the last output of
the TIMEFILTER object (values aggregated by month) and find an
average of each set of monthly values.

The following lines of code implement the filtering of data, and use
the last output of the STATISTICS object (monthly average values) to
create the charts and tables in the report:

If (PRM_DISPLAYTYPE <> "All data streams on one page") Then
226 Developing Custom Knowledge Scripts

 .Filter = StatsFilterObj

 bHasData = .MakeDrillDownReportV1
(DataSourceObj.RecordSet, IncludeType)

Else
 StatsFilterObj.Recordset = DataSourceObj.Recordset

 bHasData = .MakeChartAndTable _
(StatsFilterObj.Recordset, IncludeType)

End If

Releasing references to the two additional objects you created

Because you created two additional objects for this report
(StatsFilterObj2 and TimeFilterObj2), you will need to release the
references to those objects. Just before the end of the main routine are
the following lines of code that release references to the other objects
used for this report:

Set DataSourceObj = Nothing

Set CrossTableObj = Nothing
Set StatsFilterObj = Nothing

Set TimeFilterObj = Nothing
Set ReportObj = Nothing

Add the following two lines to this section:

Set StatsFilterObj2 = Nothing

Set TimeFilterObj2 = Nothing

Saving the new report script

Once you’ve made the modifications to the script, save it as
MyReports_SQLAvgMemByMonth, and check it in to the AppManager
repository.

Setting a new time range

The last modification you need to make to this script is made through
the user interface:

1 In the Knowledge Script pane of the Operator Console, right-click
MyReports_SQLAvgMemByMonth, then click Properties.
Chapter 10 • Modifying a report script written in VBScript 227

2 In the Select time range Script Parameter, click the Browse [...]
button.

3 Select Sliding date/time range.

4 Set the time range to 3 Months (or any number of months that suits
your reporting needs).

5 Click Next, then set the daily time range as needed.

6 Click Finish.

7 Click OK to close the Properties dialog box.

Your new script is now configured to report on the average monthly
values for physical memory use by computers on which you are
running SQL Server.
228 Developing Custom Knowledge Scripts

Chapter 11

AppManager Callbacks for Summit
BasicScript and VBScript
This chapter describes the Callback functions that you can use in
AppManager Knowledge Scripts written in either Summit BasicScript
or VBScript.

The syntax for calling these functions differs for the two languages. In
Summit BasicScript, you simply call the function with the syntax
shown in this chapter. In VBScript, you must call the functions via the
NQEXT COM object. For example:
● In Summit BasicScript:

bVar = DynaDataLog(stream_id, legend, value, agentmsg)

● In VB Script:
bVar = NQEXT.DynaDataLog(stream_id, legend, value,

agentmsg)

Note String length limits. The AppManager agent cannot return a
message or data string to the management server that exceeds 2.0MB
for AppManager version 4.3 or 5.0MB for AppManager versions 5.0
and later. In addition, Summit BasicScript has an intrinsic string limit
of 32 KB.

The following functions are discussed:
● AbortScript
● CreateData
● CreateEvent
● DataHeader
● DataLog
● DynaCollectData
229

● DynaDataLog
● GetAgentInfo
● GetContextEx
● GetJobID
● GetKPInterval
● GetMachName
● GetProgID
● GetSecurityContext
● GetTempFileName (VBScript only)
● GetVersion
● Item (VBScript only)
● ItemCount (VBScript only)
● IterationCount
● LongDataHeader
● LongDataLog
● LongDynaDataLog
● MCAbort
● MCEnterCS
● MCExitCS
● MCGetMOID
● MCVersion
● MCWaitForObject (Summit BasicScript only)
● MCWaitForObjectEx (Summit BasicScript only)
● MSActions
● MSLongActions
● NQSleep
● QTrace
230 Developing Custom Knowledge Scripts

● WaitForObject

Most Callback functions can be used in both Summit BasicScript and
VBScript. The code examples for these functions are written in
Summit BasicScript.
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 231

AbortScript

Requests the AppManager agent to abort the current KS execution.

Syntax
AbortScript [objlist, abortmsg, sev [,raise_err]]

Parameters and settings

Return value

None.

Remarks

When used by itself without any arguments, the AppManager agent
will simply abort the script execution without sending an event. If you
specify any of the parameters, you are requesting the AppManager
agent to construct and send an event to the AppManager management
server.

Note There is an AppManager management server registry setting
(“config\MC job abort event Sev”) that overrides any value that you
assign to sev, as long as the registry setting is non-zero. “config\MC
job abort event Sev” is normally set to 10, and the abort event
severity will therefore be 10, no matter what value you give to sev. If
“config\MC job abort event Sev” is set to zero, then the registry
value will no longer override sev.

Parameter Data type Description

objlist String Object name.

abortmsg String Abort event detailed message.

sev Long Customized abort event severity. See note under
Remarks.

raise_err Bool Optional. When True (default), sets the job status
to Error. When False, sets the job status to Stop.
232 Developing Custom Knowledge Scripts

Example

This function is used to abort the script when there is an error:
With Err
 'Assemble Error statement

 strErrStatement = "Number: " & CStr(.Number) & "; _
 Description: " & Trim(.Description) & "; Comment: " & _

 Trim(strAddComment) & "; Source: " & .Source

 'Log Error Statement into Error Log File
 resmsg = "REPORT_AGENT = " & REPORT_AGENT

 NQEXT.CreateEvent (PRM_SEVERITYFAIL, PRM_CREATEFAILED, _
 AKPID, resmsg, 0, strErrStatement, "NetIQ AppManager _

 AMAdmin", 1002, 0, False)
 With objrLayout

 .LogMessage strErrStatement

 .HasData = False
 End With

 NQEXT.AbortScript resmsg, strErrStatement

 'Clear Error Object Properties
 .Clear

End With
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 233

CreateData

CreateData behaves the same as DynaDataLog, except that it provides
more configuration information for the data header and data points.

Syntax
CreateData streamId, legend, dynaleg, objlist, val, agentmsg,

msgtype [,schema] [,loglimit] [,lowWM] [,hiWM] [,deletefile]

Parameters and settings

Parameter Data type Description

streamId String The data stream ID. For each unique stream ID in
a script, it will generate a Data Source in the
AppManager database. Subsequent calls to
CreateData using the same stream ID will insert
data points to the same Data Source. The string
length limit is 64 characters.

legend String The data stream legend. This value will show up
under the Legend column and in the graphs. The
string length limit is 128 characters.

dynaleg String The data stream dynamic legend. Contains the
dynamic information that can be used for
reporting. If a portion of your legend changes
often, then pass that text into this parameter.
Otherwise leave it blank.

objlist String Corresponding object name where the data is
collected on. This value is used for graphing and
reporting. Format of the value passed in should be
"ObjectTypeName = ObjectValue", e.g.
"NT_DiskObject = D:\". The ObjectValue can
normally be obtained by the drop object variable,
e.g. NT_MachineFolder.

val Double The data point value.
234 Developing Custom Knowledge Scripts

agentmsg String Either the data detail or a file name that contains
the data detail. The data detail is basically an
annotation of each data point, giving more
information about the data point since the data
point is just a numeric value. For example, the
data point value may be 5 for the number of
processes running, while the data detail may list
the processes that are running. The detailed
message is displayed in the Graph Data Detail
dialog box for each data point. If this parameter
contains the name of a file, make sure you set the
msgtype parameter to 1.

msgtype Long Flag specifying whether the value passed in the
agentmsg is a file name or the detailed message
itself. If it is a file name, then the contents of the file
are passed in as the detailed message. Set to 0 to
specify that the value in the agentmsg parameter is
the detailed message. Set to 1 to specify that the
value is the file name containing the detailed
message.

schema String Optional. XML schema for dynamic table creation
in RDB. Default is an empty string.

loglimit Long Optional. The number of days to keep this data
point in the database. Default -1, keep forever. The
data points can be removed from the database by
other means.

lowWM Double Optional. Low watermark. Default is -1.0.

hiWM Double Optional. High watermark. Default is -1.0.

deletefile Bool Optional. Flag to tell the AppManager agent to
delete the event detail message file after it is done
reading the contents and passing the event to the
MSU. This parameter is ignored if msgtype != 1.
Set to 1, which is default, to delete the file when
msgtype = 1. Set to 0 to not delete the file. Be
careful when setting this value to 0, especially if
your script generates a message file each time it
wants to send an event because the files will never
be removed.

Parameter Data type Description
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 235

Return value

None.

Remarks

DynaDataLog sends data points for dynamic data streams. This
function allows you to collect data for data streams that may be
instantiated at each iteration.

Example

Here is an example taken from the Exchange2000_QueueStatus
Knowledge Script:
...

Dim resname
Const UNITNUMBER = "^^#"

...
Sub Main ()

...
Dim gpocount

Dim detailmsg
...

resname = "NT_GroupPolicyFolder = " & NT_GroupPolicyFolder
...

retval = OBJ.GetGroupPolicy(computer, gpolist, gpocount, _
 errormsg)

...
detailmsg = "List of GPO linked to the machine :"

For j = 1 To NQEXT.ItemCount(gpolist,",")
 gpo = NQEXT.Item(gpolist,j,",")

 If (j < NQEXT.ItemCount(gpolist,",")) Then
 detailmsg = detailmsg & Chr(10) & cstr(j) & ") " & _

 gpo
 End If

Next
...

If (DO_DATA = "y") Then
 NQEXT.CreateData 0, "Group Policy list" & UNITNUMBER, "",_

 resname, gpocount, detailmsg, 0
End If
236 Developing Custom Knowledge Scripts

CreateEvent

Used by a Knowledge Script to send an event to the AppManager
agent. The AppManager agent will apply additional rule processing
and will determine whether to send a new event or a duplicated
(collapsed) event to the AppManager management server.

Syntax
CreateEvent sev, evtmsg, akp, obj, val, agentmsg, evtsrc,

evtid, msgtype [,deletefile]

Parameters and settings

Parameter Data type Description

sev Long The event severity. A value from 1 to 40.

evtmsg String The message to be displayed under the Message
column in the Events tab.

akp String Name of the action script to launch as a response
to this event. You would normally create an AKPID
parameter as part of your script. When the job is
dropped and you select an action, the UI will fill in
the AKPID variable with the action name. You will
just need to pass in the AKPID variable to the
script.

obj String Corresponding object name where the event is
raised. This value will determine which object in
the TreeView pane to blink. Format of the value
passed in should be "ObjectTypeName =
ObjectValue", e.g. "UNIX_DiskObject = /mnt/
cdrom". The ObjectValue can normally be
obtained by the drop object variable, e.g.
UNIX_MachineFolder.

val Double The current value to raise the event. This
parameter is currently not used. Set to 0.0.

agentmsg String Either the detail message or a file name that
contains the detail message. The detailed
message is displayed in the Message tab of the
Event Property dialog box. If this parameter
contains the name of a file, make sure you set the
msgtype parameter to 1.
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 237

Return value

None.

evtsrc String Not used. Should always be empty.

evtid Long Not used. Should always be 0.

msgtype Long Flag specifying whether the value passed in the
agentmsg parameter is a file name or the detailed
message itself. If it is a file name, then the
contents of the file are read and passed in as the
detailed message. Set to 0 to specify that the
value in the agentmsg parameter is the detailed
message. Set to 1 to specify that the value is the
file name containing the detailed message.

deletefile Long Optional. Flag to tell the AppManager agent to
delete the event detail message file after it is done
reading the contents and passing the event to the
MSU. This parameter is ignored if msgtype != 1.
Set to 1, which is default, to delete the file when
msgtype = 1. Set to 0 to not delete the file. Be
careful when setting this value to 0, especially if
your script generates a message file each time it
wants to send an event because the files will never
be removed.

Parameter Data type Description
238 Developing Custom Knowledge Scripts

Example

Here is an example taken from the Exchange2000_QueueStatus
Knowledge Script:
...

Severity = 10
AKPID = AKP_NULL

Dim resname
...

Sub Main ()
...

Dim shortmsg
...

Dim detailmsg1
...

resname = "NT_GroupPolicyFolder = " & NT_GroupPolicyFolder
...

shortmsg = "Number of Group Policies : " & cstr(gpocount) _
 & " exceeds threshold."

If (DO_EVENT = "y") And (gpocount > Threshold) Then
 detailmsg1 = "Total number of Group Policies associate _

 with the machine = " & cstr(gpocount) & Chr(10) & _
 "Threshold of number of GPOs = " & Threshold & _

 Chr(10) & detailmsg

 NQEXT.CreateEvent Severity, shortmsg, AKPID, resname, _
 0.0, detailmsg1, "", 1000, 0

End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 239

DataHeader

Sends the data header for logging and graphing data streams (short
form). A DataHeader call is made in the first execution interval of a
job for each data stream to be collected. Each data header provides an
appropriate description of the information collected in the data
stream. Most Knowledge Scripts that collect data include this call.

Syntax
DataHeader legend, graph_id, stream_id [,objlist]

Parameters and settings

Return value

None.

Remarks

The data stream identifier stream_id is used to link DataLog calls for
individual data points to the appropriate DataHeader that describes
the data stream. The stream_id parameter should be unique for each

Parameter Data type Description

legend String Graphing legend displayed in the List and Graph
panes. For example, the legend for one data
stream created by NT_CpuResource is User CPU.
The string length limit is 128 characters.

graph_id Long Graph ID. This parameter is not currently used. It
is always set to the value 0 (see example).

stream_id Long or
String

Data stream identifier. This identifier should be
unique for each data stream collected by a single
Knowledge Script. The identifier does not need to
be unique across Knowledge Scripts. The string
length limit is 64 characters.

objlist String Optional. Matching object where the data is
collected.
240 Developing Custom Knowledge Scripts

data stream collected by a single Knowledge Script. The identifier
does not need to be unique across Knowledge Scripts.

To allow your custom Knowledge Scripts to collect data, you need to
include calls to both DataHeader and DataLog.

The DataHeader function initiates the collection of a data stream. You
must include this function call once for each data stream collected by
each job before sending any data points. Therefore, you should add
the DataHeader call so that it runs in the first execution interval.

Once a data stream is initiated with the DataHeader call, the DataLog
function sends the actual data point value back to the management
server at each interval. The DataLog function needs to be called for
each data stream being collected. Each DataLog call is associated with
one DataHeader call through the same streamid.

Example

In the NT_LogicalDiskSpace script, the DataHeader call initiates
the collection of two data streams (used percentage and available MB)
for each logical disk when the user elects to collect data (DO_DATA =
“y”):
If IterationCount() = 1 And DO_DATA = “y” Then

 DataHeader “Ldsk: “& objname & “USED%”, 0, I
 DataHeader “Ldsk: “& objname & “AVAIL MB”, 0, I+1000

End If

Once DataHeader is used to establish the data stream, the DataLog
call is used to collect a data point value for each data stream at each
interval the job is run:
If DO_DATA = "y" Then

 . . .
 DataLog I, Dutil, datapoint

 DataLog I+1000, Dfree, datapoint
 . . .

End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 241

DataLog

Sends data points back for logging and graphing. Most Knowledge
Scripts that collect data include this call. This call is always used in
conjunction with a DataHeader call.

Syntax
DataLog stream_id, data, datapointmsg

Parameters and settings

Return value

None.

Remarks

The data stream identifier stream_id is used to link DataLog calls for
individual data point collection to their associated DataHeader calls.
The stream_id parameter should be unique for each data stream
collected by a single Knowledge Script. The identifier does not need
to be unique across Knowledge Scripts.

Parameter Data type Description

stream_id Long or
String

Data stream identifier. This identifier should be the
same identifier used in the associated DataHeader
call for each data stream. The string length limit is
64 characters.

data Double Data point value.

datapointmsg String Detail message from the AppManager agent(s)
displayed in the Graph Data Detail dialog. The
maximum size for this string is 32K.
242 Developing Custom Knowledge Scripts

Example

This code sample shows three data streams sent via the DataLog
routine. Each has a separate message consisting of the data stream ID
(see DataHeader), the data value and a message (defined in a separate
routine):
If DO_DATA = "y" Then
 Dim Msg0$

 Dim Msg1$
 Dim Msg2$

 Msg0 = OBJ.PhysUsageAgtMsg(True)
 Msg1 = OBJ.VirtualUsageAgtMsg(True)

 Msg2 = OBJ.PGFileUsageAgtMsg(True)
 DataLog 0, Dval0, Msg0

 DataLog 1, Dval1, Msg1

 DataLog 2, Dval2, Msg2
End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 243

DynaCollectData

This function works the same as “DynaDataLog” on page 246 except
that it provides more parameters to specify configuration information
for the data header and data point.

Syntax
DynaCollectData streamId, legend, dynaleg, objlist, val,
agentmsg, msgtype [,schema] [,loglimit] [,lowWM] [,hiWM]

[,deletefile] [,logOnHeaderCreate]

Parameters and settings

Parameter Data type Description

StreamId Long, string Data stream ID. The string length limit is 64
characters.

Legend String Data stream legend. The string length limit is 128
characters.

Dynaleg String Dynamic legend, contain the dynamic information
that can be used for reporting.

objlist String Corresponding object name where the data is
collected.

val Double Current data point value.

agentmsg String Contain either a plain text or a message file name.

msgtype Long Related to agentmsg, 0 for plain text, 1 for message
file.

schema String Optional. This parameter should not be used.
Default is an empty string.

Loglimit Long Optional. Datalog limit in # of days. Default is -1.

LoWM Double Optional. Low watermark. Default is -1.0.

HiWM Double Optional. High watermark. Default is -1.0.

deletefile Bool Optional. Used only when msgtype=1, default is
True.

logOnHeader
Create

Bool Optional. If omitted, defaults to True. If True, data
point logged when data header created.
244 Developing Custom Knowledge Scripts

Return value

Boolean. True if the data point is returned successfully, False
otherwise.

Remarks

The data stream identifier stream_id can be a numeric identifier or a
data stream name. The stream_id parameter should be unique for
each data stream collected by a single Knowledge Script. The identifier
does not need to be unique across Knowledge Scripts.

Example

The following code fragment is from Oracle_CallsPerTransaction:
If DO_DATA = "y" Then
 DynaCollectData gTargetObjs(lIndex).m_sDBName & _

 gTargetObjs(lIndex).m_sVer ,"Calls Per Transaction " & _
 gTargetObjs(lIndex).m_sDBName & "@" & _

 gTargetObjs(lIndex).m_sVer , _
 "",sResName,dblResult,"",0

End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 245

DynaDataLog

Sends data points for dynamic data streams. This function allows you
to collect data for data streams that may be instantiated at each
iteration. For example, the Knowledge Script Exchange_MTAQueueLen
can dynamically enumerate new Exchange connectors at each interval.
This extension creates a data stream for each connection and
continues to collect data for each stream by stream name.

Syntax
DynaDataLog stream_id, legend, value, agentmsg [, objlist]

Parameters and settings

Return value

Boolean. True if the data point is returned successfully, False
otherwise.

Parameter Data type Description

stream_id Long or
String

Data stream identifier. The identifier can be a
numeric identifier or a stream name. The string
length limit is 64 characters.

legend String Graph legend displayed in the List and Graph
panes. For example, the legend for one data
stream created by NT_CpuResource is User CPU.
The string length limit is 128 characters.

value Double Data point value.

agentmsg String Detail message from the AppManager agent(s)
displayed in the Graph Data Detail dialog. The
maximum size for this string is 32K.

objlist String Optional. Matching object where the data is
collected.
246 Developing Custom Knowledge Scripts

Remarks

The data stream identifier stream_id can be a numeric identifier or a
data stream name. The stream_id parameter should be unique for
each data stream collected by a single Knowledge Script. The identifier
does not need to be unique across Knowledge Scripts.

Note Unlike the DataLog extension, DynaDataLog does not require a
DataHeader call to establish a data stream.

Example

This code fragment illustrates the use of DynaDataLog to return data
for dynamically discovered instances of MTA connectors:
If DO_DATA = "y" Then
 AgtMsg = AgtMsg & dval & chr$(9) & chr$(9) & Inst & Chr$(10)

 rc = DynaDataLog (Inst & " QueueLen", Inst & " QueueLen", _
 dval, dval & chr$(9) & chr$(9) & Inst & Chr$(10))

End If
In VB Script, these lines are modified to call the function

through the NQEXT object:
If DO_DATA = "y" Then

 AgtMsg = AgtMsg & dval & chr(9) & chr(9) & Inst & Chr(10)
 rc = NQEXT.DynaDataLog (Inst & " QueueLen", Inst & " -

 QueueLen", dval, dval & chr(9) & chr(9) & Inst & Chr(10))
End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 247

GetAgentInfo

This function will provide the current AppManager agent information
to the script, including the framework type, the agent version, and the
path of the installation directory.

Syntax
GetAgentInfo prodtype, agtver, installdir

Parameters and settings

Return value

None.

Example

Here is an example taken from the
AMAdmin_DeleteGlobalParams Knowledge Script:
...
' Check that the agent supports server-side job configuration

Sub AssertAgentVersion()
 Dim prodType As String

 Dim agentVer As String
 Dim installDir As String

 GetAgentInfo prodType,agentVer,installDir

 If agentVer < MIN_MC_VERSION Then

 MCAbort "", "This MC does not support server-side _
 job configuration.", 10, True, False

 End If
End Sub

...

Parameter Data type Description

prodtype String The returned framework type, either "OM" or "AM"

agtver String The returned agent version string

installdir String The returned product install path
248 Developing Custom Knowledge Scripts

GetContextEx

Returns the value for a specified custom context. This function can be
used to get custom properties you have stored as a name-value pair in
the repository using the AppManager Security Manager. Only one
custom name-value property pair can be entered in a single
GetContextEx call.

Syntax
GetContextEx label_name, label_value,
 sublabel_name, sublabel_value,

 val1_name, val1_value

Parameters and settings

Parameter Data type Description

label_name String Label context name (can not be empty). Currently,
the predefined name is label. This parameter must
be set to "label" in your script.

label_value String Label context value stored in the AppManager
repository (can not be empty). Enter the Label
value exactly as it has been entered in the Label
field in the Security Manager.

sublabel_name String Sub-label context name (can not be empty).
Currently, the predefined name is sub-label. This
parameter must be set to "sub-label" in your script.

sublabel_value String Custom Sub-label context value stored in the
AppManager repository (can not be empty). Enter
the Sub-Label value exactly as it has been entered
in the Sub-Label field in the Security Manager.

val1_name String Value 1 context name. Currently, the predefined
name is val1. This parameter must be set to
"val1" in your script.

val1_value String Context property value stored in the AppManager
repository. Use an empty string ("") to return the
current value. When this parameter is not an
empty string, it is used as a filter to further qualify
the output context value.
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 249

Return value

Variant. Returns the context value.

Remarks

This function allows you to retrieve custom information you have
stored in the AppManager repository using the Security Manager.
Within your Knowledge Scripts, the GetContextEx() function uses
the label and sub-label you enter to locate the appropriate custom
context value. For information about entering the custom values into
the repository, see the AppManager User Guide.

Example

Assume the following information has been entered using the Security
Manager:
● Label: MyApplication
● Sub-Label: email_address
● Value 1: admin@tgif.com

To use the custom values:
● Modify the NeedKPW parameter in the KP-Status section of the

customized Knowledge Script to look up a value in the KPW table.
For example:

 'NeedKPW = 1 ' Look up the value in the KPW table

● Add the GetContextEx() function to look up valid custom values
in the repository. For example:

 GetContextEx("label", "MyApplication", "sub-label",

 "email_address", "val1", email)
250 Developing Custom Knowledge Scripts

The following code fragment illustrates how to use this call in
BasicScript:
Sub Main()

 Dim email As String
 email = "" 'Get the current value

 If AdminEmail = "" Then
 dreturn = GetContextEx("label", "MyApplication", _

 "sub-label", "email_address", "val1", email)
 Else

 email = AdminEmail
 End If

End Sub

If the user doesn’t specify an email address in the Knowledge Script
Properties dialog, the GetContextEx call looks up the email address
stored in the repository and the email parameter returns the value
"admin@tgif.com".
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 251

GetJobID

Gets the job ID for the running Knowledge Script.

Syntax
GetJobID

Parameters and settings

None.

Return value

Long.

Example

The following BasicScript code fragment comes from
the NT_ServiceDown Knowledge Script:
...
JobId = GetJobId 'Get Job Id for ntserdown.ini file

For I = 1 To NumServ
 Servname = Item$(RealServices, I,, ",")

 RegSrv Servname, JobId, I 'RegSrv registers each service
 'in ntserdown.ini

Next I
...
252 Developing Custom Knowledge Scripts

GetKPInterval

Returns the execution interval, in seconds, for the running Knowledge
Script.

Syntax
GetKPInterval

Parameters and settings

None.

Return value

The execution interval, in seconds.

Example

Here is an example taken from the Domino_UserSessions
Knowledge Script:
...

Dim Time_Out As Long

Time_Out = TIMEOUT
If (Time_Out > GetKPInterval()) Then

 resmsg = "MC Abort"
 longmsg = "Please enter a timeout that is less than _

 KP interval" & Chr$(13) & Chr$(10)
 longmsg = longmsg & "Current condition: Timeout " & _

 CStr(Time_Out) & "(sec) > KP Interval " & _
 CStr(GetKPInterval()) & "(sec)"

 MCAbort resmsg, longmsg
End If

...
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 253

GetMachName

Returns a managed computer machine name (host name). This is
useful for including the name of the computer causing an event in a
message.

Syntax
GetMachName

Parameters

None.

Returns

Name of managed computer.

Example

The following BasicScript code fragment comes from the
NT_RemoteServiceDown Knowledge Script:
 If IterationCount() = 1 Then
 NumServ = ItemCount(Services, ",")

 If NumServ = 0 Then
 Err.Description = "No Service is given"

 Err.raise 4002
 End If

 NumMach = ItemCount(MachineList, ",")
 If NumMach = 0 Then

 Machines = GetMachName()
 NumMach = 1

 Else
 Machines = MachineList

 End If
 End If
254 Developing Custom Knowledge Scripts

GetProgID

Requests the AppManager agent to return the versioned Prog ID that
matches the version of the current script. For example, a version 4.0
KS may call this function to construct and return the version 4.0 prog
ID for the NT MO, such as "NetIQAgent.NT.4"

Syntax
GetProgID progid, scriptver

Parameters and settings

Return value

LPTSTR. The versioned Prog ID.

Example

Here is an example taken from the Win2000_GroupPolicyCount
Knowledge Script:
...
<Version>

 <AppManID>4.5.78.0.</AppManID>
 <KSVerID>1.1</KSVerID>

</Version>

If NQEXT.IterationCount() = 1 Then
 progid = NQEXT.GetProgId ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (progid)
 Set OBJ = NT.GroupPolicy

End If

Parameter Data type Description

progid String Version independent MO COM progid

scriptver String The associated KS script version string
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 255

GetSecurityContext

Return the value for the specified KPW.

Syntax
GetSecurityContext label_val, sublabel_val, name, value

Parameters and settings

Return value

Boolean. True if the operation succeeds, False otherwise.

Parameter Data type Description

label_val String Label value

sublabel_val String Sub-label value

name String Value name

value String The returned value for the specified name
256 Developing Custom Knowledge Scripts

GetTempFileName (VBScript only)

Requests the AppManager agent to construct a temp file name based
on the input criteria. The file name is concatenated from path, prefix
string, and a hex string formed from the unique ID, and a ".tmp"
extension.

Syntax
GetTempFileName path, prefix, uniqid

Parameters and settings

Return value

LPTSTR. The constructed temp file name and path.

Parameter Data type Description

path String Temp file path

prefix String File name prefix string

uniqid Long An unique ID
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 257

GetVersion

Asks the AppManager agent to obtain the version string for the
specified file name. It can be used to retrieve the version of a NetIQ
file or any file on the system. If file is simply a file name (with no path
specified), the AppManager agent will pre-append the NetIQ install
path.

Syntax
GetVersion file, verstr

Parameters and settings

Return value

None.

Remarks

When looking up the version, the AppManager agent will
automatically perform the wildcard operation and retrieve the latest
version. For example, if the specified component is qsqla.dll and there
exists both qsqla3.dll and qsqla4.dll, MC will return the version of
qsqla4.dll.

Parameter Data type Description

file String NetIQ or any file name

verstr String* The returned corresponding version string (passed
by reference).
258 Developing Custom Knowledge Scripts

Example

Here is an example taken from the IIS_CacheHitRatio Knowledge
Script:
Dim NT As Object

Dim OBJ As Object
Dim IIS As Object

Private IISVersion As Long
Private Counter As String ' delay counter value until version

' is found
...

Sub Main()
 Dim progid As String

 Dim IISprogid As String
 ...

 progid = MyGetProgId ("NetiQAgent.NT")
 Set NT = CreateObject(progid)

 Set OBJ = NT.System
 IISprogid = MyGetProgID ("NetiQAgent.IIS")

 Set IIS = CreateObject(IISprogid)
 IISVersion = IIS.GetVersion()

 ...
 If (IISVersion < 5) Then

 Counter = "Cache Hits %"
 Else

 Counter = "URI Cache Hits %"
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 259

Item (VBScript only)

Executes the Summit BasicScript built-in function Item.

Syntax
Item list, idx, delim

Parameters and settings

Return value

Returns the string at the specified index position within the input list.

Parameter Data type Description

list Long A list of strings.

idx Long Returned string index within the list.

delim String String delimiter.
260 Developing Custom Knowledge Scripts

Example

Here is an example taken from the WIN2000_GroupPolicyCount
Knowledge Script:
...

<Script language="VBScript">
...

Dim NT
Dim OBJ' Keep the reference count of this DLL

...
Sub Main ()

 Dim gpolist
 Dim computer

 Dim errormsg
 Dim gpocount

 Dim progid
 Dim j

 Dim detailmsg
 Dim retval

 ...
 progid = NQEXT.GetProgId ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (progid)
 Set OBJ = NT.GroupPolicy

 ...
 computer = ""

 retval = OBJ.GetGroupPolicy(computer, gpolist, _
 gpocount, errormsg)

 ...
 detailmsg = "List of GPO linked to the machine:"

 For j = 1 To NQEXT.ItemCount(gpolist,",") 'There is an
 ' extra comma after the list

 gpo = NQEXT.Item(gpolist,j,",")
 If (j < NQEXT.ItemCount(gpolist,",")) Then

 detailmsg = detailmsg & Chr(10) & cstr(j) & ") " _
 & gpo

 End If
 Next
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 261

ItemCount (VBScript only)

Executes the Summit BasicScript built-in function ItemCount.

Syntax
ItemCount list, delim

Parameters and settings

Return value

Long. Number of strings in the input list.

Parameter Data type Description

list Long A list of strings.

delim String String delimiter.
262 Developing Custom Knowledge Scripts

Example

Here is an example taken from the WIN2000_GroupPolicyCount
Knowledge Script:
...

<Script language="VBScript">
...

Dim NT
Dim OBJ' Keep the reference count of this DLL

...
Sub Main ()

 Dim gpolist
 Dim computer

 Dim errormsg
 Dim gpocount

 Dim progid
 Dim j

 Dim detailmsg
 Dim retval

 ...
 progid = NQEXT.GetProgId ("NetiQAgent.NT", AppManID)

 Set NT = CreateObject (progid)
 Set OBJ = NT.GroupPolicy

 ...
 computer = ""

 retval = OBJ.GetGroupPolicy(computer, gpolist, _
 gpocount, errormsg)

 ...
 detailmsg = "List of GPO linked to the machine:"

 For j = 1 To NQEXT.ItemCount(gpolist,",") ' List ends
 ' with extra comma

 gpo = NQEXT.Item(gpolist,j,",")
 If (j < NQEXT.ItemCount(gpolist,",")) Then

 detailmsg = detailmsg & Chr(10) & cstr(j) _
 & ") " & gpo

 End If
 Next
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 263

IterationCount

Determines the number of times the calling Knowledge Script has
run. Most Knowledge Scripts that collect data include this call.

Syntax
IterationCount

Parameters and settings

None.

Return value

Long representing the current iteration count.

Example

This routine is called to check the current iteration count for a
Knowledge Script. The first time a Knowledge Script runs, the
iteration count is 1. If the iteration count is 1, the DataHeader call is
made to allow the Knowledge Script to collect a data stream.

The following BasicScript example from NT_CpuResource
illustrates this function with four DataHeader calls (four data streams):
If IterationCount() = 1 Then
 ...

 If DO_DATA = "y" Then
 DataHeader "USER Cpu" & UNITPERCENT, 0, 0

 DataHeader "Number of Processes" & UNITNUMBER, 0, 1
 DataHeader "All Threads" & UNITNUMBER, 0, 2

 DataHeader "Interrupts" & UNITNUMBER, 0, 3
 End If

End If
264 Developing Custom Knowledge Scripts

LongDataHeader

Requests the AppManager agent to send a data header to the
AppManager management server. You can use this function to specify
all the listed configuration information, such as high/low watermark,
etc.

Syntax
LongDataHeader legend, graphId, streamId, logLimit, color,

style, MaxVal, minVal, hiWM, loWM [,objlist]

Parameters and settings

Return value

None.

Parameter Data type Description

legend String Legend name. The string length limit is 128
characters.

graphId Long Graph ID.

streamId Variant Data stream ID. The string length limit is 64
characters.

logLimit Long Datalog limit in # of days.

color Unused

style Unused

MaxVal Double Maximum allowed data point value.

minVal Double Minimum allowed data point value.

hiWM Double High watermark.

loWM Double Low watermark.

objlist String Optional. Matching object where the data is
collected.
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 265

Remarks

The previous Callback function, DataHeader, just uses the default
values for these configurations.

Example

Here is an example taken from the NT_CpuLoaded.qml:
Dim NT As Object

Dim OBJ As Object
Dim resmsg$

Dim resarg$
...

Sub Main()
 Dim Duser#, Dpriv#, Dtotal#

 Dim progid$
 ...

 progid = MyGetProgId ("NetiQAgent.NT")
 Set NT = CreateObject(progid)

 Set OBJ = NT.CPU
 ...

 resarg = ""
 ...

 Dpriv = OBJ.UtilValue("PRIVILEGED", resarg)
 Duser = OBJ.UtilValue("USER", resarg)

 If Dpriv = -1 Or Duser = -1 Then
 Err.Description = "Failed on CPU MO."

 Err.raise 4101 'raise error to terminate this KS
 End If

 ...
 Dtotal = Dpriv + Duser

 ...
 If DO_DATA = "y" Then

 If IterationCount() = 1 Then
 LongDataHeader OBJ.UtilLegend("PROCESSOR", resarg),_

 0, 0, CpuUtil_DataPoints, 0, 0, 0, 0, 0, 0
 End If

 ...
 longm = "Privileged " & Format$(Dpriv, "0.00") & _

 chr$(10) & "User " & Format$(Duser, "0.00") & _
 chr$(10) & "Total " & Format$(Dtotal, "0.00")

 DataLog 0, Dtotal, longm
 End If

End Sub
266 Developing Custom Knowledge Scripts

LongDataLog

This function requests the AppManager agent to send a data point to
management server. Unlike “DataLog” on page 242, the AppManager
agent will read the detail message from the specified file and return
the message as part of data point. This function is useful for returning
detail messages larger than 32 KB.

Syntax
LongDataLog streamId, value, msgfile [,deletefile]

Parameters and settings

Return value

None.

Example

This code fragment from the AD_NumberOfComputers
Knowledge Script reads the detail message from strOutFile:
...
If DO_DATA = "y" Then

 LongDataLog streamid, NumUsers, strOutFile
End If

...

Parameter Data type Description

streamId Long, string Data stream ID. The string length limit is 64
characters.

value Double Current data point value.

msgfile String The name of file that contains the detail message for
the current data point.

deletefile Bool Optional. True to delete the file after it is read. False
to retain.
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 267

LongDynaDataLog

This functions works the same as “DynaDataLog” on page 246 except
the AppManager agent reads the detail message from a specified file
and returns the message as part of data point. This function is useful
for returning detail messages larger than 32 KB.

Note LongDynaDataLog does not require a DataHeader call to establish
a data stream.

Syntax
LongDynaDataLog streamId, legend, value, msgfile

[,deletefile] [,objlist]

Parameters and settings

Return value

None.

Remarks

The data stream identifier stream_id can be a numeric identifier or a
data stream name. The stream_id parameter should be unique for

Parameter Data type Description

streamId Long, string Data stream ID. The string length limit is 64
characters.

legend String Legend name. The string length limit is 128
characters.

value Double Data point value.

msgfile String The name of file that contains the detail message
for the current data point.

deletefile Bool Optional. True to delete the file after it is read.
False to retain.

objlist String Optional. Matching object where data is collected
on.
268 Developing Custom Knowledge Scripts

each data stream collected by a single Knowledge Script. The identifier
does not need to be unique across Knowledge Scripts.

Example

This code fragment from Win2000_DiskQuotaStatus constructs the
stream ID and reads the detail message from overlimitF:
...
If DO_DATA_OVERLIMIT = "y" Then

 brc = LongDynaDataLog(MachName & "/" & drive & "/ _
 #overlimit", "Number users on " & drive & " _

 over quota limit" & UNIT, overlimit, overlimitF _
 & "2")

End If

...
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 269

MCAbort

Allows a Knowledge Script to abort its current operation. When
invoked, a severity 40 event is raised on the resource objects specified
and the Knowledge Script job is signaled to terminate the current
operation. The AppManager agent and other jobs are not affected.

Syntax
MCAbort objlist, agentmsg [,sev] [,toretevt] [,raise_err]

Parameters and settings

Return value

None.

Example

The following BasicScript code fragment is from the
General_AsciiLog Knowledge Script:
...

 If ErrorCode = -1 Then
 MCAbort resname, ErrorMsg

 End If
 If ErrorCode = -2 Then

 ...

Parameter Data type Description

objlist String Objects that report the event (represented by icons
in the Operator Console’s TreeView pane).

agentmsg String Message to accompany the aborted operation
event.

sev Long Optional. Specifies a custom event severity.

toretevt Bool Optional. True to generate an event, False to not
generate an event.

raise_err Bool Optional. Sets the job status to error or stop. True
to set job status to Error, False to set it to Stop.
Default is True.
270 Developing Custom Knowledge Scripts

MCEnterCS

Enter the AppManager agent-defined critical section.

Syntax
MCEnterCS

Parameters and settings

None.

Return value

Long. Returns 0 if the lock was acquired; 1 if the job was stopped
while waiting for the job (in which case, the job did not acquire the
lock).

Example

The following BasicScript code fragment comes from
ARCserve_CanceledJobs:
...
If IterationCount() = 1 Then

 Dim i%
 On Error GoTo ErrorOut

 progid = MyGetProgId ("NetiQAgent.ARCserve")
 Set ASMO = CreateObject(progid)

 ...
 Filter=0

 If DO_ERR="y" Then Filter=1
 If DO_WARN="y" Then Filter=Filter+2

 MCEnterCS
 ErrorCode=ASMO.PreProcess(FileName, ErrorMsg, _

 StartOffset, FileCreateTime)
 MCExitCS

 If ErrorCode = -1 Then
 MCAbort resname, ErrorMsg

 End If
 ...
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 271

MCExitCS

Exit the AppManager agent-defined critical section.

Syntax
MCExitCS

Parameters and settings

None.

Return value

None.

Example

The following BasicScript code fragment comes from
ARCserve_CanceledJobs:
...
If IterationCount() = 1 Then

 Dim i%
 ...

 Filter=0
 If DO_ERR="y" Then Filter=1

 If DO_WARN="y" Then Filter=Filter+2
 MCEnterCS

 ErrorCode=ASMO.PreProcess(FileName, ErrorMsg, _
 StartOffset, FileCreateTime)

 MCExitCS
 If ErrorCode = -1 Then

 MCAbort resname, ErrorMsg
 End If

 ...
272 Developing Custom Knowledge Scripts

MCGetMOID

Retrieves version information for the managed object installed on the
computer where the Knowledge Script is running. This extension is
used to ensure that a particular version of a Knowledge Script calls a
suitable version of a managed object.

For example, if the input parameters specify NetiQAgent.NT and
3.0.346, the returned string would be NetiQAgent.NT.3 and the
appropriate DLL (for example, qnta3.dll) is loaded into memory.

Note A managed object may have multiple program ID entries in the
registry. For example, when upgrading from 3.0 to 4.0, there may be
three program ID entries in the registry, NetiQAgent.NT,
NetiQAgent.NT.3, and NetiQAgent.NT.4. However, the version
independent program ID (NetiQAgent.NT) always corresponds to the
latest versioned program ID (for example, NetiQAgent.NT.4).

Syntax
MCGetMOID programid, version

Parameters and settings

Return value

String representing the managed object version.

Parameter Data type Description

programid String Managed object program identifier. For example,
NetiQAgent.NT.

version String Knowledge Script version (for example, AppManID
or KSVerID parameter).
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 273

Example

The following code fragment illustrates the call in BasicScript:
Function MyGetProgID (progid As String) As String
 Dim version As String

 MCVersion "netiqmc.exe",version
 If version < "3.0" Then

 MyGetProgID = progid
 else

 MyGetProgID = MCGetMOID (progid, AppManID)
 End If

End Function
Dim NT As Object

Dim progid As String
Sub Main()

 If IterationCount() = 1 Then
 progid = MyGetProgId ("NetiQAgent.NT")

 Set NT = CreateObject(progid)
 End If

 ...
End Sub
274 Developing Custom Knowledge Scripts

MCVersion

Requests the AppManager agent to obtain the version string for the
specified component file name.

Syntax
MCVersion component, verstr [,fullpath]

Parameters and settings

Return value

None.

Remarks

The AppManager agent will automatically perform the wildcard
operation and retrieve the latest version. For example, if the specified
component is qsqla.dll and there exists both qsqla3.dll and
qsqla4.dll, the AppManager agent will return the latter.

Example

The following code example from the Discovery_SQL Knowledge
Script gets the latest version for the dynamic link library used in
monitoring SQL Server:
‘ Get the qsqla.dll version
version = “”

MCVersion “qsqla.dll”, version

Parameter Data
type

Description

component String Managed object component file name.

verstr String The returned corresponding version string.

fullpath Bool Optional. If True, component contains the full path to the
filename; if False, the component's location is relative to
the AppManager\bin directory. Default is False
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 275

MCWaitForObject (Summit BasicScript only)

Simulates the Win32 API function WaitForMultipleObjects to wait
for objects to be signalled before continuing execution.

Syntax
MCWaitForObject waitall, obj1 [, obj2, obj3,, obj10]

Parameters and settings

Return value

Long. The number of objects signaled or the object index.

Remarks

If the waitall parameter is True, this call waits until all objects are
signalled, then returns the number of objects signalled. If the waitall
parameter is False, this call returns when any specified object is
signalled and the return value indicates which object in the input
parameter list has been signalled. For example, if you use the following
call:
ret = MCWaitForObject(False, obj1, obj2, obj3)

when the second object (obj2) is signalled, MCWaitForObject returns
the value 2.

Unlike the WaitForMultipleObjects function in the Win32 API, the
MCWaitForObject caller thread will not block other Knowledge Script

Parameter Data type Description

waitall Boolean Set to True to wait for all objects. Set to False to
wait for one or more specific objects (objn).

objn Long Object to wait for. You must identify at least one
object. You can wait for up to 10 objects. For
example:
MCWaitForObject(True, obj1, obj2, ...,
obj10)
276 Developing Custom Knowledge Scripts

threads on the managed computer, allowing for parallel processing of
all running jobs.

Example

The following BasicScript code segment illustrates waiting for any of
five objects to be signalled before returning (return value dependent
on the object signalled):
ret = MCWaitForObject(False, h1, h2, h3, h4, h5)

The following BasicScript code fragment is from
General_PingMachine:
...

ret = MCWaitForObject (True, pInfo.hProcess)
If (ret = 0) Then

 retmsg = "Failed to wait process with " & ret
 GoTo MyExit

End If
...
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 277

MCWaitForObjectEx (Summit BasicScript only)

Simulates the Win32 API function WaitForMultipleObjects to wait
for objects to be signaled before continuing execution. This function
allows you to specify a maximum waiting period.

Syntax
MCWaitForObjectEx waitall, waitinterval, obj1 [, obj2, obj3,
 , obj10]

Parameters and settings

Return value

Long. The number of objects signaled or the object index. If the wait
interval expires or objects are not signaled, the function returns a
value of -1.

Remarks

If the waitall parameter is True, this call waits until all objects are
signalled, then returns the number of objects signalled. If the waitall
parameter is False, this call returns when any specified object is
signalled and the return value indicates which object in the input
parameter list has been signalled. For example, if you want to wait 10
seconds for two processes you can use a call such as:
ret = MCWaitForObjectEx (True, 10000, Process1, Process2)

Parameter Data type Description

waitall Boolean Set to True to wait for all objects. Set to False to
wait for one or more specific objects (objn).

waitinterval Long Maximum number of milliseconds to wait for
objects to be signaled.

objn Long Object to wait for. You must identify at least one
object. You can wait for up to 10 objects.
278 Developing Custom Knowledge Scripts

The wait interval is specified in milliseconds. For example, you would
set the interval to 10000 to wait for 10 seconds. When the second
object (pFlag.hProcess2) is signalled, MCWaitForObjectEx returns
the value 2. If this job is waiting for objects to be returned when a user
stops another job, all the jobs this agent is running stop until this wait
interval expires. If the object will never come back because of some
other problem, then all the jobs would be stuck. Therefore you should
use one of these options:
● Use a reasonably short interval of a few minutes or less.
● Use the WaitForObject function in a VB script.

Unlike the WaitForMultipleObjects function in the Win32 API, the
MCWaitForObjectEx caller thread will not block other Knowledge
Script threads on the managed computer, allowing for parallel
processing of all running jobs.

Example

The following code segment illustrates waiting for all three objects to
be signalled before returning (return value 3) in BasicScript:
ret = MCWaitForObjectEx(True,100,h1,h2,h3)

The following BasicScript code segment illustrates waiting for any of
five objects to be signalled before returning (return value dependent
on the object signalled):
ret = MCWaitForObjectEx(False,100,h1,h2,h3,h4,h5)
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 279

MSActions

Allows a Knowledge Script to report events and initiate actions.
Knowledge Scripts that trigger events include this call.

Note If you are writing your Knowledge Script in VB Script and using
NQEXT, you cannot pass multiple detail message strings using
NQEXT.MSActions or NQEXT.CreateEvent. To pass long messages,
either concatenate the strings or write them to a file, then use the
NQEXT.MSLongActions call to return the contents of the file.

Syntax
MSActions severity, shortmsg, akpid, objlist, detailmsg

 [, detailmsg2, detailmsg3,,detailmsg6] [, value]

Parameters and settings

Parameter Data type Description

severity Long Severity of the event.

shortmsg String Event message displayed in the List pane.

akpid String Action name or identifier for the action to be taken.

objlist String Objects that report the event (represented by
blinking icons in the Operator Console’s TreeView
pane).
280 Developing Custom Knowledge Scripts

Return value

None.

Remarks

One key part of building custom Knowledge Scripts is the ability to
generate events and initiate actions requested by the user. To allow
your custom Knowledge Scripts to trigger events and actions, you
need to include the special MSActions call in the main script logic.

The MSActions call controls how events are displayed in the Operator
Console and the information stored in the AppManager repository.

You need to include an MSActions call for each event to be raised.
Therefore, if a Knowledge Script is intended to trigger different
events for different conditions (for example, a severe event when a
check fails and an information event when successful), you need to
include multiple MSActions function calls.

detailmsg String Detail message from the AppManager agent(s)
displayed in the event’s Properties dialog. At least
one detailmsg is required. The maximum size of
the string is 32K.

To pass additional information beyond the 32 K,
you can specify up to 6 message strings, each with
a maximum size of 32K, to define the entire detail
message for an event. For example, if the
message you want to return is 64K, the message
would be stored in two strings:
MSActions Severity, “High", AKPID, "",
detailmsg, detailmsg2

Note: Within your Knowledge Script, the variable
name you use for the detail message string can
vary. For example, in viewing sample scripts you
may see names such as detailmsg, agtmsg,
agentmsg, or longm.

value Double Optional. The current value to raise an event.

Parameter Data type Description
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 281

Example 1

For example, in the NT_FilesOpen Knowledge Script:
...
If Dval1 > TH_FILES Then

 longm = "NT # of files open is " & Cstr(Dval1) & "; _
 >TH = " & Cstr(TH_FILES)

 MSActions Severity, "No of Files Open High", AKPID, _
 "", longm

End If

The following BasicScript example illustrates the use of multiple detail
messages added to the MSActions call (although in this case they are
not necessary because the messages passed are less than 32K):
detailmsg1 = "CPU load is " & Cstr(Dval1) & _
 "; The Threshold is for CPU usage" & Cstr(TH_USE)

MSActions 5, " CPU Load", AKPID, resource, _
 detailmsg1,"detail2","detail3"

Note If you are writing your Knowledge Script in VB Script and using
NQEXT, you cannot pass multiple detail message strings using
NQEXT.MSActions or NQEXT.CreateEvent. To pass long messages,
either concatenate the strings into a single message, or write the strings
to a file, then use the NQEXT.MSLongActions call to return the contents
of the file.
282 Developing Custom Knowledge Scripts

Example 2

 As illustrated in this BasicScript example from
NT_LogicalDiskSpace, the MSActions call is used to trigger an
event when the disk space used or free space available exceeds a
threshold:
If DO_EVENT = "y" Then
 If Dutil > TH_UTIL Or Dfree < TH_FREE Then

 Dim eventmsg$
 Dim detailmsg$

 Dim resname$
 eventmsg = "Disk " & objname & " Full"

 detailmsg = "Disk " & objname

 If Dutil > TH_UTIL Then

 detailmsg = detailmsg & " Used % is " & CStr(TH_UTIL)
 End If

 If Dfree < TH_FREE Then

 detailmsg = detailmsg & "Free space MB is “ _
 & Str(TH_FREE)

 End If

 resname = "NT_LogicalDiskObj = " & objname
 MSActions Severity, eventmsg, AKPID, resname, detailmsg

 End If

End If
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 283

MSLongActions

This function works the same as “MSActions” on page 280 except the
AppManager agent will read the event detail message from the
specified file.

Syntax
MSLongActions sev, shortmsg, akp, objlist, msgfile
 [, deletefile] [, value]

Parameters and settings

Return value

None.

Example
This code fragment from BackupExec_FailedJobs reads the detail
message from Fname2:
If DO_EVENT = “y” And Dtotal > TH_USAGE Then
 MSLongActions SEVERITY, “The total number of failed _

 backup jobs exceeds the threshold”, _
 AKPID, resname, strFilename

End If

Parameter Data type Description

severity Long Severity of the event.

shortmsg String Event message displayed in the List pane.

akpid String Action name or identifier for the action to be taken.

objlist String Objects that report the event (represented by blinking
icons in the Operator Console’s TreeView pane).

msgfile String The name of file that contains the detail message for
the current event

deletefile Boolean Optional. True to delete the file after it is read and
False to retain

value Double Optional. The current value to raise an event.
284 Developing Custom Knowledge Scripts

NQSleep

Requests the AppManager agent to sleep for the specified interval on
behalf of the KS.

Syntax
NQSleep intv [, noabort]

Parameters and settings

Return value

Long. 1=sleep completes, -1=sleep aborted

Remarks

The parameter noabort requests the AppManager agent not to abort
the sleep—even if the current script is being stopped.

Example
Sub Main()
 Dim szAdminCmd, LogDirName, FileUTC

 Dim LatestJobID, JobFileName, JobDetailFile
 ...

 JobDetailFile = JobFileName & "." & FileUTC & ".t"
 '5 retrys, if after 5 secs file still doesn't exist

 'call it quits
 Cnt = 0

 Do
 NQEXT.NQSleep (5000)

 Cnt = Cnt + 1
 Loop While FSO.FileExists(JobDetailFile) = False And _

 Cnt < 5
 ...

Parameter Data type Description

intv Long Sleep interval in msec

noabort Bool Optional. Request AppManager agent not to abort
sleep in any condition. Default is False
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 285

QTrace

Records a Knowledge Script trace message to a log file. This trace
message is stored in the log file mctrace.log in the temporary
directory located under the AppManager installation directory on the
managed computer.

Syntax
QTrace msg

Parameters and settings

Return value

None.

Remarks

For example, if your AppManager installation directory is
C:\NetIQ\AppManager on the managed computer and the
management server is Tango, the path to the trace log is
C:\NetIQ\Temp\NetIQ_debug\Tango\mctrace.log.

Parameter Data type Description

msg String Trace message to be logged.
286 Developing Custom Knowledge Scripts

Example

In the Action_DosCommand Knowledge Script, this function is
used to log the result of the command as follows:
...

Sub Main()
 Dim pInfo As PROCESS_INFO

 Dim sInfo As STARTUPINFO
 Dim sNull As String, errmsg$

 Dim success As Boolean, allowed As Boolean
 Dim ret&

 ...

 success = CreateProcess (sNull, DOScmd, 0&, 0&, _
 0&, NORMAL_PRIORITY_CLASS, _

 0&, sNull, sInfo, pInfo)

 QTrace "CreateProcess <" & DOScmd & "> return " & success
 ...

End Sub
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 287

WaitForObject

Requests the AppManager agent to check the input object handle
status on the behalf of current script.

Syntax
WaitForObject hobj, intv [, noabort]

Parameters and settings

Return value

Long. 1=object signalled, 0=timer expired, -1=wait aborted.

Remarks

Set noabort if you do not want the wait to be interrupted by a user
stop job request.

Parameter Data type Description

hobj Long Input object handle to be waited on

intv Long Sleep interval in msec

noabort Bool Optional. Request MC not to abort sleep in any
condition. Default is False
288 Developing Custom Knowledge Scripts

Example

Here is an example taken from the Async_FilesChanged Knowledge
Script:
Sub Main()

 ...
 Set gObjNtFiles = CreateObject("NetIQAgent.NtFiles")

 ...
 hEvent = gobjNtFiles.GetEvent()

 ret = NQEXT.WaitForObject(hEvent, 0)

 If ret <> 1 Then
 If ret = 0 Then

 ' timeout
 NQEXT.AbortScript gsResName, "WaitForObject timeout"

 Exit Sub
 ElseIf ret = -1 Then

 ' job stop
 Exit Sub

 Else
 NQEXT.AbortScript gsResName, "WaitForObject error: _

 " & CStr(ret)
 Exit Sub

 End If
 End If

 ...
End Sub
Chapter 11 • AppManager Callbacks for Summit BasicScript and VBScript 289

290 Developing Custom Knowledge Scripts

Chapter 12

AppManager Callbacks for Perl
This chapter describes the calls made to the AppManager agent from
Knowledge Scripts written in Perl. A call can be a function that
returns a result, or a subroutine that does not return a result.

These Perl Callbacks are defined in the Perl module NetIQ::Nqext.
The module must be loaded before any Callbacks are made. To load
the module, include this statement:
 use NetIQ::Nqext;

The following Callbacks are described:
● AbortScript()
● CounterValue()
● CreateData()
● CreateEvent()
● ExecCmd()
● ExportData()
● ExportHugeData_pl()
● GetJobID()
● GetMachName()
● GetScriptInterval()
● GetTempFileName()
● ImportData()
● ImportHugeData_pl()
● IterationCount()
291

AbortScript()

Instructs the AppManager agent to abort execution of the Knowledge
Script.

Syntax
NetIQ::Nqext::AbortScript ([objlist, abortmsg, sev

[,raise_err]])

Parameters

Return value

None.

Remarks

When used without arguments, the AppManager agent aborts the
script without raising an event.

If you specify any one of the parameters objlist, abortmsg, or
severity, the agent will send an event to the AppManager
management server.

Note There is an AppManager management server registry setting
(“config\MC job abort event Sev”) that overrides any value that you
assign to sev, as long as the registry setting is non-zero. “config\MC

Parameter Data type Description

objlist String Object name.

This parameter uses the syntax:
<objtypename> = <objname>

For example, UNIX_CPUObj = 0.

abortmsg String Event detail message indicating execution of the
script was aborted.

sev Long Abort event severity. See note under Remarks.

raise_err Long Optional. Default is 1. Defines job status as Error
(1) or Stopped (0).
292 Developing Custom Knowledge Scripts

job abort event Sev” is normally set to 10, and the abort event
severity will therefore be 10, no matter what value you give to sev. If
“config\MC job abort event Sev” is set to zero, then the registry
value will no longer override sev.

Use raise_err to define the job status as Error (when set to 1) or
Stopped (when set to 0).

Example
use NetIQ::Nqext;

if the file doesn't exist, then exit the script and stop
the job

if (!(-e "$File_path")) {
NetIQ::Nqext::AbortScript ($objlist, _

 "Cannot open $File_path -- file does not exist.",
 $Severity);

die;
}

Chapter 12 • AppManager Callbacks for Perl 293

CounterValue()

Requests the AppManager agent to retrieve the counter value for the
specified object, counter, and instance.

Syntax
NetIQ::Nqext::CounterValue (object, counter, instance)

Parameters

Return value

Double. Returns the counter value for the specified object, counter,
and instance. If the counter does not exist or there was an error
retrieving the counter value, then -1 is returned.

Example
use NetIQ::Nqext;
...

$value = NetIQ::Nqext::CounterValue ("UX Processor",
 "%User Time", "");

if ($value = -1) {
Raise some kind of error event about not able to find the

counter value
...

}
else if ($value > $threshold) {

Raise an event about % user time is too high
...

}

Parameter Data type Description

object String Name of the object.

counter String Name of the counter.

instance String Name of the instance.
294 Developing Custom Knowledge Scripts

CreateData()

Requests the AppManager agent to create a data point or a data
source.

Syntax
NetIQ::Nqext::CreateData (streamId, legend, dynaleg,
objlist, val, agentmsg, msgtype [,schema] [,loglimit]

[,lowWM] [,hiWM] [,deletefile])
Chapter 12 • AppManager Callbacks for Perl 295

Parameters

Parameter Data
type

Description

streamId String The data stream ID. For each unique stream ID in a script,
it will generate a Data Source in the AppManager
database. Subsequent calls to nqext_CreateData using the
same stream ID will insert data points to the same Data
Source. The string length limit is 64 characters.

legend String The data stream legend. This value will show up under the
Legend column and in the graphs.

dynaleg String The data stream dynamic legend. Contains the dynamic
information that can be used for reporting. If a portion of
your legend changes often, then pass that text into this
parameter. Otherwise leave it blank.

objlist String Corresponding object name where the data is collected on.
This value is used for graphing and reporting. Format of the
value passed in should be "ObjectTypeName =
ObjectValue", e.g. "NT_DiskObject = D:\". The ObjectValue
can normally be obtained by the drop object variable, e.g.
NT_MachineFolder.

val Double The data point value.

agentmsg String Either the data detail or a file name that contains the data
detail. The data detail is basically an annotation of each
data point, giving more information about the data point
since the data point is just a numeric value. For example,
the data point value may be 5 for the number of processes
running, while the data detail may list the processes that
are running. The detailed message is displayed in the
Graph Data Detail dialog box for each data point. If this
parameter contains the name of a file, make sure you set
the msgtype parameter to 1.

msgtype Long Flag specifying whether the value passed in the
agentmsg is a file name or the detailed message itself. If
it is a file name, then the contents of the file are passed in
as the detailed message. Set to 0 to specify that the value
in the agentmsg parameter is the detailed message. Set to
1 to specify that the value is the file name containing the
detailed message.

schema String Optional. XML schema for dynamic table creation in RDB.
Default is an empty string.
296 Developing Custom Knowledge Scripts

Return value

None.

Example
use NetIQ::Nqext;

...
$cpu_usage0 = nqGetCpuUsage (0);

$cpu_usage1 = nqGetCpuUsage (1);
...

Create a data stream for cpu 0
NetIQ::Nqext::CreateData ("CPU_0", "% CPU Usage", "CPU 0",

"UNIX_CPUObject = 0", cpu_usage, "CPU usage = $cpu_usage",0);

Create a data stream for cpu 1
NetIQ::Nqext::CreateData ("CPU_1", "% CPU Usage", "CPU 1",

"UNIX_CPUObject = 1", cpu_usage, "CPU usage = $cpu_usage",0);
...

loglimit Long Optional. The number of days to keep this data point in the
database. Default -1, keep forever. The data points can be
removed from the database by other means.

lowWM Double Optional. Low watermark. Default -1.0.

hiWM Double Optional. High watermark. Default -1.0.

deletefile Long Optional. Flag to tell the AppManager agent to delete the
event detail message file after it is done reading the
contents and passing the event to the MSU. This
parameter is ignored if msgtype != 1. Set to 1, which is
default, to delete the file when msgtype = 1. Set to 0 to not
delete the file. Be careful when setting this value to 0,
especially if your script generates a message file each time
it wants to send an event because the files will never be
removed.

Parameter Data
type

Description
Chapter 12 • AppManager Callbacks for Perl 297

CreateEvent()

Requests the AppManager agent to raise an event.

Syntax
NetIQ::Nqext::CreateEvent(sev, evtmsg, akp, obj, val,

agentmsg, evtsrc, evtid, msgtype [, deletefile])
298 Developing Custom Knowledge Scripts

Parameters

Parameter Data type Description

sev Long The event severity. A value from 1 to 40.

evtmsg String The message to be displayed under the Message column
in the Events tab.

akp String Name of the action script to launch as a response to this
event. You would normally create an AKPID parameter
as part of your script. When the job is dropped and you
select an action, the UI will fill in the AKPID variable with
the action name. You will just need to pass in the AKPID
variable to the script.

obj String Corresponding object name where the event is raised.
This value will determine which object in the TreeView
pane to blink. Format of the value passed in should be
"ObjectTypeName = ObjectValue", e.g.
"UNIX_DiskObject = /mnt/cdrom". The ObjectValue
can normally be obtained by the drop object variable, e.g.
UNIX_MachineFolder.

val Double The current value to raise the event. This parameter is
currently not used. Set to 0.0.

agentmsg String Either the detail message or a file name that contains the
detail message. The detailed message is displayed in the
Message tab of the Event Property dialog box. If this
parameter contains the name of a file, make sure you set
the msgtype parameter to 1.

evtsrc String Reserved for future use. Set to ““.

evtid Long Reserved for future use. Set to 0.
Chapter 12 • AppManager Callbacks for Perl 299

Return value

None.

Remarks

If called by a script running on a 1.0 agent, the agent simply raises the
event to the MSU. If called by a script running on a 2.0 agent, the
agent will apply an additional rule process to determine whether to
send a new event or duplicated (collapsed) event to the AppManager
management server.

Example
use NetIQ::Nqext;

use NetIQ::Oracle;
...

$sp = NetIQ::Oracle::GetLogSpace (...);
...

Create an event with severity 5 and message "Log space ..."
NetIQ::Nqext::CreateEvent (5, "Log space dangerously low",

 $akpid, "UNIX_MachineFolder = MyServer", 0,
 Log space is $sp", "NetIQ :: Oracle", 1000, 0);

...

msgtype Long Flag specifying whether the value passed in the
agentmsg parameter is a file name or the detailed
message itself. If it is a file name, then the contents of the
file are read and passed in as the detailed message. Set
to 0 to specify that the value in the agentmsg parameter
is the detailed message. Set to 1 to specify that the value
is the file name containing the detailed message.

deletefile Long Optional. Flag to tell the AppManager agent to delete the
event detail message file after it is done reading the
contents and passing the event to the MSU. This flag is
ignored if msgtype != 1. Set to 1, which is default, to
delete the file when msgtype = 1. Set to 0 to not delete
the file. Be careful when setting this value to 0, especially
if your script generates a message file each time it sends
an event because the files will never be removed.

Parameter Data type Description
300 Developing Custom Knowledge Scripts

ExecCmd()

The Perl language allows invocation of external commands by using
back quotes (``) to substitute the output of the enclosed command.
The AppManager UNIX agent does not support this.

ExecCmd instructs the agent to execute an external command on
behalf of the Knowledge Script.

Syntax
NetIQ::Nqext::ExecCmd (cmd [, flag])

Parameters

Return value

String. Depending on the flag passed in, this Callback will either return
the stdout and/or stderr results or a filename containing the
stdout/ stderr results from executing the external command.

Remarks

If flag == 1 or 3, then the Knowledge Script must remove the
temporary file after it is used.

Parameter Data type Description

cmd String The non-interactive command.

flag Long Optional. 0: the Callback returns the stdout. 1: the
Callback returns the temporary file name containing the
stdout. 2: the Callback returns the stdout along with the
stderr.3: the Callback returns the temporary file name
containing both the stdout and stderr.Default is 0
Chapter 12 • AppManager Callbacks for Perl 301

Example

A Perl script statement invoking an external command should be
changed from
$a = `cmd`;

to
$a = NetIQ::Nqext::ExecCmd(“cmd”);
A Perl script statement that reads from a pipe should be

changed from
open (F, “cmd |”);

...
close F;

to
$f = NetIQ::Nqext::ExecCmd(“cmd”, 1);

open (F, $f);
...

close F:
unlink $f;
302 Developing Custom Knowledge Scripts

ExportData()

Requests the AppManager agent to save the specified string-based
scalar script variable along with the value in memory for referencing in
subsequent job iterations. If the variable already exists, the value is
updated.

Syntax
NetIQ::Nqext::ExportData (name, val)

Parameters

Return value

None.

Remarks

Note that ExportData can only work with string scalar variables. For
any numeric scalar variables, you will need to convert it into a string
before calling ExportData to store it. For array and hash variables, use
ExportHugeData_pl.

Scripts can use the ImportData Callback to retrieve the stored value,
so that you can define a global variable at the AppManager agent
scope, and update and retrieve its value.

Note If either the agent or the job is stopped and restarted, exported
data may not persist.

Parameter Data type Description

name String Variable name for storing val.

val String Script variable value.
Chapter 12 • AppManager Callbacks for Perl 303

Example
use NetIQ::Nqext;
...

our $Persist_Var3; # not recommended
...

my $var1 = 5;
my $var2 = "6";

...
sub save_data {

 my $tmp = "$var1";
 NetIQ::Nqext::ExportData ("var1", $tmp);

 NetIQ::Nqext::ExportData ("var2", $var2);
}

sub load_data {

 $var1 = NetIQ::Nqext::ImportData ("var1");
 $var2 = NetIQ::Nqext::ImportData ("var2");

}
...

import the data at the start of the script
load_data ();

$var1 increments by 1 every iteration while $var2

increments by 2.
$var1 += 1;

$var2 += 2;
$Persist_Var3 = $Persist_Var3 + $var1 + $var2;

save_data();

...
304 Developing Custom Knowledge Scripts

ExportHugeData_pl()

Instructs the AppManager agent to export a scalar, array, or hash
variable associated with the label name.

Syntax
NetIQ::Nqext::ExportHugeData_pl (name, val_ref)

Parameters

Return value

None.

Remarks

This Callback is based on the Perl Storable module, which can
import huge variables. Unlike ImportData and ExportData, which
store the values in memory, ImportHugeData_pl and
ExportHugeData_pl store values on disk, and are therefore slower.

Example
use NetIQ::Nqext;

our %P_history;
...

ExportHugeData_pl('P_history', \%P_history);

Parameter Data type Description

name String The label for this variable. You should use the
variable name without the $, @, or % prefix.

val_ref Reference to
a variable

The reference to the variable that must be
persistent. In Perl, the reference to variable $v is
specified as \$v.
Chapter 12 • AppManager Callbacks for Perl 305

GetJobID()

Queries the AppManager agent for the AppManager repository job
ID that the calling script is running under.

Syntax
NetIQ::Nqext::GetJobID()

Parameters

None.

Return value

Long. Returns the AppManager repository job ID of the calling script.

Example
use NetIQ::Nqext;
...

my $jobid;
...

$jobid = NetIQ::Nqext::GetJobID ();
...
306 Developing Custom Knowledge Scripts

GetMachName()

Queries the AppManager agent for the agent’s computer name.

Syntax
NetIQ::Nqext::GetMachName()

Return value

String. The agent machine name.

Example
use NetIQ::Nqext;

...
my $machine_name;

...
$machine_name = NetIQ::Nqext::GetMachName ();

...
Chapter 12 • AppManager Callbacks for Perl 307

GetScriptInterval()

Queries the AppManager agent for the current job interval.

Syntax
NetIQ::Nqext::GetScriptInterval()

Parameters

None.

Return value

Long. Returns the number of seconds between job iterations.

Example
use NetIQ::Nqext;

...

my $intv;
...

$intv = NetIQ::Nqext::GetScriptInterval ();
...
308 Developing Custom Knowledge Scripts

GetTempFileName()

Instructs the AppManager agent to construct a temporary file name
based on input criteria. The file name is concatenated from the path
and prefix strings, and a hex string based on uniqid.

Syntax
NeqIQ::Nqext::GetTempFileName (path, prefix, uniqid)

Parameters

Return value

String. Returns the full path of the temporary file that was created.

Remarks

The file that is created is guaranteed to be a unique file. Therefore,
scripts that call GetTempFileName should delete the file after it is used.

Example
use NetIQ::Nqext;

...
$fname = NetIQ::Nqext::GetTempFileName ();

$cmd = "ps -ef | grep nqmagt > $fname";
$stdout_result = ExecCmd ($cmd);

If (-s "fname") {
 open(RESULT_FILE, $fname);

 ...
 close(RESULT_FILE);

 unlink($fname);
}

...

Parameter Data type Description

path String Path for created temp file.

prefix String File name prefix string.

uniqid Long A unique ID.
Chapter 12 • AppManager Callbacks for Perl 309

ImportData()

Requests the AppManager agent to retrieve the value stored under the
specified variable name by an ExportData call.

Along with ExportData, Knowledge Script writers can define a global
variable at the agent scope, update and retrieve its value.

Syntax
NetIQ::Nqext::ImportData (name)

Parameters

Return value

String.

Remarks

ExportData can only work with string scalar variables. Numeric scalar
variables must be converted to a string before calling ExportData.
However, when you import the variables into the script using
ImportData, you do not need to do any conversion from string to a
numeric value because Perl will handle that for you.

For array and hash variables, use ExportHugeData_pl and
ImportHugeData_pl.

Note If either the AppManager agent or the job is stopped and
restarted, exported data may not persist.

Parameter Data type Description

name String Script variable name.
310 Developing Custom Knowledge Scripts

Example
use NetIQ:Nqext;
...

our $Persist_Var3; # not recommended
...

my $var1 = 5;
my $var2 = "6";

...
sub save_data {

 my $tmp = "$var1";
 NetIQ::Nqext::ExportData ("var1", $tmp);

 NetIQ::Nqext::ExportData ("var2", $var2);
}

sub load_data {
 $var1 = NetIQ::Nqext::ImportData ("var1");

 $var2 = NetIQ::Nqext::ImportData ("var2");
}

...
import the data at the start of the script

load_data ();

$var1 increments by 1 every iteration while $var2
increments by 2.

$var1 += 1;
$var2 += 2;

$Persist_Var3 = $Persist_Var3 + $var1 + $var2;

save_data ();
...
Chapter 12 • AppManager Callbacks for Perl 311

ImportHugeData_pl()

Instructs the AppManager agent to import a scalar, array, or hash
variable associated with the label name.

Syntax
NetIQ::Nqext::ImportHugeData_pl (name)

Parameters

Return value

Reference. Returns a Reference to the imported variable.

Remarks

This Callback is based on the Perl Storable module which can import
huge variables. Unlike ImportData and ExportData, which store
values in memory, ImportHugeData_pl and ExportHugeData_pl store
values on disk, and are therefore slower.

Example

To import a hash:
...
%P_file = %{ NetIQ::Nqext::ImportHugeData_pl('P_file') };

...

Parameter Data type Description

name String The label for this variable. You should use the
variable name without the $, @, or % prefix.
312 Developing Custom Knowledge Scripts

IterationCount()

Queries the AppManager agent for the current job iteration value.

Syntax
NetIQ::Nqext::IterationCount()

Parameters

None.

Return value

Long. The number of iterations the job has run since it was started,
including the current job.

Example
use NetIQ::Nqext;
...

if (NetIQ::Nqext::IterationCount () == 1) {
 InitializeMyObject ();

}
...
Chapter 12 • AppManager Callbacks for Perl 313

314 Developing Custom Knowledge Scripts

Chapter 13

Testing and debugging
This chapter describes how to open the debuggers for Knowledge
Scripts. The following topics are covered:
● Debugging Knowledge Scripts
● Where to debug scripts
● The prepend and append files
● Setting debuggers for VBScript and BasicScript
● Debugging Summit BasicScript scripts
● Debugging VBScript scripts
● Debugging Perl scripts

Debugging Knowledge Scripts

The emphasis in this book is on modifying existing Knowledge
Scripts. This means that the changes you make to your scripts will be
easily isolated in the event that the scripts do not run properly. Under
such circumstances, you are unlikely to need to do difficult debugging.

In the event that you do need to debug your scripts with a debugging
program, tools are provided to help you do this. Prior to debugging,
you should check the script’s syntax:
● You can check the syntax of scripts written in VBScript or Perl in

the Developer’s Console. Choose the VBScript Syntax Check or
Perl Syntax Check commands on the Tools menu.

● You can check the syntax of scripts written in Summit BasicScript
in the Knowledge Script Editor. Choose the Syntax Check
command on the Run menu.
315

Where to debug scripts

Summit BasicScript Knowledge Scripts must be debugged on the
computer where the Knowledge Script Editor is installed. This is
probably the same computer that hosts the Developer’s Console. An
AppManager agent must be installed on this computer, so that the
managed object methods needed by the scripts are installed and
registered. The Knowledge Script Editor includes a debugging
program, but only for Summit BasicScript.

VBScript Knowledge Scripts must also be debugged on a computer
with an AppManager agent installed, so that the managed object
methods are available. You will also need to install a Microsoft
Windows Script Host on this system—this can be run in debug mode
(with parameter = //D) and you can download it from:

 http://microsoft.com/scripting.

Perl scripts must be debugged on a computer that has the Perl
interpreter installed. This can be a Windows machine. If you are
debugging a script that calls methods from NetIQ Perl modules (most
Perl scripts do not require NetIQ modules), they must be available—
in this case, you will need to debug the Perl script on a UNIX host
that has the AppManager UNIX agent installed and any Perl modules
that the script may be calling.

For maximum convenience, you should install the Perl interpreter on
the computer that hosts both the AppManager Operator Console and
the Developer’s Console. Then you can debug most Perl scripts on
the same system where you develop them.

Setting debuggers for VBScript and BasicScript

If you set the appropriate debuggers for Summit BasicScript and
VBScript in the Developer’s Console, you will be able to launch them
automatically. To set them (you must obtain and install the Windows
Script Debugger first), choose Set Debuggers... in the Tools menu
316 Developing Custom Knowledge Scripts

of the Developer’s Console. This will open the Set Debuggers dialog
box:

If you have used the default installations, the paths to the debuggers
will be:

The Microsoft Windows Script Host requires a command line
argument, either //D or //X, to run in debug mode. You must enter
one of these arguments in the third field of the Set Debuggers dialog
box. If you use the //D parameter, the debugger will only open if an
error occurs. Using the //X parameter starts the debugger and puts a
breakpoint on the first executable line of script code.

Scripting
Language

Debugger Default Path to Debugger

Summit
BasicScript

NetIQ
Knowledge
Script Editor

C:\Program
Files\NetIQ\AppManager\bin\niqnedit.exe

VBScript Microsoft
Script Host

C:\WINNT\system32\cscript.exe

NOTE To use this Script Host in debug mode, it
must be launched with either the //D or //X
parameter.
Chapter 13 • Testing and debugging 317

The prepend and append files

Prepend files

Knowledge Scripts can call two different types of methods that are
not defined in the script: managed object methods and Callback
functions. If you are debugging your script on a computer with the
appropriate managed objects installed, you can debug without
worrying about them. Note that the managed objects can be registered
on a computer where an AppManager agent is not present.

Callback functions are available only in the AppManager agent
running the script. When you are debugging, your script will be run by
the debugger program, not by the agent. Therefore, the script you are
debugging will not be able to access the Callback functions. Execution
will stop when the debugger reaches a function it cannot call.

Three prepend files, one for each scripting language, contain simplified
versions of the standard Callback functions. When these files are
added to the beginning of your script, the script can call the simplified
Callback functions in lieu of the real Callback functions, and therefore
run in the debugger. The simplified Callback functions “return” a
message box saying that the function was called successfully (or print
to stdout in Perl scripts)

For example the Summit BasicScript prepend file (PrependFile.ebs)
contains a subroutine definition for every Callback. Here is the code
for MSActions:

Sub MSActions(sevlevel As Long, shortmsg As String, _
 AKPName As String, objlist As String, _

 agtmsg As String)
 If OutputMode = WINDOW_MODE Then

 MsgBox "Call back function MSActions with parameters:_
 " & Chr(13) & Chr(10) & "Severity: " & _

 sevlevel & Chr(13) & Chr(10) & _
 "shortmsg: " & shortmsg & Chr(13) & Chr(10) & _

 "AKPName: " & AKPName & Chr(13) & Chr(10) & _
 "objlist: " & objlist & Chr(13) & Chr(10) & _

 "agtmsg: " & agtmsg
318 Developing Custom Knowledge Scripts

 ElseIf OutputMode = FILE_MODE Then

 Print #1, "Call back function MSActions with _
 parameters: "

 Print #1, " Severity: " & sevlevel
 Print #1, " shortmsg: " & shortmsg

 Print #1, " AKPName: " & AKPName
 Print #1, " objlist: " & objlist

 Print #1, " agtmsg: " & agtmsg
 End If

End Sub

Append files

VBScript is the default (and only script type) that can be newly created
using the Developer Console. When you open the Developer Console,
an empty Main subroutine is created as would be needed for a
VBScript Knowledge Script. However, if you simply add content and
then press F5 to initiate debug, the Main subroutine will never be
called.

To correct this problem, pressing F5 will add the contents of an
append file (AppendFile.vbs) at the end of the code to call Main.
AppendFile.vbs might, for example, contain code like this:

' Execute main until the maximum iteration count is reached
Do While ((NQEXT.m_IterationCount <=

NQEXT.ScheduleXNumberOfTimes) Or _
 (NQEXT.ScheduleXNumberOfTimes < 0))

Main

If ((NQEXT.m_IterationCount >= NQEXT.ScheduleXNumberOfTimes)
And _

 Not (NQEXT.ScheduleXNumberOfTimes < 0)) Then
Exit Do

End If

NQEXT.NextIteration
Loop
Chapter 13 • Testing and debugging 319

Location of files

The AppManager installation program puts the prepend and append
files in the ...\NetIQ\AppManager\bin directory in your
AppManager installation. The files are:
 PrependFile.ebs

 PrependFile.vbs
 AppendFile.vbs

 PrependFile.pl

Debugging Summit BasicScript scripts

If you have set the debugger path correctly, simply press F5 when you
want to debug a script written in BasicScript. The contents of the
BasicScript prepend file (PrependFile.ebs) will be added to the
beginning of your code and the composite of the two will be opened
in the Knowledge Script Editor debugger.

Caution You cannot save changes you make in the code during
debugging. You must check out the script, make the same changes in
the Developer Console, and check the script back in.

Debugging VBScript scripts

If you have set the debugger path correctly, simply press F5 when you
want to debug a script written in VBScript. The contents of the
VBScript prepend file (PrependFile.vbs) will be added to the
beginning of your code, the contents of of the VBScript append file
(Appendfile.vbs) will be added to the end of your code, and the
composite file will be opened in the Microsoft Script Debugger.

Caution Changes you make in the code during debugging will not be
reflected the original script or the script in the repository. You must
check out the script, make the same changes in the Developer Console,
and check the script back in.
320 Developing Custom Knowledge Scripts

Debugging Perl scripts

There is no automated method for debugging Perl scripts as there is
with VBScript and BasicScript.

To debug a Perl script, do this:

1 Create a new file in a text editor. Name it mergedebug.pl, for
example.

2 Copy the contents of PrependFile.pl and paste them into
mergedebug.pl.

3 Open the Perl script in the Developer’s Console and select the Perl
(Read-only) view.

4 Copy the entirety of the contents in the Perl (Read-only) view and
paste them into mergedebug.pl at the end.

5 Comment out the line “use NetIQ::Nqext;” in mergedebug.pl
and save the file.

Then you can debug your script in any Perl debugger, For example,
you can run
 perl -d mergedebug.pl

at the command line to use the Perl interpreter in debug mode.

When you have found the errors, check out the faulty script, make the
necessary code modifications using the Developer’s Console, and
check the script back in.
Chapter 13 • Testing and debugging 321

322 Developing Custom Knowledge Scripts

Chapter 14

Glossary
action A response to an event. For
example, an e-mail message may be
sent in response to a particular
computer or service going down.
In AppManager, actions are
typically handled by action
Knowledge Scripts.

action schedule A schedule for
specifying when an action
Knowledge Script can run.

AppManager agent A Windows NT
service (NetIQmc and NetIQccm)
that runs on a managed computer
and receives requests from the
management server to run or stop
a Knowledge Script job. The agent
communicates back to the
management server, on an
exception-basis, any relevant
output from a Knowledge Script.
See also managed client.

AppManager management server
A Windows NT service
(NetIQms) that allows
AppManager agents on managed

clients (servers and workstations)
to communicate with the
AppManager repository database.

AppManager Operator Console The
main user interface that allows you
to view, configure, and control the
execution of Knowledge Scripts on
the systems and applications you
manage.

AppManager Operator Web Console
A Web interface that allows you to
view and manage computer
resources from virtually any
location using a Web browser.
Includes the Report View which
allows you to view reports and the
Chart Console which allows you to
generate and view charts of graph
data.

AppManager report agent An optional
component installed with the
AppManager agent which enables
the AppManager agent to run
Report Scripts and generate
AppManager reports. See also
AppManager agent.
323

AppManager reports HTML files that
can be read and printed using the
Report Viewer available from the
Operator Web Console.

AppManager repository An SQL
Server database that stores all
AppManager data and relevant
information about your managed
environment. The combination of
a repository and a management
server constitutes a management
site. You can only have one
repository for each management
server.

AppManager Report Viewer A view
available from the Operator Web
Console that displays AppManager
reports.

corrective action An automated
response to an event that corrects
the problem found. For example, a
corrective action might be to
automatically restart a service
when the service is detected down.
In AppManager, most corrective
actions are handled by Action
Knowledge Scripts.

data points Numeric information
collected by a Knowledge Script
during a monitoring period and
stored in the AppManager
repository.

data stream Series of data points
collected by a Knowledge Script
over time.

developer An individual who is
modifying or creating Knowledge
Scripts.

event An alert or notification that
some condition or activity you are
using AppManager to monitor or
keep watch for has occurred on a
managed system.

generated script The final script that
is generated by AppManager to
run as a job.

job An instance of a Knowledge Script
running on the AppManager agent
that is resident on a managed client
(a server or workstation you are
monitoring).

Knowledge Script A script (written in
VBScript, Summit BasicScript, or
Perl) that is encapsulated in an
XML file along with other settings,
such as parameters for the script, a
schedule, and so forth. This script
is run on the servers and
workstations in your environment
to check the health and availability
of those systems, collect data for
trend analysis, and initiate
corrective or responsive actions.
324 Developing Custom Knowledge Scripts

Knowledge Script Group A pre-
configured set of Knowledge
Script Group members; each
member is an instance of a
Knowledge Script. A Knowledge
Script Group can be used to create
a monitoring policy or to start
ad hoc jobs.

Knowledge Script Group member An
instance of a Knowledge Script
which is used to create a
monitoring job or a policy-based
job.

managed client A server or
workstation computer set up to be
monitored by AppManager. See
also AppManager agent.

managed objects COM or OLE
objects that are installed on a
server or workstation when the
AppManager agent is installed on
that system.

management service A Windows NT
service (NetIQms) that runs on a
single Windows NT server. This
service manages event-driven
communication between the
AppManager console programs
(Operator Console, Operator Web
Console, Security Manager, and
Distributed Event Console) and
the servers and workstations you
are monitoring. Once installed, the

computer on which the service is
running becomes a management
server.

monitoring job An instance of a
Knowledge Script running on a
server or workstation and
monitoring particular resources.

monitoring policy Automatically
monitors resources on a managed
computer as they change using
policy-based jobs; a monitoring
policy is implemented through one
or more Knowledge Script
Groups. See also Knowledge Script
Group.

parameter A variable used when
calling a method, function, or
subroutine. Not to be confused
with a Script Parameter.

process An object created when a
program is run.

Properties dialog box The dialog box
that opens in the AppManager
Operator Console when a user
drags a Knowledge Script to a
target object in the TreeView
pane.

report scripts Scripts that generate
reports based on graph data in the
AppManager repository.

repository host The computer where
AppManager data is stored.
Chapter 14 • Glossary 325

Script Parameters Variables or
constants in Knowledge Script
code that can have their values
changed by a user. The developer
defines these parameters in the
Script Properties dialog box and a user
alters them using the Properties
dialog box.

Script Properties dialog box The
dialog box that opens in the
AppManager Developer’s Console
when a developer chooses
Properties from the View menu.

server group A logical grouping of
servers and workstations you
manage. A server group is
represented by a folder in the
TreeView pane and can contain
individual machines or other
server groups.

target computer Refers either to the
computer that is itself the target
object for a script, or to the
computer that contains the target
object (when the target object itself
is a hardware device like a CPU, or
a software application or service).

thread An object that executes
instructions.

threshold A level, point, condition, or
value that, when exceeded,
generates an event or notification
that the boundary specified has
been passed.

user An individual who is using the
AppManager Operator Console to
run Knowledge Scripts.

.

326 Developing Custom Knowledge Scripts

Appendix A

Dialog Boxes
Script Editor Options dialog box

You use the Script Editor Options dialog box (choose View >
Options) to set text display options for the text displayed in the Edit
and Read-only views.

Item Description

Tab Width Specify the width for tabs in the Edit and Read-only views.

The default tab width is four points.

Auto Indent If this option is selected, any new line that you insert by pressing
Enter is automatically moved to the same indent as the previous
line. If this option is not selected, any new lines you enter will
begin at the left margin.

Auto indent is selected by default.
327

Syntax Coloring Select this option to turn on syntax coloring in the Edit view, and
VB Script and BasicScript (Read-only) views. This option does
not apply to the XML (Read-only) view.

If you deselect this option, all text appears in black, and the
Keyword Case option becomes inactive.

Syntax coloring is selected by default.

Keyword Case Select this option to capitalize the first letter of keywords
displayed in the Edit or Read-only views (for example, with this
option selected the keyword “for” appears as “For”).

Keyword case is selected by default.

Font Click this button to display a dialog where you can specify the
displayed font, style (such as bold or italic), and size of text
displayed in the Edit and Read-only views.

The default font is 10 pt. Courier New

Colors

Bold

Italic

You can use the options in the Colors group box to apply colors
and font styles to syntax elements (such as comments,
operators, and strings) in the Edit view, and VB Script and
Summit Basic (Read-only) views.

Syntax coloring is applied by default.
To view the current color of an element, select the element in the
list. The color of the element is displayed in the drop-down list. If
bold or italic style is applied, the appropriate option is selected.

To change the color or style of a syntax element, select the
element in the list, then select a color from the drop-down list,
and the style options that you want to apply to that element.

Operators are the only syntax element that appear in boldface
type by default.

Item Description
328 Developing Custom Knowledge Scripts

Header tab, Script Properties dialog box

Use the Header tab in the Script Properties dialog box (choose
View > Properties > Header) to enter or modify the Header
information for your Knowledge Script.
Appendix A • Dialog Boxes 329

Item Description

Knowledge Script
description

Short description of what this Knowledge Script does. This
text is displayed in the Knowledge Script pane when you
click KS > Show Description.

Knowledge Script type Type of operation this Knowledge Script performs:
• Normal indicates the Knowledge Script performs a

normal monitoring or reporting task.

• Action indicates the Knowledge Script performs an
action.

• Discovery indicates the Knowledge Script discovers
resources.

• Install indicates the Knowledge Script performs remote
installation.

Require passwords Indicates whether the Knowledge Script requires secure
information, such as a password or login information.
Secure information is stored separately from the
Knowledge Script in the AppManager repository if you
check this option.

Option Explicit Adds the Option Explicit statement tothe beginning of
VBScripts to force variable definition.

Administrator’s use
only

Indicates whether the Knowledge Script requires the user
to be part of the AppManager administrator group.

Target Operating
System: Unix only

Selecting this option deletes BasicScript and VB Script
implementations of the Knowledge Script.

You can then write the programming logic in Perl. You will
also have to redefine the properties for the script. The
script can then be used by agents on UNIX computers.

When you select Unix only, you should be sure to choose
the target platforms in the bottom panel.

Target Operating
System: Windows only

Selecting this option deletes Perl implementations of the
Knowledge Script.

You can then write the programming logic in VBScript. You
will also have to redefine the properties for the script. The
script can then be used by agents on Windows computers.
330 Developing Custom Knowledge Scripts

Object Types tab, Script Properties dialog box

Use the Object Types tab of the Script Properties dialog box
(choose View > Properties > Object Types) to enter or modify the
resource object type information for your Knowledge Script. For new
Knowledge Scripts, the object type list is empty until you click Add
and add the object types you want to use.

Supported scripting
languages

Indicates the scripting languages supported in the
Knowledge Script.

For scripts used on Windows computers:
• Select Summit BasicScript to write the main script logic

using the BasicScript scripting language.

• Select Visual Basic Script to write the main script logic
using the VBScript scripting language.

For scripts used on UNIX computers:
• Select Perl Script to write the main script logic using the

Perl scripting language.

AppManager Version Enter the AppManager version for the script. Only decimal
numbers and periods are allowed.

Target Platforms Enabled only when you select Unix as the OS. Check all
Unix platforms that the script will run on.

Item Description
Appendix A • Dialog Boxes 331

Item Description

Object is dropped on
folder list

Indicates whether the object can be dropped on a folder list.

Object uses full path Indicates whether the object requires a full path to identify a
target. For example, if a Knowledge Script is dropped on the
"master" database for the SQL Server TULSA, the full object
name path might look like this:
SQL Server:TULSA:Databases:master:10

The last part of the path, 10, represents the object id in the
AppManager repository. You can then use the object id to
construct the resource name. For example:
resname = "SQLT_DatabaseObj = #" & 10

In this line, the # sign indicates that the resource is being
identified by object id, not by object name. You can then
pass this information to MSActions to more efficiently raise
an event. For example:
MSActions severity, eventmsg, AKPID, resname,
detailmsg
332 Developing Custom Knowledge Scripts

Object path delimiter Specifies the character used as a delimiter between object
paths (if using the full path for an object). For example, if
you specify a '\' character as the delimiter:
<computer>\<folder>\0

Object instance
delimiter

Specifies the character used as a delimiter between
individual objects in a list. For example, if you select the
object type NT_CPUNumber and use a comma as the
instance delimiter, if you drop the script on a computer with
2 CPUs (0 and 1) the code generated for the script looks
like this:
Const NT_CPUNumber = "0,1"

Object type list Lists the object types currently defined for the script.

Item Description
Appendix A • Dialog Boxes 333

Add New Object Type dialog box

Use the Add New Object Type dialog box (choose View >
Properties > Object Types > Add) to select the object types that are
applicable for this Knowledge Script.

Item Description

Object group Lists the categories of object types available.

Object types Lists the object types with the selected group.

Object to add Displays your current object selection that will be added
when you click Add.

Include object details Allows you to select which, if any, object details are included
in the Knowledge Script. The detail information available is
specific to each object type and is optional.
334 Developing Custom Knowledge Scripts

Default Schedule tab, Script Properties dialog box

Use the Default Schedule tab of the Script Properties dialog box
(choose View > Properties > Default Schedule) to set or modify
the default schedule information for your Knowledge Script.

Item Description

Schedule type Defines the type of schedule the script
should use by default:
• Run once

• Regular interval

• X number of times

• Daily schedule

• Asynchronous

Iteration Defines the default interval period,
number of iterations, or start and end
times.
Appendix A • Dialog Boxes 335

Advanced Schedule Configuration dialog box

Use the Advanced Schedule Configuration dialog box (choose
View > Properties > Default Schedule > Advanced) to configure
the schedule choices that are available for this Knowledge Script. If
you uncheck an allowed schedule, users will not be able to select the
corresponding schedule when setting Knowledge Script properties for
this Knowledge Script.
336 Developing Custom Knowledge Scripts

Parameters tab, Script Properties dialog box

Use the Parameters tab of the Script Properties dialog box (choose
View > Properties > Parameters) to enter or modify the parameters
and default values for your Knowledge Script.

Item Description

Brief description of the parameters Provides the information displayed in
the Values tab about what the script
does and how to set the parameters.

Parameter list Lists the variable name, data type and
default for the parameters currently
defined for the script.
Appendix A • Dialog Boxes 337

Add/Modify Parameter dialog box

Use the Add/Modify Parameter dialog box (choose View >
Properties > Parameters > Add or Modify) to define information
for the parameters to be included in the Values tab.

Item Description

Variable name to use Defines the variable name you use for a
parameter value in the script logic.

Description Defines the text displayed on the
Values tab in the Knowledge Script
Properties dialog box for the variable.

Data type Defines the data type for the value
associated with this variable:
• String

• Integer

• Double
338 Developing Custom Knowledge Scripts

Delim Defines the delimiter for parameters
that accept multiple values. If there will
not be multiple values, and whitespace
is a valid part of the parameter, set this
value to comma ","

User Interface control type Defines the user interface control to
display for the parameter.

Min Defines the minimum valid value for a
parameter. This field applies for Integer
and Double variables. It is not
application for string type variables.

Max Defines the maximum valid value for a
parameter. This field applies for Integer
and Double variables. It is not
application for string type variables.

Unit Defines the unit associated with the
value for a parameter. For example,
you can specify that values represent a
percentage, MB, or severity level. This
field applies for Integer and Double
variables. It is not application for string
type variables.

String size Defines the length of a valid string.

String range Defines the range of valid values for a
string.

Default value Defines the default value for a variable
displayed in the Knowledge Script
Properties dialog.

No quotation required For scripts written in Perl, select this
option if the script uses an associative
array.

Item Description
Appendix A • Dialog Boxes 339

Action Tab, Script Properties dialog box

Use the Action tab in the Script Properties dialog box (choose View
> Properties > Action) to add or modify actions associated with
events raised by the Knowledge Script.

Item Description

Action List List of actions initiated by events raised
by the script.

New Click to add a new action.

Modify Select an action in the Action List, and
click to modify the properties.

Delete Select an action in the Action List, and
click to delete.
340 Developing Custom Knowledge Scripts

Add New/Modify Action dialog box

Use the New/Modify button in the Action tab in the Script
Properties dialog box (choose View > Properties > Action > New
or Modify) to define the properties of a new or existing action.

Item Description

Action Select an action from the list.

Location Select the computer from which the
action is initiated:
• Management server

• Managed client

• Proxy (another computer running the
AppManager agent)
Appendix A • Dialog Boxes 341

Type Select the type of event that initiates
the action:
• New Event. The action is initiated

when a new event is raised.

• Repeated Event. The action is
initiated when a duplicate event is
raised a specified number of times.
Specify that number in the field for
this selection.

• Event Down. The action is initiated
when the event condition no longer
exists (for example, when the
transfer of bits per seconds is back
above the minimum threshold).

Schedule Select a schedule for the action. The
schedules listed here correspond to the
action schedule types defined in the
AppManager repository preferences.

Item Description
342 Developing Custom Knowledge Scripts

Migrate Summit Scripts dialog box

Use the Migrate Summit Scripts dialog box (choose View > Tools
> Migrate) to set the directory paths for migrating Summit
BasicScript Knowledge Scripts to the .qml format.

Set Debuggers dialog box

Use the Set Debuggers dialog box (choose View > Tools > Set
Debuggers) to specify the path to the debugger you want to use.

Item Description

Directory containing Summit
scripts to migrate

Path to the Summit BasicScript (.ebs)
files you want to migrate.

Directory to save migrated scripts Path to where you want the migrated
script (.qml) saved.
Appendix A • Dialog Boxes 343

If you have used the default installations, the paths to the debuggers
will be:

The Microsoft Windows Script Host requires a command line
argument, either //D or //X, to run in debug mode. You must enter
one of these arguments in the third field of the Set Debuggers dialog
box. If you use the //D parameter, the debugger will only kick in if an
error occurs. Using the //X parameter starts the debugger and puts a
breakpoint on the first executable line of script code.

Scripting
Language

Debugger Default Path to Debugger

Summit
BasicScript

NetIQ
Knowledge
Script Editor

C:\Program
Files\NetIQ\AppManager\bin\niqnedit.exe

VBScript Microsoft
Script Host

C:\WINNT\system32\cscript.exe

NOTE: To use this Script Host in debug mode,
it must be launched with either the //D or /
/X parameter.
344 Developing Custom Knowledge Scripts

Script Check-in dialog box

Use the Developer Console Logon dialog box (choose Tools >
Check in Knowledge Script) to log on to the AppManager
repository.

Convert To Knowledge Script dialog box

This tool (choose Tools > Convert Perl script to KS) steps through
a Perl script searching for lines of code that need to be converted to
use AppManager-compatible constructs.

For Do this

Name Type the user name of the SQL Server login account used to
access the AppManager repository.

Password Type the password for the SQL Server login account.

Server Type the name of the SQL server that manages the AppManager
repository. When specifying a computer name, you can enter the
Windows NT computer name or the IP address. For example, to
specify a named instance on SQL Server 2000, you can enter
10.1.10.43\INST1.

Repository Type the name of the AppManager repository you want.
Appendix A • Dialog Boxes 345

Item Description

Original Script field Existing code.

Suggestion field Suggested additions where appropriate
code does not exist, or suggested
substitutions for existing code.

Select a line of suggested code and
click Change to make the substitution.

Click Ignore to skip the change and
move to the next line in the original
script.

Double-click a suggested line to open a
dialog box that displays the line in its
entirety.
346 Developing Custom Knowledge Scripts

Perl Conversion Options

Use the Perl Conversion Options dialog box (choose Tools > Perl
Conversion Options) to take an existing Perl script and automatically
generate AppManager-specific callback functions that enable the
script to send events and data to the AppManager repository.

This option Makes this conversion

Convert ‘die’ to Perl scripts use die to exit on an
unrecoverable error. die quits the
program and prints the line number to
STDERR.

The No Change option uses the default
die behavior, and nothing is returned to
the AppManager repository.

The Abort option converts die to
AbortScript, which terminates the
script and stops it in an error state.

The Event option converts die to
CreateEvent, which raises an event
before the script terminates.
Appendix A • Dialog Boxes 347

Convert ‘exit’ to The Perl command exit quits the
program with a return value. Since exit
is not allowed in a Knowledge Script
because it quits the agent program, the
default behavior is to convert exit to
die.

The Abort option converts exit to die
when the return value is zero, but
makes an additional call to
AbortScript when the return value is
not zero (programs typically return a
non-zero value to indicate an error).

The Event option converts exit to die
when the return value is zero, but
makes an additional call to
CreateEvent when the return value is
non-zero (programs typically return a
non-zero value to indicate an error).

The Data option converts exit to
CreateData, with data values equal to
exit’s return value, regardless of
whether the value is zero, and then
uses die to quit the script.

Allow job retries after an
‘AbortScript’

The default behavior for AbortScript is
to error out and stop the job.

This option indicates that AppManager
should periodically try to restart the job.

Convert STDERR By default, STDERR from the script is not
returned to the Operator Console.

This option allows STDERR to be
returned as an event by redirecting
print to a temporary file whose
contents are returned to the
AppManager repository as an event at
the end of execution.

Use any positive value for this option.

The value for this option takes
precedence over the value for the All
Events option.

If this option is not selected, STDERR is
not returned as an event.

This option Makes this conversion
348 Developing Custom Knowledge Scripts

Convert STDOUT By default, STDOUT from the script is not
returned to the Operator Console.

This option allows STDOUT to be
returned as an event by redirecting
print to a temporary file whose
contents are returned to the
AppManager repository as an event at
the end of execution.

Use any positive value for this option.

The value for this option takes
precedence over the value for the All
Events option.

If this option is not selected, STDOUT is
not returned as an event.

Return Log File as Event If the Perl script writes data to a log file,
this option returns the contents of that
file as an event.

Use any name for the file.

Debug File Location This file contains the original script plus
the line numbers where problems might
occur in the conversion. Alongside
each line number are possible versions
of the line:

• The original line

• The converted line

• Alternative conversions of the line

The conversion tool reads each of the
possible line versions and gives the
user the option to select one of them or
to make the changes manually.

This option Makes this conversion
Appendix A • Dialog Boxes 349

Perl Syntax Check

Use the Perl Syntax Check (choose Tools > Perl Syntax Check)
dialog box to check the syntax of a Perl script.

To Do this

Dismiss the dialog box Click Close.

Highlight the line of code
containing the error

Select the error message from the list, and
click Go to. The corresponding line of code
is highlighted in the Developer’s Console.
The script code is displayed in the Perl
Script (Read-only) view.

Edit the code to fix the error Select the error message from the list, and
click Edit. The dialog box is dismissed, the
corresponding line of code is highlighted in
the Developer’s Console, and the script is
displayed in the Edit view.

You can then make the necessary changes
to your code.

To continue with the syntax check, click
Tools > Perl Syntax Check.
350 Developing Custom Knowledge Scripts

Appendix B

Perl Development
Due to the AppManager agent architecture on UNIX (a multi-
threaded application which hosts multiple Perl engines on several
threads), one should not use certain Perl language constructs. Nor
should one use certain system functions within C/C++ based
managed objects. Here is a list of these restrictions. Workarounds are
provided in some cases.

In the AppManager UNIX agent architecture, each Perl job is
executed by a Posix thread within the UNIX agent. Perl Knowledge
Scripts and managed objects should not perform any operations that
are not multi-thread safe. In the V1 UNIX agent, each Perl job is
executed by one separate Perl engine and there is no limitation on
concurrent Perl engines. In the V1.1 UNIX agent, each Perl job is still
executed by one separate Perl engine—however, for this agent there is
a limitation of concurrent Perl engines that is configurable via the
nqmcfg.xml file or the nqmagt command line option. The V2 UNIX
agent uses a pool of Perl engines where one Perl engine may execute
more than one Perl jobs.

The Perl engine bundled with all of the AppManager UNIX agents is
version 5.6.1.

Compiling your Perl modules

You must compile your Perl module or C/C++ based managed object
with the exact same Perl engine that is bundled with the UNIX agent
(located in /code/perl/5.6.1). You will need to compile separate
objects for Solaris, Linux, HPUX, and AIX.

Warning If you do not use the same perl engine (e.g., you compiled
351

your Perl module with single threaded Perl engine and then use it under
UNIX agent which has multi-threaded Perl engine), at runtime you
may observe “reallocation error” or “unsolved symbol …” in the
nqmlog file.

The correct multi-threaded Perl engines (5.6.1) are available as:
● perl-solaris.tar.Z

● perl-linux.tar.Z

● perl-hpux.tar.Z

● Lperl-aix.tar.Z

The Perl engine must be installed under:

 .../opt/netiq/UnixAgent/lib/.....

You should compile your code with the exact same compiler/linker
options that were used to compile the Perl engine. The easiest way to
achieve this is to use the Perl way to compile your Perl module, i.e., use
the correct Perl to generate a Makefile based on Makefile.PL. This
means the compilation of your perl module should use the same
compiler and compilation/linking options as the Perl engine. Refer to:
● http://www.perldoc.com/perl5.8.0/pod/perlxstut.html

● http://www.perldoc.com/perl5.8.0/lib/ExtUtils/
MakeMaker.html

Perl best practices

1 Do not call fork(), exec(), system().

Any fork, exec, or system operation from a thread within a multi-
threaded application can cause application deadlock.

Workaround: Use the ExecCmd callback function. ExecCmd is
programmed to serialize concurrent fork, exec, and system calls
and therefore avoid deadlock. Also see the note about I/O
redirection in issue #11.

2 Do not use back quotes to call a command (`CMD`).

The same reason as #1.
352 Developing Custom Knowledge Scripts

Workaround: Use the ExecCmd callback function, which is
programmed to serialize concurrent calls to avoid deadlock. Also
see #11.

3 Do not call chdir() and chroot()

There is only one current directory per application. Changing the
current directory of an application from one thread may cause
problems for other threads within the same application. Also see
issue #17.

Workaround: Either of the following two will do.

1. Instead of ExecCmd(“cmd”), use ExecCmd(“cd $dir ; cmd”).
That is, replace

chdir $dir;
.....
ExecCmd(“cmd”);

with

ExecCmd(“cd $dir ; cmd”)

The entire command execution within ExecCmd is to change to the
directory specified by $dir and then execute cmd. It is also OK to
start background processes by using this method. For example,
ExecCmd(“cd $dir ; cmd &”).

2. Use the ExecCmd callback function to invoke an external program
(shell script, for example) that performs the cd operation.

4 Do not set up any signal handling routines, including alarm(), in
Perl.

The UNIX agent is based on Java, which already catches quite a few
signals. In addition, the UNIX agent itself also catches a few
signals. Any operation to modify any signal handling routines can
cause UNIX agent deadlock.
Appendix B • Perl Development 353

5 Redirect stdout or stderr to the Nqext::CreateEvent callback
function, or to /dev/null, or to an individual file.

Any stdout or stderr will be lost because the UNIX agent runs as
a daemon process. One should also replace print or printf with
other functions.

6 Avoid calling sleep().

Invoking sleep() ties the current job to a Perl engine that could
otherwise execute other jobs (in the case of pool of Perl engine).

Workaround: Avoid sleep() if possible. If you must use it, specify
a short period for sleep() (e.g., less than 5 seconds). If one expects
to sleep for a long time, remember the state of the job/Knowledge
Script and re-check the status in the next job iteration.

You can also wrap the sleep logic into an external script and have
Exec callback execute the script asynchronously.

7 The END block in Knowledge Scripts or in Perl modules for V2 (or
greater) UNIX will not be executed

Having BEGIN or INIT in either Knowledge Scripts or Perl modules
is OK. Also note that you can have initialization code defined in
the boot section within XS based code.

Workaround: None.

8 Take advantage of Perl features, as much as possible. for example:
● hash variables

To avoid memory leaks, before the end of each KS iteration, one
must deallocate each hash variable, i.e.,

%hash_var = ();
or
undef %hash_var;

● Regular expression, pattern matching (instead of invoking grep
command via ExecCmd)
354 Developing Custom Knowledge Scripts

● Perl built-in constructs for file operations, input/output
operations, directory reading operations, system interactions,
networking, IPC, information from system files, etc.

● Various Perl modules

9 Use the ExecCmd()callback function sparingly.

Minimize calls to this callback because it is serialized. All current
running Perl jobs within the UNIX agent have to be suspended
during the process of ExecCmd. Instead of calling ExecCmd, you
should consider using Perl language constructs to perform
operations wherever possible.

10 Do not open a pipe with the Perl construct open()

The Perl construct open(F, “CMD |”) opens a pipe to command
CMD and read the stdout from CMD. For the same reason that
one should not use fork(), exec(), or system(), one should not create
processes via the construct open().

Workaround: Replace the following code
open(F, CMD |);
...

close(F);

with

$f = Nqext::ExecCmd(CMD, 1);

open(F, $f);

close F;

unlink F;

Redirect stdout and stderr if you start a background process with
the ExecCmd() callback function.

If stdout and stderr are not redirected, the ExecCmd() callback
function will hang forever.

Workaround: You should always redirect stdout and stderr of
Appendix B • Perl Development 355

any background process to /dev/null (if stdout and stderr are
not needed) or to files (if they are needed). For example, do either
of the following:
start script.sh in background

ExecCmd(script.sh > /dev/null 2> /dev/null &);

or

ExecCmd(wrap_script.sh); # start wrap_script.sh

where wrap_script.sh contains
#! /bin/sh
...

script.sh > /dev/null 2> /dev/null &
wrap_script.sh continues even if script.sh

has not terminated.

You can also redirect to a temporary file.

Note If you redirect stdout and stderr to /dev/null, then
ExecCmd will not be able to return stdout or stderr from the
command.

11 Unless you are within an eval, do not escape any Perl scripts run by
the AppManager UNIX agent. This includes both Knowledge
Scripts and the managed objects in Perl modules. That is, do not use
the die, exit, or croak commands. They will (sometimes, but not
always) exit the entire UNIX agent.

Workaround: Use AbortScript.

12 You can overwrite any section of Makefile generated from
Makefile.PL

Most of time the Makefile generated from the Perl Makefile.PL
has everything you need. But sometimes it does not, especially for
AIX.

Workaround: Use the Perl module ExtUtils::MakeMaker to
overwrite any section within the Makefile. For example, you can
356 Developing Custom Knowledge Scripts

overwrite the postamble section of the Makefile with the following
from within Makefile.PL:

sub MY::postamble {

'

 $(MYEXTLIB): sdbm/Makefile
 cd sdbm && $(MAKE) all
 ';
}

See http://www.perldoc.com/perl5.6.1/lib/ExtUtils/
MakeMaker.html#Overriding-MakeMaker-Methods for details.
See AIX DB2 Makefile.PL as an example.

13 The ExecCmd callback function does not provide exit code from the
command just executed.

Workaround: Replace
ExecCmd(cmd);

with

ExecCmd(cmd ;

echo $?);

14 If you are using C/C++ to develop your managed objects, be aware
that any operation should be thread-safe. Use an appropriate mutex
mechanism (e.g., pthread_mutex_lock, pthread_mutex_unlock)
to protect the critical section.

15 Never hard-code an output file name. If you do, and then two such
jobs (using the same output file name) run concurrently, you will
have problem. You could use callback GetTempFileName to get a
unique file name, or make the file name be a function of something
unique, such as jobid.
Appendix B • Perl Development 357

16 {A super set of #3} Unless you know what you are doing, do not
call functions that can affect process-scope state, such as
● setpgrp() -- sets the process group for a specific PID
● setpriority() -- sets the current priority for a process
● umask() -- sets the umask for the process
● chdir() -- changes cthe urrent working directory for the process.

See #3 for work around.
● chroot() -- changes the root directory for the process.

17 {super set of #6} Avoid issuing any long blocking calls, such as
reading from a socket, etc. This again would tie the current job to
a Perl engine that could otherwise execute other jobs in the case of
pool of Perl engine.

Workaround: If the KS can perform other useful computations
while the long API is in execution,
● Use an asynchronous version of the API, if available, instead of

using the sync version.
● Create a separate process (ExecCmd) to perform the blocking

operation

18 On AIX, use the slibclean command to clean up any modules
(including any dynamically loaded modules, .so) cached in the
kernel before starting the UNIX agent with an updated Perl
module. In C, unload() is the API for this purpose. See http://
publib.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/
aixcmds5/slibclean.htm

and

http://publib.boulder.ibm.com/doc_link/en_US/a_doc_lib/
aixprggd/kernextc/kernex_binding.htm#A23C0f1a0

for details.

19 Avoid calling C/C++ functions that are thread-unsafe. Depending
on the platform, thread-safe functions usually have the name
358 Developing Custom Knowledge Scripts

appended with _r. Check the manual pages for details. The
following are a few important ones for Solaris:

20 Do not call perl built-in functions that are not thread-safe. In Perl
5.6.1 on Solaris, the following are not thread safe (list is not all-
inclusive):

localtime(), gmtime(), get{gr,host,net,proto,serv,pw}*(),
readdir().

Note Perl functions rand and srand invoke rand48(3C) and
srand48(3C), which are thread-safe.

Thread-unsafe functions Thread-safe functions

localtime () localtime_r()

gmtime() gmtime_r()

get{gr,host,net,proto,serv,p
w}*()

get{gr,host,net,proto,serv,pw}*_r
()

readdir() readdir_r()

rand() rand_r()

srand() N/A
Appendix B • Perl Development 359

360 Developing Custom Knowledge Scripts

Index
A
AbortScript callback function 232
AbortScript() callback function 292
action 323
action schedule 323
action scripts 53, 133

ending actions 137
events without actions 136
invoking actions 136
modifying 133

Perl 185
Summit BasicScript 161
VBScript 133

setting up to perform actions 134
size limit 54
XML messages 137

Action_Messenger.qml script 162
Action_MessengerEx.qml script 183
Action_UXCommand.qml script 192
Action_UXCommandEx.qml script

199
Action_WriteToFile.qml script 140
Action_writeToFileEx.qml script 158
AKP_NULL 52
AKPID 48
AppManager

agent 17
architecture 40
management server 41
management server components

42

repository 42
version number 23

AppManager agent 43

B
BasicScript 23

debugging 320
setting debuggers 316

C
callback functions 25
callbacks

Perl 291
AbortScript() 292
CounterValue() 294
CreateData() 295
CreateEvent() 298
ExecCmd() 301
ExportData() 303
ExportHugeData_pl() 305
GetJobID() 306
GetMachName() 307
GetScriptInterval() 308
GetTempFileName() 309
ImportData() 310
ImportHugeData_pl() 312
IterationCount() 313

Summit BasicScript and VBScript
229

AbortScript 232
CreateData 234
361

callbacks
Summit BasicScript and VBScript

229
CreateEvent 237
DataHeader 240
DataLog 242
DynaCollectData 244
DynaDataLog 246
GetAgentInfo 248
GetContextEx 249
GetJobID 252
GetKPInterval 253
GetMachName 254
GetProgID 255
GetSecurityContext 256
GetTempFileName 257
GetVersion 258
Item 260
ItemCount 262
IterationCount 264
LongDataHeader 265
LongDataLog 267
LongDynaDataLog 268
MCAbort 270
MCEnterCS 271
MCExitCS 272
MCGetMOID 273
MCVersion 275
MCWaitForObject 276
MCWaitForObjectEx 278
MSActions 280
MSLongActions 284
NQSleep 285
QTrace 286
WaitForObject 288

choosing a scripting language 69

COM objects 25
converting older Knowledge Scripts to

qml format 31
corrective actions 324
counters, Performance Monitor 87
CounterValue() callback function 294
CreateData callback function 234
CreateData() callback function 295
CreateEvent callback function 237
CreateEvent() callback function 298
creating new scripts 53

D
data points 324
data stream 324
DataHeader callback function 240
DataLog callback function 242
debuggers, setting 316
debugging 315

BasicScript 320
Perl 321
prepend files 318
Summit BasicScript 320
VBScript 320
where to debug scripts 316

default properties, Knowledge Scripts
56

default schedule 21
default scripting language 35
developer 324
developer license 30
Developer’s Console 30

dialog boxes 327
Add New Object Type 334
Add New/Modify Action 341
Add/Modify Parameter 338
362 Developing Custom Knowledge Scripts

Developer’s Console 30
dialog boxes 327

Advanced Schedule
Configuration 336

Convert To Knowledge Script
345

Migrate Summit Scripts 343
Perl Conversion Options 347
Perl Syntax Check 350
Script Check-in 345
Script Editor Options 327
Script Properties dialog box

Action Tab 340
Default Schedule tab 335
Header tab 329
Object Types tab 331
Parameters tab 337

Set Debuggers 343
Edit view 36
editing scripts 31
opening 31
opening files 32
Properties dialog box 60

Action tab 60
Default Schedule tab 59
Header tab 57
Object Types tab 58
Parameters tab 61

Script Properties dialog box 24
VBScript (Read-only) view 36
views 35

Developer’s tools 30
dialog boxes

Script Properties dialog box
Object Types tab 331

discovery scripts 51, 53

DO_DATA 52
DO_EVENT 52
documentation

additional 12
conventions 11
suggestions 15

DynaCollectData callback function 244
DynaDataLog callback function 246

E
ebs extension 24
error icon, blinking 23
event 324
ExecCmd() callback function 301
executable script 23, 40
ExportData() callback function 303
ExportHugeData_pl() callback

function 305

G
generated script 29, 324
GetAgentInfo callback function 248
GetContextEx callback function 249
GetJobID callback function 252
GetJobID() callback function 306
GetKPInterval callback function 253
GetMachName callback function 254
GetMachName() callback function 307
GetProgID callback function 255
GetScriptInterval() callback function

308
GetSecurityContext callback function

256
GetTempFileName callback function

257
GetTempFileName() callback function

309
Index 363

GetVersion callback function 258

I
Icon Manager 31
ImportData() callback function 310
ImportHugeData_pl() callback

function 312
input validation 21
install scripts 53
Item callback function 260
ItemCount callback function 262
IterationCount callback function 264
IterationCount() callback function 313

J
job 324

K
Knowledge Script 324

code 23
definition 324
version number 23

Knowledge Script Editor 31
Knowledge Script Group 325
Knowledge Script Group member 325
Knowledge Script jobs 17
Knowledge Script name 49
Knowledge Script Properties

Schedule tab 21
Values tab 21

Knowledge Script Properties dialog
box 20

Knowledge Scripts
architecture 17
checking in 33, 34
checking out 32
code component 25

components 23
configuring a job 17
converting to qml format 31
copying 33
creating new script 53
debugging 315
elements 49
final, generated script 28
how AppManager processes scripts

23
job 23
naming 49
non-code XML elements 24
opening files 32
renaming 33
running 43
sample 26
saving 34
setting default properties 56

KS_INIT() 37

L
license, developer 30
location, sample scripts 38
LongDataHeader callback function 265
LongDataLog callback function 267
LongDynaDataLog callback function

268

M
managed client 17, 325
managed computer 41, 43
managed computer components 43
managed object methods 25
managed objects 43, 325
management server 41, 42
management service 43, 325
364 Developing Custom Knowledge Scripts

MCAbort callback function 270
MCEnterCS callback function 271
MCExitCS callback function 272
MCGetMOID callback function 273
MCVersion callback function 275
MCWaitForObject (Summit

BasicScript only) 276
MCWaitForObjectEx (Summit

BasicScript only) 278
modifying action scripts 133

Perl 185
Summit BasicScript 161
VBScript 133

modifying monitoring scripts 71
Perl 117
Summit BasicScript 91
VBScript 71

monitoring job 325
monitoring policy 325
monitoring scripts

modifying 71
Perl 117
Summit BasicScript 91
VBScript 71

MSActions callback function 280
MSLongActions callback function 284

N
naming Knowledge Scripts 49
non-code XML 24
normal scripts 53
NQSleep callback function 285
NT_CpuLoaded.qml script 91
NT_CpuLoadedEx.qm script 111

O
object type checking 20

object type variable 23
object type, assigning 50
Object Types tab, Script Properties

dialog box 331
ObjType value 47
Operator Console 17, 42

configuring a job 17

P
parameter 325
parameter non-code XML elements 47
Performance Monitor counters 87
Perl 24

debugging 321
Perl modules 25
prefix, Knowledge Script name 49
prepend files 318
process 325
Properties dialog box 325
properties, running script 56

Q
qml extension 24
QTrace callback function 286

R
report scripts 53, 204, 325

about 204
adding variables 224
altering value set of an existing

script 207
copying 207
discovering the Report agent 205
manipulating data 224
modifying Event Script Parameters

217
Index 365

report scripts 53, 204, 325
modifying non-code XML

elements 219
modifying report settings 217
modifying script properties 221
modifying the code 223
releasing references to created

objects 227
saving 227
selecting aggregation interval 217
selecting data streams 208
selecting days of the week 216
selecting the way data is presented

213
selecting time range 214
setting a new time range 227

repository host 325
repository, AppManager 42
resource object types 50
running script, properties 56

S
sample script listings 71

Action_Messenger.qml 162
Action_MessengerEx.qml 183
Action_UXCommand.qml 192
Action_UXCommandEx.qml 199
Action_WriteToFile.qml 140
Action_writeToFileEx.qml 158
NT_CpuLoaded.qml 91
NT_CpuLoadedEx.qml 111
Samples_FilesOpen.qml 71
Samples_FilesOpenEx.qml 86
Samples_HTTPHealth.qml 117
Samples_HTTPHealthEx.qml 130

sample scripts 68
checking in 68

location 38
Samples_FilesOpen.qml script 71
Samples_FilesOpenEx.qml script 86
Samples_HTTPHealth.qml script 117
Samples_HTTPHealthEx.qml script

130
Script Parameters 52, 326

deciding on 52
defining 63
range of possible values 21
user-definable 52

Script Properties dialog box 326
Object Types tab 331

scripting language, choosing 69
scripting language, default 35
scripts

action 53
discovery 53
install 53
monitoring 53
normal 53
report 53

server group 326
setting debuggers 316
Summit BasicScript 23

debugging 320
setting debuggers 316

T
target computer 18, 326
technical support 15
testing and debugging 315
thread 326
threshold 326
TreeView pane 19
type checking 51
366 Developing Custom Knowledge Scripts

U
UNIX, managing computers 24
user 326
user interface, AppManager 42
user-definable Script Parameters 52

V
VBScript 24

debugging 320
setting debuggers 316

version 326

W
WaitForObject callback function 288

X
XML (Read-only) view 36
Index 367

	Contents
	About this guide 9
	Chapter 1 AppManager, Knowledge Scripts, and the Developer’s Console 17
	Chapter 2 AppManager Architecture 39
	Chapter 3 Knowledge Script basics 49
	Chapter 4 Modifying a monitoring script written in VBScript 71
	Chapter 5 Modifying a monitoring script written in Summit BasicScript 91
	Chapter 6 Modifying a monitoring script written in Perl 117
	Chapter 7 Modifying an action script written in VBScript 133
	Chapter 8 Modifying an action script written in Summit BasicScript 161
	Chapter 9 Modifying an action script written in Perl 185
	Chapter 10 Modifying a report script written in VBScript 203
	Chapter 11 AppManager Callbacks for Summit BasicScript and VBScript 229
	Chapter 12 AppManager Callbacks for Perl 291
	Chapter 13 Testing and debugging 315
	Chapter 14 Glossary 323
	Appendix A Dialog Boxes 327
	Appendix B Perl Development 351
	Index 361

	About this guide
	Intended audience
	What’s changed?
	Using this guide
	Conventions used in this guide
	Where to go for more information
	Learning more about NetIQ products
	Questions or suggestions? Contact us...

	AppManager, Knowledge Scripts, and the Developer’s Console
	Configuring a Knowledge Script job in the AppManager Operator Console
	How AppManager processes the Knowledge Script
	The components of a Knowledge Script
	The non-code XML elements of the Knowledge Script
	The code component of the Knowledge Script
	A sample Knowledge Script
	The final, generated script

	Developer’s tools
	Developer’s Console
	Knowledge Script Editor
	Icon Manager

	Editing Knowledge Scripts in the Developer’s Console
	Opening the Developer’s Console
	Opening Files
	Checking out scripts for editing
	Copying, renaming, and checking in scripts
	Saving and checking in scripts

	Different views in the Developer’s Console
	Testing the sample script

	AppManager Architecture
	A completed Knowledge Script
	AppManager architecture
	AppManager components
	Managed computer components

	Running Knowledge Scripts
	Example
	Where each part of the running script came from

	Knowledge Script basics
	Script elements
	Naming scripts
	Assigning an object type
	Deciding on user-definable Script Parameters
	Other non-code XML elements

	Starting creation of a new script
	Listing of the new (empty) script

	Setting default properties
	The Header tab
	The Object Types tab
	The Default Schedule tab
	The Action tab
	The Parameters tab

	Where to go from here
	Check in the sample scripts
	Which scripting language to use

	Modifying a monitoring script written in VBScript
	Listing of the Samples_FilesOpen.qml script
	Preliminary discussion
	User-set Script Parameters
	Object types
	Actions
	Functions called in the code

	Syntax of the managed object methods
	System.CounterValue

	Syntax of the Callback functions
	Long IterationCount
	GetProgID
	CreateEvent
	CreateData

	The program logic
	Sub Main()

	The modified script, Samples_FilesOpenEx.qml
	Performance Monitor counters

	Modifying a monitoring script written in Summit BasicScript
	Listing of the NT_CpuLoaded.qml script
	Preliminary discussion
	User-set Script Parameters
	Object types
	Actions
	Functions called in the code

	Syntax of the managed object methods
	CPU.UtilValue
	CPU.QueueLengthValue

	Syntax of the Callback functions
	MSActions
	IterationCount
	DataHeader
	Sends the data header for logging and graphing data streams (short form).
	DataLog
	MCGetMOID

	The program logic
	Sub Main()
	Sub CpuCheck()

	The modified script, NT_CpuLoadedEx.qml
	Listing of Samples_CpuLoadedEx.qml

	Modifying a monitoring script written in Perl
	Listing of the Samples_HTTPHealth.qml script
	Preliminary discussion
	User-set Script Parameters
	Object types
	Actions
	Functions called in the code

	Syntax of the Callback functions
	CreateData
	CreateEvent
	CreateEvent returns nothing.

	The program logic
	The main script
	The format_list subroutine

	The modified script, Samples_HTTPHealthEx.qml
	Altered code

	Modifying an action script written in VBScript
	Setting up to perform actions
	Script developers
	AppManager Operator Console users

	Invoking actions
	Events without actions
	Ending actions
	XML messages
	Listing of the Action_WriteToFile.qml script
	User-set Script Parameters
	Parameters supplied by AppManager
	Functions called in the code
	Syntax of the Callback functions
	GetVersion
	EventXMLToPlainText
	CreateEvent

	The program logic
	Sub Main
	Function PreProcessForXML

	The modified script, Action_writeToFileEx.qml

	Modifying an action script written in Summit BasicScript
	Listing of the Action_Messenger.qml script
	User-set Script Parameters
	Parameters supplied by AppManager
	Functions called in the code
	Syntax of the Callback functions
	EventXMLToPlainText
	GetMachName
	MCNetMessageBufferSend
	MCSleep
	MCVersion
	MSActions

	The program logic
	Sub Main
	Function PreProcessForXML

	The modified script, Action_MessengerEx.qml

	Modifying an action script written in Perl
	Setting up to perform actions
	Script developers
	AppManager Operator Console users

	Invoking actions
	Events without actions
	Ending actions
	XML messages
	Listing of the Action_UXCommand.qml script
	User-set Script Parameters
	Parameters supplied by AppManager
	Functions called in the code
	Syntax of the Callback functions
	ExecCmd
	CreateEvent
	CreateEvent returns nothing.

	The program logic
	The modified script, Action_UXCommandEx.qml

	Modifying a report script written in VBScript
	About report scripts
	What approach do I take?

	Discovering the Report agent
	Altering the value set of an existing script
	Making a copy of the script
	Selecting the data streams for the new report
	Selecting the way data is presented in the new report
	Selecting the time range for the new report
	Selecting days of the week to include in the report
	Selecting the aggregation interval
	Modifying the Report settings and Event Script Parameters
	Saving your new report script

	Modifying the code of an existing script
	Modifying the non-code XML elements of the script
	Modifying the script properties
	Modifying the code
	Setting a new time range

	AppManager Callbacks for Summit BasicScript and VBScript
	AbortScript
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	CreateData
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	CreateEvent
	Syntax
	Parameters and settings
	Return value
	Example

	DataHeader
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	DataLog
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	DynaCollectData
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	DynaDataLog
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	GetAgentInfo
	Syntax
	Parameters and settings
	Return value
	Example

	GetContextEx
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	GetJobID
	Syntax
	Parameters and settings
	Return value
	Example

	GetKPInterval
	Syntax
	Parameters and settings
	Return value
	Example

	GetMachName
	Syntax
	Parameters
	Returns
	Example

	GetProgID
	Syntax
	Parameters and settings
	Return value
	Example

	GetSecurityContext
	Syntax
	Parameters and settings
	Return value

	GetTempFileName (VBScript only)
	Syntax
	Parameters and settings
	Return value

	GetVersion
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	Item (VBScript only)
	Syntax
	Parameters and settings
	Return value
	Example

	ItemCount (VBScript only)
	Syntax
	Parameters and settings
	Return value
	Example

	IterationCount
	Syntax
	Parameters and settings
	Return value
	Example

	LongDataHeader
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	LongDataLog
	Syntax
	Parameters and settings
	Return value
	Example

	LongDynaDataLog
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	MCAbort
	Syntax
	Parameters and settings
	Return value
	Example

	MCEnterCS
	Syntax
	Parameters and settings
	Return value
	Example

	MCExitCS
	Syntax
	Parameters and settings
	Return value
	Example

	MCGetMOID
	Syntax
	Parameters and settings
	Return value
	Example

	MCVersion
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	MCWaitForObject (Summit BasicScript only)
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	MCWaitForObjectEx (Summit BasicScript only)
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	MSActions
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example 1
	Example 2

	MSLongActions
	Syntax
	Parameters and settings
	Return value
	Example

	NQSleep
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	QTrace
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	WaitForObject
	Syntax
	Parameters and settings
	Return value
	Remarks
	Example

	AppManager Callbacks for Perl
	AbortScript()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	CounterValue()
	Syntax
	Parameters
	Return value
	Example

	CreateData()
	Syntax
	Parameters
	Return value
	Example

	CreateEvent()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	ExecCmd()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	ExportData()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	ExportHugeData_pl()
	Syntax
	Parameters
	Return value
	Example

	GetJobID()
	Syntax
	Parameters
	Return value
	Example

	GetMachName()
	Syntax
	Return value
	Example

	GetScriptInterval()
	Syntax
	Parameters
	Return value
	Example

	GetTempFileName()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	ImportData()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	ImportHugeData_pl()
	Syntax
	Parameters
	Return value
	Remarks
	Example

	IterationCount()
	Syntax
	Parameters
	Return value
	Example

	Testing and debugging
	Debugging Knowledge Scripts
	Where to debug scripts
	Setting debuggers for VBScript and BasicScript
	The prepend and append files
	Prepend files
	Append files
	Location of files

	Debugging Summit BasicScript scripts
	Debugging VBScript scripts
	Debugging Perl scripts

	Glossary
	Dialog Boxes
	Script Editor Options dialog box
	Header tab, Script Properties dialog box
	Object Types tab, Script Properties dialog box
	Add New Object Type dialog box
	Default Schedule tab, Script Properties dialog box
	Advanced Schedule Configuration dialog box
	Parameters tab, Script Properties dialog box
	Add/Modify Parameter dialog box
	Action Tab, Script Properties dialog box
	Add New/Modify Action dialog box
	Migrate Summit Scripts dialog box
	Set Debuggers dialog box
	Script Check-in dialog box
	Convert To Knowledge Script dialog box
	Perl Conversion Options
	Perl Syntax Check

	Perl Development
	Compiling your Perl modules
	Perl best practices

	Index
	A
	B
	C
	D
	E
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

