

ibm.com/redbooks

Event Management
and Best PracticesBest Practices

Tony Bhe
Peter Glasmacher

Jacqueline Meckwood
Guilherme Pereira

Michael Wallace

Implement and use best practices for
event processing

Customize IBM Tivoli products
for event processing

Diagnose IBM Tivoli Enterprise
Console, NetView, Switch Analyzer

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Event Management and Best Practices

June 2004

International Technical Support Organization

SG24-6094-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2004)

This edition applies to the following products:

� Version 3, Release 9, of IBM Tivoli Enterprise Console
� Version 7, Release 1, Modification 4 of IBM Tivoli NetView
� Version 1, Release 2, Modification 1 of IBM Tivoli Switch Analyzer

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Note: This IBM Redbook is based on a pre-GA version of a product and may not apply when
the product becomes generally available. We recommend that you consult the product
documentation or follow-on versions of this IBM Redbook for more current information.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiii
Comments welcome. xiii

Chapter 1. Introduction to event management . 1
1.1 Importance of event correlation and automation . 2
1.2 Terminology. 4

1.2.1 Event . 4
1.2.2 Event management . 4
1.2.3 Event processing. 5
1.2.4 Automation and automated actions. 5

1.3 Concepts and issues . 6
1.3.1 Event flow . 6
1.3.2 Filtering and forwarding. 7
1.3.3 Duplicate detection and throttling . 7
1.3.4 Correlation. 8
1.3.5 Event synchronization . 15
1.3.6 Notification . 16
1.3.7 Trouble ticketing . 17
1.3.8 Escalation . 17
1.3.9 Maintenance mode . 19
1.3.10 Automation . 19

1.4 Planning considerations . 20
1.4.1 IT environment assessment . 21
1.4.2 Organizational considerations. 21
1.4.3 Policies . 23
1.4.4 Standards . 23

Chapter 2. Event management categories and best practices 25
2.1 Implementation approaches . 26

2.1.1 Send all possible events . 26
2.1.2 Start with out-of-the-box notifications and analyze reiteratively 27
2.1.3 Report only known problems and add them to the list as they are

identified . 27
2.1.4 Choose top X problems from each support area 28
© Copyright IBM Corp. 2004. All rights reserved. iii

2.1.5 Perform Event Management and Monitoring Design 28
2.2 Policies and standards . 32

2.2.1 Reviewing the event management process 33
2.2.2 Defining severities. 34
2.2.3 Implementing consistent standards. 36
2.2.4 Assigning responsibilities . 37
2.2.5 Enforcing policies . 38

2.3 Filtering . 39
2.3.1 Why filter . 39
2.3.2 How to filter . 40
2.3.3 Where to filter . 41
2.3.4 What to filter . 41
2.3.5 Filtering best practices . 44

2.4 Duplicate detection and suppression . 45
2.4.1 Suppressing duplicate events . 45
2.4.2 Implications of duplicate detection and suppression. 46
2.4.3 Duplicate detection and throttling best practices. 50

2.5 Correlation. 51
2.5.1 Correlation best practices . 51
2.5.2 Implementation considerations . 54

2.6 Notification. 56
2.6.1 How to notify . 56
2.6.2 Notification best practices . 58

2.7 Escalation . 60
2.7.1 Escalation best practices . 60
2.7.2 Implementation considerations . 65

2.8 Event synchronization . 66
2.8.1 Event synchronization best practices . 67

2.9 Trouble ticketing . 68
2.9.1 Trouble ticketing best practices. 69

2.10 Maintenance mode . 72
2.10.1 Maintenance status notification. 73
2.10.2 Handling events from a system in maintenance mode 74
2.10.3 Prolonged maintenance mode . 75
2.10.4 Network topology considerations . 76

2.11 Automation . 77
2.11.1 Automation best practices. 78
2.11.2 Automation implementation considerations 80

2.12 Best practices flowchart . 82

Chapter 3. Overview of IBM Tivoli Enterprise Console 85
3.1 The highlights of IBM Tivoli Enterprise Console . 86
3.2 Understanding the IBM Tivoli Enterprise Console data flow 87
iv Event Management and Best Practices

3.2.1 IBM Tivoli Enterprise Console input . 88
3.2.2 IBM Tivoli Enterprise Console processing . 89
3.2.3 IBM Tivoli Enterprise Console output . 90

3.3 IBM Tivoli Enterprise Console components . 91
3.3.1 Adapter Configuration Facility . 91
3.3.2 Event adapter . 91
3.3.3 IBM Tivoli Enterprise Console gateway . 92
3.3.4 IBM Tivoli NetView . 92
3.3.5 Event server . 93
3.3.6 Event database . 93
3.3.7 User interface server. 93
3.3.8 Event console . 93

3.4 Terms and definitions . 94
3.4.1 Event . 94
3.4.2 Event classes . 94
3.4.3 Rules . 95
3.4.4 Rule bases . 97
3.4.5 Rule sets and rule packs. 98
3.4.6 State correlation . 99

Chapter 4. Overview of IBM Tivoli NetView. 101
4.1 IBM Tivoli NetView (Integrated TCP/IP Services) 102
4.2 NetView visualization components . 104

4.2.1 The NetView EUI. 105
4.2.2 NetView maps and submaps . 106
4.2.3 The NetView event console . 112
4.2.4 The NetView Web console . 114
4.2.5 Smartsets . 117
4.2.6 How events are processed . 119

4.3 Supported platforms and installation notes . 120
4.3.1 Supported operating systems . 121
4.3.2 Java Runtime Environments . 121
4.3.3 AIX installation notes. 121
4.3.4 Linux installation notes . 123

4.4 Changes in NetView 7.1.3 and 7.1.4. 124
4.4.1 New features and enhancements for Version 7.1.3 124
4.4.2 New features and enhancements for Version 7.1.4 126
4.4.3 First failure data capture . 130

4.5 A closer look at the new functions. 131
4.5.1 servmon daemon . 131
4.5.2 FFDC. 134

Chapter 5. Overview of IBM Tivoli Switch Analyzer 141
 Contents v

5.1 The need for layer 2 network management. 142
5.1.1 Open Systems Interconnection model . 142
5.1.2 Why layer 3 network management is not always sufficient. 143

5.2 Features of IBM Tivoli Switch Analyzer V1.2.1 . 144
5.2.1 Daemons and processes . 144
5.2.2 Discovery . 146
5.2.3 Layer 2 status . 156
5.2.4 Integration into NetView’s topology map. 157
5.2.5 Traps . 159
5.2.6 Root cause analysis using IBM Tivoli Switch Analyzer and NetView160
5.2.7 Real-life example . 161

Chapter 6. Event management products and best practices 173
6.1 Filtering and forwarding events . 174

6.1.1 Filtering and forwarding with NetView. 174
6.1.2 Filtering and forwarding using IBM Tivoli Enterprise Console. 205
6.1.3 Filtering and forwarding using IBM Tivoli Monitoring 210

6.2 Duplicate detection and throttling . 212
6.2.1 IBM Tivoli NetView and Switch Analyzer for duplicate detection and

throttling . 212
6.2.2 IBM Tivoli Enterprise Console duplicate detection and throttling . . 212
6.2.3 IBM Tivoli Monitoring for duplicate detection and throttling. 217

6.3 Correlation. 218
6.3.1 Correlation with NetView and IBM Tivoli Switch Analyzer 218
6.3.2 IBM Tivoli Enterprise Console correlation . 232
6.3.3 IBM Tivoli Monitoring correlation. 244

6.4 Notification. 244
6.4.1 NetView. 245
6.4.2 IBM Tivoli Enterprise Console. 249
6.4.3 Rules . 251
6.4.4 IBM Tivoli Monitoring. 260

6.5 Escalation . 262
6.5.1 Severities . 263
6.5.2 Escalating events with NetView . 279

6.6 Event synchronization . 295
6.6.1 NetView and IBM Tivoli Enterprise Console 295
6.6.2 IBM Tivoli Enterprise Console gateway and IBM Tivoli Enterprise

Console. 296
6.6.3 Multiple IBM Tivoli Enterprise Console servers. 297
6.6.4 IBM Tivoli Enterprise Console and trouble ticketing 302

6.7 Trouble ticketing . 307
6.7.1 NetView versus IBM Tivoli Enterprise Console. 307
6.7.2 IBM Tivoli Enterprise Console. 307
vi Event Management and Best Practices

6.8 Maintenance mode . 315
6.8.1 NetView. 315
6.8.2 IBM Tivoli Enterprise Console. 328

6.9 Automation . 338
6.9.1 Using NetView for automation. 338
6.9.2 IBM Tivoli Enterprise Console. 351
6.9.3 IBM Tivoli Monitoring. 354

Chapter 7. A case study . 357
7.1 Lab environment . 358

7.1.1 Lab software and operating systems . 358
7.1.2 Lab setup and diagram . 359
7.1.3 Reasons for lab layout and best practices 362

7.2 Installation issues . 363
7.2.1 IBM Tivoli Enterprise Console. 363
7.2.2 NetView. 364
7.2.3 IBM Tivoli Switch Analyzer . 364

7.3 Examples and related diagnostics. 370
7.3.1 Event flow . 370
7.3.2 IBM Tivoli Enterprise Console troubleshooting 377
7.3.3 NetView. 394
7.3.4 IBM Tivoli Switch Analyzer . 399

Appendix A. Suggested NetView configuration . 401
Suggested NetView EUI configuration . 402
Event console configuration . 403
Web console installation. 404

Web console stand-alone installation . 404
Web console applet. 406

Web console security . 407
Web console menu extension . 408
A smartset example . 417

Related publications . 421
IBM Redbooks . 421
Other publications . 421
Online resources . 422
How to get IBM Redbooks . 422
Help from IBM . 422

Index . 423
 Contents vii

viii Event Management and Best Practices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
ibm.com®
zSeries®
AIX®
DB2 Universal Database™
DB2®

IBM®
NetView®
Redbooks (logo) ™
Redbooks™
S/390®
Tivoli Enterprise™

Tivoli Enterprise Console®
Tivoli®
TME®
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x Event Management and Best Practices

Preface

This IBM Redbook presents a deep and broad understanding about event
management with a focus on best practices. It examines event filtering, duplicate
detection, correlation, notification, escalation, and synchronization. Plus it
discusses trouble-ticket integration, maintenance modes, and automation in
regard to event management.

Throughout this book, you learn to apply and use these concepts with IBM
Tivoli® Enterprise™ Console 3.9, NetView® 7.1.4, and IBM Tivoli Switch
Analyzer 1.2.1. Plus you learn about the latest features of these tools and how
they fit into an event management system.

This redbook is intended for system and network administrators who are
responsible for delivering and managing IT-related events through the use of
systems and network management tools. Prior to reading this redbook, you
should have a thorough understanding of the event management system in
which you plan to implement these concepts.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Austin
Center.

Tony Bhe is an IT Specialist for IBM in the United States. He has eight years of
experience in the IT industry with seven years of direct experience with IBM Tivoli
Enterprise products. He holds a degree in electrical engineering from North
Carolina State University in Raleigh, North Carolina. His areas of expertise
include Tivoli performance, availability, configuration, and operations. He has
spent the last three years working as a Tivoli Integration Test Lead. One year
prior to that, he was a Tivoli Services consultant for Tivoli Performance and
Availability products.

Peter Glasmacher is a certified Systems Management expert from Dortmund,
Germany. He joined IBM in 1973 and worked in various positions including
support, development, and services covering multiple operating system
platforms and networking architectures. Currently, he works as a consulting IT
specialist for the Infrastructure & Technology Services branch of IBM Global
Services. He concentrates on infrastructure and security issues. He has more
than 16 years of experience in the network and systems management areas. For
© Copyright IBM Corp. 2004. All rights reserved. xi

the past nine years, he concentrated on architectural work and the design of
network and systems management solutions in large customer environments.
Since 1983, he has written extensively on workstation-related issues. He has
co-authored several IBM Redbooks™, covering network and systems
management topics.

Jacqueline Meckwood is a certified IT Specialist in IBM Global Services. She
has designed and implemented enterprise management systems and
connectivity solutions for over 20 years. Her experience includes the architecture,
project management, implementation, and troubleshooting of systems
management and networking solutions for distributed and mainframe
environments using IBM, Tivoli, and OEM products. Jacqueline is a lead Event
Management and Monitoring Design (EMMD) practitioner and is an active
member of the IT Specialist Board.

Guilherme Pereira is a Tivoli and Micromuse certified consultant at NetControl,
in Brazil. He has seven years of experience in the network and systems
management field. He has worked in projects in some of the largest companies
in Brazil, mainly in the Telecom area. He holds a degree in business from
Pontificia Universidade Catolica-RS, with graduate studies in business
management from Universidade Federal do Rio Grande do Sul. His areas of
expertise include network and systems management and project management.
He is member of PMI and is a certified Project Management Professional.

Michael Wallace is a Enterprise Systems Management Engineer at Shaw
Industries Inc. in Dalton, Georgia, U.S.A. He has five years of experience in the
Systems Management field and spent time working in the Help Desk field. He
holds a degree in PC/LAN from Brown College, MN. His areas of expertise
include IBM Tivoli Enterprise Console® rule writing and integration with
trouble-ticketing systems as well as event management and problem
management.

Thanks to the following people for their contributions to this project:

Becky Anderson
Cesar Araujo
Alesia Boney
Jim Carey
Christopher Haynes
Mike Odom
Brian Pate
Brooke Upton
Michael L. Web
IBM Software Group
xii Event Management and Best Practices

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xiv Event Management and Best Practices

Chapter 1. Introduction to event
management

This chapter explains the importance of event correlation and automation. It
defines relevant terminology and introduces basic concepts and issues. It also
discusses general planning considerations for developing and implementing a
robust event management system.

1

© Copyright IBM Corp. 2004. All rights reserved. 1

1.1 Importance of event correlation and automation
From the time of their inception, computer systems were designed to serve the
needs of businesses. Therefore, it was necessary to know if they were
operational. The critical need of the business function that was performed
governed how quickly this information had to be obtained.

Early computers were installed to perform batch number-crunching tasks for
such business functions as payroll and accounts receivable, in less time and with
more efficiency than humans could perform them. Each day, the results of the
batch processing were examined. If problems occurred, they were resolved and
the batch jobs were executed again.

As their capabilities expanded, computers began to be used for functions such as
order entry and inventory. These mission-critical applications needed to be online
and operational during business hours required immediate responses.
Companies questioned the reliability of computers and did not want to risk losing
customers because of computer problems. Paper forms and manual backup
procedures provided insurance to companies that they could still perform their
primary business in the event of a computer failure.

Since these batch and online applications were vital to the business of the
company, it became more important to ascertain in a timely fashion whether they
were available and working properly. Software was enhanced to provide
information and errors, which were displayed on one or more consoles.
Computer operators watched the consoles, ignored the informational messages,
and responded to the errors. Tools became available to automatically reply to
messages that always required the same response.

With the many advances in technology, computers grew more sophisticated and
were applied to more business functions. Personal computers and distributed
systems flourished, adding to the complexity of the IT environment. Due to the
increased reliability of the machines and software, it became impractical to run a
business manually. Companies surrendered their paper forms and manual
backup procedures to become completely dependent upon the functioning of the
computer systems.

Managing the systems, now critical to the survival of a business, became the
responsibility of separate staffs within an IT organization. Each team used its
own set of tools to do the necessary monitoring of its own resources. Each
viewed its own set of error messages and responded to them. Many received
phone calls directly from users who experienced problems.

To increase the productivity of the support staffs and to offload some of their
problem support responsibilities, help desks were formed. Help desks served as
2 Event Management and Best Practices

central contact points for users to report problems with their computers or
applications. They provided initial problem determination and resolution services.
The support staffs did not need to watch their tools for error messages, since
software was installed to aggregate the messages at a central location. The help
desk or an operations center monitored messages from various monitoring tools
and notified the appropriate support staff when problems surfaced.

Today, changes in technology provide still more challenges. The widespread use
of the Internet to perform mission-critical applications necessitates 24 X 7
availability of systems. Organizations need to know immediately when there are
failures, and recovery must be almost instantaneous. On-demand and grid
computing allow businesses to run applications wherever cycles are available to
ensure they can meet the demands of their customers. However, this increases
the complexity of monitoring the applications, since it is now insufficient to know
the status of one system without knowing how it relates to others. Operators
cannot be expected to understand these relationships and account for them in
handling problems, particularly in complex environments.

There are several problems with the traditional approach to managing systems:

� Missed problems

Operators can overlook real problems while sifting through screens of
informational messages. Users may call to report problems before they are
noticed and acted upon by the operator.

� False alarms

Messages can seem to indicate real problems, when in fact they are not.
Sometimes additional data may be needed to validate the condition and, in
distributed environments, that information may come from a different system
than the one reporting the problem.

� Inconsistency

Various operators can respond differently to the same type of events.

� Duplication of effort

Multiple error messages may be produced for a single problem, possibly
resulting in more than one support person handling the same problem.

� Improper problem assignment

Manually routing problems to the support staffs sometimes results in support
personnel being assigning problems that are not their responsibility.

� Problems that cannot be diagnosed

Sometimes when an intermittent problem condition clears before someone
has had the chance to respond to it, the diagnostic data required to determine
the cause of the problem disappears.
 Chapter 1. Introduction to event management 3

Event correlation and automation address these issues by:

� Eliminating information messages from view to easily identify real problems
� Validating problems
� Responding consistently to events
� Suppressing extraneous indications of a problem
� Automatically assigning problems to support staffs
� Collecting diagnostic data

Event correlation and automation are the next logical steps in the evolution of
event handling. They are critical to successfully managing today’s ever-changing,
fast-paced IT environments with the reduced staffs with which companies are
forced to operate.

1.2 Terminology
Before we discuss the best ways to implement event correlation and automation,
we need to establish the meaning of the terms we use. While several systems
management terms are generally used to describe event management, these
terms are sometimes used in different ways by different authors. In this section,
we provide definitions of the terms as they are used throughout this redbook.

1.2.1 Event
Since event management and correlation center around the processing of
events, it is important to clearly define what is meant by an event. In the context
of this redbook, an event is a piece of data that provides information about one or
more system resources.

Events can be triggered by incidents or problems affecting a system resource.
Similarly, changes to the status or configuration of a resource, regardless of
whether they are intentional, can generate events. Events may also be used as
reminders to take action manually or as notification that an action has occurred.

1.2.2 Event management
The way in which an organization deals with events is known as event
management. It may include the organization’s objectives for managing events,
assigned roles and responsibilities, ownership of tools and processes, critical
success factors, standards, and event-handling procedures. The linkages
between the various departments within the organization required to handle
events and the flow of this information between them is the focus of event
management. Tools are mentioned in reference to how they fit into the flow of
4 Event Management and Best Practices

event information through the organization and to which standards should be
applied to that flow.

Since events are used to report problems, event management is sometimes
considered a sub-discipline of problem management. However, it can really be
considered a discipline of its own, for it interfaces directly with several other
systems management disciplines. For example, system upgrades and new
installations can result in new event types that must be handled. Maintaining
systems both through regularly scheduled and emergency maintenance can
result in temporary outages that trigger events. This clearly indicates a
relationship between event management and change management.

In small organizations, it may be possible to handle events through informal
means. However, as organizations grow both in size of the IT support staffs and
the number of resources they manage, it becomes more crucial to have a formal,
documented event management process. Formalizing the process ensures
consistent responses to events, eliminates duplication of effort, and simplifies the
configuration and maintenance of the tools used for event management.

1.2.3 Event processing
While event management focuses on the high-level flow of events through an
organization, event processing deals with tools. Specifically, the term event
processing is used to indicate the actions taken upon events automatically by
systems management software tools.

Event processing includes such actions as changing the status or severity of an
event, dropping the event, generating problem tickets and notifications, and
performing recovery actions. These actions are explained in more detail in 1.3,
“Concepts and issues” on page 6.

1.2.4 Automation and automated actions
Automation is a type of actions that can be performed when processing events.
For the purposes of this book, it refers to the process of taking actions on system
resources without human intervention in response to an event. The actual
actions executed are referred to as automated actions.

Automated actions may include recovery commands performed on a failing
resource to restore its service and failover processes to bring up backup
resources. Changing the status or severity of an event, closing it, and similar
functions are not considered automated actions. That is because they are
performed on the event itself rather than on one or more system resources
referred to or affected by the event.
 Chapter 1. Introduction to event management 5

The types of automated actions and their implications are covered in more detail
in 1.3, “Concepts and issues” on page 6.

1.3 Concepts and issues
This section presents the concepts and issues associated with event processing.
Additional terminology is introduced as needed.

1.3.1 Event flow
An event cannot provide value to an organization in managing its system
resources unless the event is acted upon, either manually by a support person or
automatically by software. The path an event takes from its source to the
software or person who takes action on it is known as the event flow.

The event flow begins at the point of generation of the event, known as the event
source. The source of an event may be the failing system itself, as in the case of
a router that sends information about its health to an event processor. An agent
that runs on the system to monitor for and report error conditions is another type
of event source. A proxy systems that monitor devices other than itself, such as
Simple Network Management Protocol (SNMP) manager that periodically checks
the status of TCP/IP devices, and reports a failure if it receives no response, is
also considered an event source.

Event processors are devices that run software capable of recognizing and
acting upon events. The functionality of the event processors can vary widely.
Some are capable of merely forwarding or discarding events. Others can perform
more sophisticated functions such as reformatting the event, correlating it with
other events received, displaying it on a console, and initiating recovery actions.

Most event processors have the capability to forward events to other event
processors. This functionality is useful in consolidating events from various
sources at a central site for management by a help desk or operations center.
The hierarchy of event processors used to handle events can be referred to as
the event processing hierarchy. The first receiver of the event is the entry point
into the hierarchy, and the collection of all the entry points is called the entry tier
of the hierarchy. Similarly, all second receivers of events can be collectively
referred to as the second tier in the hierarchy and so forth. For the purposes of
this book, we refer to the top level of the hierarchy as the enterprise tier, because
it typically consolidates events from sources across an entire enterprise.

Operators typically view events of significance from a console, which provides a
graphical user interface (GUI) through which the operator can take action on
events. Consoles can be proprietary, requiring special software for accessing the
6 Event Management and Best Practices

console. Or they can adhere to open standards, such as Web-based consoles
that can be accessed from properly configured Web browsers.

The collection of event sources, processors, and consoles is sometimes referred
to as the event management infrastructure.

1.3.2 Filtering and forwarding
Many devices generate informational messages that are not indicative of
problems. Sending these messages as events through the event processing
hierarchy is undesirable. The reason is because processing power and
bandwidth are needed to handle them and they clutter the operator consoles,
possibly masking true problems. The process of suppressing these messages is
called event filtering or filtering.

There are several ways to perform event filtering. Events can be prevented from
ever entering the event processing hierarchy. This is referred to as filtering at the
source. Event processors can discard or drop the unnecessary events. Likewise,
consoles can be configured to hide them from view.

The event filtering methods that are available are product specific. Some SNMP
devices, for example, can be configured to send all or none of their messages to
an event processor or to block messages within specific categories such as
security or configuration. Other devices allow blocking to be configured by
message type.

When an event is allowed to enter the event processing hierarchy, it is said to be
forwarded. Events can be forwarded from event sources to event processors and
between event processors. Chapter 2, “Event management categories and best
practices” on page 25, discusses the preferred methods of filtering and
forwarding events.

1.3.3 Duplicate detection and throttling
Events that are deemed necessary must be forwarded to at least one event
processor to ensure that they are handled by either manual or automated means.
However, sometimes the event source generates the desired message more
than once when a problem occurs. Usually, only one event is required for action.
The process of determining which events are identical is referred to as duplicate
detection.

The time frame in which a condition is responded to may vary, depending upon
the nature of the problem being reporting. Often, it should be addressed
immediately when the first indication of a problem occurs. This is especially true
in situations where a device or process is down. Subsequent events can then be
 Chapter 1. Introduction to event management 7

discarded. Other times, a problem does not need to be investigated until it occurs
several times. For example, a high CPU condition may not be a problem if a
single process, such as a backup, uses many cycles for a minute or two.
However, if the condition happens several times within a certain time interval,
there most likely is a problem. In this case, the problem should be addressed
after the necessary number of occurrences. Unless diagnostic data, such as the
raw CPU busy values, is required from subsequent events, they can be dropped.
The process of reporting events after a certain number of occurrences is known
as throttling.

1.3.4 Correlation
When multiple events are generated as a result of the same initial problem or
provide information about the same system resource, there may be a relationship
between the events. The process of defining this relationship in an event
processor and implementing actions to deal with the related events is known as
event correlation.

Correlated events may reference the same affected resource or different
resources. They may generated by the same event source or handled by the
same event processor.

Problem and clearing event correlation
This section presents an example of events that are
generated from the same event source and deal with the
same system resource. An agent monitoring a system
detects that a service has failed and sends an event to an
event processor. The event describes an error condition,
called a problem event. When the service is later
restored, the agent sends another event to inform the
event processor the service is again running and the
error condition has cleared. This event is known as a
clearing event. When an event processor receives a
clearing event, it normally closes the problem event to
show that it is no longer an issue.

The relationship between the problem and clearing event
can be depicted graphically as shown in Figure 1-1. The
correlation sequence is described as follows:

� Problem is reported when received (Service Down).
� Event is closed when a recovery event is received

(Service Recovered).

Service Down

(Problem Event)

Service
Recovered

(Clearing Event)

Figure 1-1 Problem
and clearing
correlation sequence
8 Event Management and Best Practices

Taking this example further, assume that multiple agents are on the system. One
reads the system log, extracts error messages, and sends them as events. The
second agent actively monitors system resources and generates events when it
detects error conditions. A service running on the system writes an error
message to the system log when it dies. The first agent reads the log, extracts
the error messages, and sends it as an event to the event processor. The second
agent, configured to monitor the status of the service, detects that is has stopped
and sends an event as well. When the service is restored, the agent writes a
message to the system log, which is sent as an event, and the monitor detects
the recovery and sends its own event.

The event processor
receives both problem
events, but only needs to
report the service failure
once. The events can be
correlated and one of
them dropped. Likewise,
only one of the clearing
events is required. This
correlation sequence is
shown in Figure 1-2 and
follows this process:

� A problem event is
reported if received
from the log.

� The event is closed
when the Service Recovered event is received from the log.

� If a Service Down event is received from a monitor, the Service Down event
from the log takes precedence, and the Service Down event from a monitor
becomes extraneous and is dropped.

� If a Service Down event is not received from the log, the Service Down event
from a monitor is reported and closed when the Service Recovered event is
received from the monitor.

This scenario is different from duplicate detection. The events being correlated
both report service down, but they are from different event sources and most
likely have different formats. Duplicate detection implies that the events are of the
same format and are usually, though not always, from the same event source. If
the monitoring agent in this example detects a down service, and repeatedly
sends events reporting that the service is down, these events can be handled
with duplicate detection.

Service Down

(Problem Event from
Log)

Service Recovered

(Clearing Event from
Monitor)

Service Recovered

(Clearing Event from
Log)

Service Down

(Problem Event from
Monitor)

Figure 1-2 Correlation of multiple events reporting the
same problem
 Chapter 1. Introduction to event management 9

Event escalation
Sometimes multiple events are sent to indicate a worsening error condition for a
system resource. For example, an agent monitoring a file system may send a
warning message to indicate the file system is greater than 90% full, a second,
more severe event when greater than 95% full, and a critical event greater than
98% full. In this case, the event processor does not need to report the file system
error multiple times. It can merely increase the severity of the initial event to
indicate that the problem has become more critical and needs to be responded to
more quickly.

This type of correlation is sometimes called an escalation sequence. In
Figure 1-3, the escalation sequence is described as follows:

� The problem on the far left is received and reported.

� Event severity of the reported event is escalated when subsequent events are
received (shown to its right) and those events are dropped.

� The reported event is closed when the clearing event is received.

Figure 1-3 Escalation sequence

For example, if Filesystem > 90% Full is received, it is reported as a warning.
When Filesystem > 95% Full is received, it is dropped and the reported event is
escalated to a severe. Likewise, if Filesystem > 98% Full is received, it is dropped
and the reported event is escalated again to a critical.

If Filesystem > 95% Full is the first problem event received, it is reported. The
same escalation logic applies. This type of correlation sequence assumes that
severities are clearly defined and the allowable time to respond to events of those
severities has been communicated within the organization. This is one of the

Filesystem > 90%
Full

(Problem Event - Warning)

Filesystem > 95%
Full

(Problem Event - Minor)

Filesystem > 98%
Full

(Problem Event -
Critical)

Filesystem < 90%
Full

(Clearing Event)
10 Event Management and Best Practices

purposes of the event management process described in 1.2.2, “Event
management” on page 4.

Root cause correlation
A problem may sometimes trigger other problems, and each problem may be
reported by events. The event reporting the initial problem is referred to as a root
cause, or primary event. Those that report the subsequent problems are called
symptom or secondary events.

At this point, it is important to note the difference between a root cause event and
the root cause of a problem. The former is the event that provides information
about the first of a series of related, reported problems. The latter is what caused
the problem condition to happen.

Root cause events and root causes of problems may be closely related. For
example, a root cause event reporting a faulty NIC card may be correlated with
secondary events such as “Interface Down” from an SNMP manager or
“Application unreachable” from a transaction monitoring agent. The root cause of
the problem is the broken card.

However, sometimes the two are not as closely associated. Consider an event
that reports a Filesystem Full condition. The full file system may cause a process
or service to die, producing a secondary event. The Filesystem Full event is the
root cause event, but it is not the root cause of the problem. A looping application
that is repeatedly logging information into the file system may be the root cause
of the problem.

When situations such as these are encountered, you must set up monitoring to
check for the root cause of the problem and produce an event for it. That event
then becomes the root cause event in the sequence. In our example, a monitor
that detects and reports looping application logging may be implemented. The
resulting event can then be correlated with the others and becomes the root
cause event.

Because of this ambiguity in terms, we prefer to use the term primary event
rather than root cause event.

The action taken in response to a root cause event may automatically resolve the
secondary problems. Sometimes, though, a symptom event may require a
separate action, depending upon the nature of the problem it reports. Examples
of each scenario follow.

Symptom events not requiring action
Assume that an agent on a UNIX® system is monitoring file systems for
adequate space and critical processes for availability. One of the key processes
 Chapter 1. Introduction to event management 11

is required to run at all times and is set up to automatically respawn if it fails. The
process depends upon adequate free space in the file system where it stores its
temporary data files and cannot execute without it.

The file system upon which the process depends fills up, and the agent detects
the condition and sends an event. The process dies, and the operating system
unsuccessfully attempts to restart it repeatedly. The agent detects the failure and
generates a second event to report it.

There are essentially two problems here. The primary problem is the full file
system, and the process failure is the secondary problem. When appropriate
action is taken on the first event to free space within the file system, the process
successfully respawns automatically. No action is required on the secondary
event, so the event processor can discard it.

In Figure 1-4, the correlation
sequence is described as
follows:

� The Filesystem Full event
is reported if received.

� The Process Down event
is unnecessary and is
dropped. Since the
process is set to respawn,
it automatically starts
when the file system is
recovered.

� The Filesystem Full event
is closed when the
Filesystem Recovered
clearing event is received.

� The Service Recovered clearing event is unnecessary and is dropped, since it
is superseded by the Filesystem Recovered clearing event.

Symptom events requiring action
Now suppose that an application stores its data in a local database. An agent
runs on the application server to monitor the availability of both the application
and the database. A database table fills and cannot be extended, causing the
application to hang. The agent detects both conditions and sends events to
report them.

The full database table is the primary problem, and the hanging application is the
secondary problem. A database administrator corrects the primary problem.
However, the application is hung and cannot recover itself. It must be recycled.

Filesystem Full

(Root Cause Problem
Event)

Service
Recovered

(Clearing Event)

Filesystem
Recovered

(Clearing Event)

Process Down

(Sympton Event)

Figure 1-4 Correlation sequence in which secondary
event does not require action
12 Event Management and Best Practices

Since restarting the application is outside the responsibility of the database
administrator, the secondary event is needed to report the application problem to
the appropriate support person.

In Figure 1-5, the
correlation sequence is
as follows:

� The Filesystem Full
event is reported if
received.

� The Process Down
event is reported as
dependent upon the
file system being
resolved.

� The Filesystem Full
event is closed when
the Filesystem
Recovered clearing
event is received.

� The Process Down
event is cleared when the Service Recovered clearing event is received.

An important implication of this scenario must be addressed. Handling the
secondary event depends upon the resolution of the primary event. Until the
database is repaired, any attempts to restart the application fail. Implementation
of correlation sequences of this sort can challenging. Chapter 6, “Event
management products and best practices” on page 173, discusses ways to
implement this type of correlation sequence using IBM Tivoli Enterprise Console
V3.9.

Cross-platform correlation
In the previous application and database correlation scenario, the correlated
events refer to different types of system resources. We refer to this as
cross-platform correlation. Some examples of platforms include operating
systems, databases, middleware, applications, and hardware.

Often, cross-platform correlation sequences result in symptom events that
require action. This is because the support person handling the first resource
type does not usually have administrative responsibility for the second type. Also,
many systems are not sophisticated enough to recognize the system resources
affected by a failure and to automatically recover them when the failure is

Filesystem Full

(Root Cause Problem
Event)

Service
Recovered

(Clearing Event)

Filesystem
Recovered

(Clearing Event)

Process Down

(Sympton Event)

Figure 1-5 Correlation sequence in which secondary
event requires action
 Chapter 1. Introduction to event management 13

resolved. For these reasons, cross-platform correlation sequences provide an
excellent opportunity for automated recovery actions.

Cross-host correlation
In distributed processing environments, there are countless situations in which
conditions on one system affect the proper functioning of another system. Web
applications, for example, often rely on a series of Web, application, and
database servers to run a transaction. If a database is inaccessible, the
transaction fails. Likewise, servers may share data through message queuing
software, requiring the creation of the queue by one server before it is accessed
from another.

When problems arise in scenarios such as these, events can be generated by
multiple hosts to report a problem. It may be necessary to correlate these events
to determine which require action. The process of correlating events from
different systems is known as cross-host correlation.

In the example presented in “Symptom events requiring action” on page 12, the
database can easily reside on a different server than the application accessing it.
The event processor takes the same actions on each event as described
previously. However, it has the additional burden of checking the relationship
between hosts before determining if the events correlate. Cross-host correlation
is particularly useful in clustered and failover environments. For clusters, some
conditions may not represent problems unless they are reported by all systems in
the cluster. As long as one system is successfully running an application, for
example, no action is required. In this case, the event processor needs to know
which systems constitute the cluster and track which systems report the error.

In failover scenarios, an error condition may require action if it is reported by
either host. Consider, for example, paired firewalls. If the primary firewall fails and
the secondary takes over, each may report the switch, and cross-host correlation
may be used to report failure of the primary. However, a hard failure of the
primary may mean that the failover event is sent only by the secondary. This
event should indicate the failure of the primary firewall as the condition that
requires action. Again, the event processor needs to know the relationship
between the firewalls before correlating failover events.

See 6.6, “Event synchronization” on page 295, to learn about ways in which
cross-host correlation can be implemented using IBM Tivoli Enterprise Console.

Topology-based correlation
When such networking resources as routers fail, they may cause a large number
of other systems to become inaccessible. In these situations, events may be
reported that refer to several unreachable system resources. The events may be
reported by SNMP managers that receive no answer to their status queries or by
14 Event Management and Best Practices

systems that can no longer reach resources with which they normally
communicate. Correlating these events requires knowledge of the network
topology, and therefore are referred to as topology-based correlation.

This type of correlation, while similar to cross-host correlation, differs in that the
systems have a hierarchical, rather than a peer, relationship. The placement of
the systems within the network determines the hierarchy. The failure of one
networking component affects the resources downstream from it.

Clearly, the event reporting the failing networking resource is the primary, or root,
cause event and needs to be handled. Often, the secondary events refer to
unreachable resources that become accessible once the networking resource is
restored to service. In this case, these events may be unnecessary. Sometimes,
however, a downstream resource may need to be recycled to resynchronize it
with its peer resources. Secondary events dealing with these resources require
corrective action.

Since SNMP managers typically discover network topology and understand the
relationships between devices, they are often used to implement topology-based
correlation. In 6.3, “Correlation” on page 218, we discuss how these products
perform topology-based correlation.

Timing considerations
An important consideration in performing event correlation is the timing of the
events. It is not always the case that the primary event is received first. Network
delays may prevent the primary event from arriving until after the secondary is
received. Likewise, in situations where monitoring agents are scheduled to check
periodically for certain conditions, the monitor that checks for the secondary
problem may run first and produce that event before the root cause condition is
checked.

To properly perform event correlation in this scenario, configure the event
processor to wait a certain amount of time to ensure that the primary condition
does not exist before reporting that action is required for the secondary event.
The interval chosen must be long enough to allow the associated events to be
received, but short enough to minimize the delay in reporting the problem.

See Chapter 6, “Event management products and best practices” on page 173,
to learn about methods for implementing this using IBM Tivoli Enterprise
Console.

1.3.5 Event synchronization
When events are forwarded through multiple tiers of the event management
hierarchy, it is likely that different actions are performed on the event by different
 Chapter 1. Introduction to event management 15

event processors. These actions may include correlating, dropping, or closing
events.

Problems can arise when one event processor reports that an event is in a
certain state and another reports that it is in a different state. For example,
assume that the problem reported by an event is resolved, and the event is
closed at the central event processor but not at the event processors in the lower
tiers in the hierarchy. The problem recurs, and a new event is generated. The
lower-level event processor shows an outstanding event already reporting the
condition and discards the event. The new problem is never reported or resolved.

To ensure that this situation does not happen, status changes made to events at
one event processor can be propagated to the others through which the event
has passed. This process is known as event synchronization.

Implementing event synchronization can be challenging, particularly in complex
environments with several tiers of event processors. Also, environments
designed for high availability need some way to synchronize events between their
primary and backup event processors. Chapter 6, “Event management products
and best practices” on page 173, addresses the event synchronization methods
available in IBM Tivoli Enterprise Console V3.9, with its NetView Integrated
TCP/IP Services Component V7.1.4 and IBM Tivoli Switch Analyzer V1.2.1.

1.3.6 Notification
Notification is the process of informing support personnel that an event has
occurred. It is typically used to supplement use of the event processor’s primary
console, not to replace it. Notification is useful in situations when the assigned
person does not have access to the primary console, such after hours, or when
software licensing or system resource constraints prevent its use. It can also be
helpful in escalating events that are not handled in a timely manner (see 1.3.8,
“Escalation” on page 17).

Paging, e-mail, and pop-up windows are the most common means of notification.
Usually, these functions exist outside the event processor’s software and must be
implemented using an interface. Sometimes that interface is built into the event
processor. Often, the event processor provides the ability to execute scripts or
BAT files that can be used to trigger the notification software. This is one of the
simplest ways to interface with the notification system.

It is difficult to track the various types of notifications listed previously, and the
methods are often unreliable. In environments where accountability is important,
more robust means may be necessary to ensure that support personnel are
informed about events requiring their action.
16 Event Management and Best Practices

The acceptable notification methods and how they are used within an
organization should be covered in the event management process, which is
described in 1.2.2, “Event management” on page 4.

1.3.7 Trouble ticketing
Problems experienced by users can be tracked using trouble tickets. The tickets
can be opened manually by the help desk or operations center in response to a
user’s phone call or automatically by an event processor.

Trouble ticketing is one of the actions that some event processors can take upon
receipt of an event. It refers to the process of forwarding the event to a
trouble-ticketing system in a format that system can understand. This can
typically be implemented by executing a script or sending an e-mail to the
trouble-ticketing system’s interface or application programming interface (API).

The trouble-ticketing system itself can be considered a special type of event
processor. It can open trouble tickets for problem events and close them when
their corresponding clearing events are received. As such, it needs to be
synchronized with the other event processors in the event management
hierarchy. The actions of opening and closing trouble tickets are also referred to
as trouble ticketing.

In environments where accountability is important, robust trouble-ticketing
systems may provide the tracking functions needed to ensure that problems are
resolved by the right people in a timely manner.

1.3.8 Escalation
In 1.3.4, “Correlation” on page 8, we discuss escalating the severity of events
based on the receipt of related events. This escalation is handled by the event
source, which sends increasingly more critical events as a problem worsens.
There are a few kinds of event escalation that require consideration.

Escalation to ensure problems are addressed
An event is useless in managing IT resources if no action is taken to resolve the
problem reported. A way to ensure that an event is handled is for an event
processor to escalate its severity if it has not been acknowledged or closed within
an acceptable time frame. Timers can be set in some event processors to
automatically increase the severity of an event if it remains in an
unacknowledged state.

The higher severity event is generally highlighted in some fashion to draw greater
attention to it on the operator console on which it is displayed. The operators
 Chapter 1. Introduction to event management 17

viewing the events may inform management that the problem has not been
handled, or this notification may be automated.

In addition to serving as a means of ensuring that events are not missed,
escalation is useful in situations where the IT department must meet
service-level agreements (SLAs). The timers may be set to values that force
escalation of events, indicating to the support staff that the event needs to be
handled quickly or SLAs may be violated.

For escalation to be implemented, the allowable time frames to respond to events
of particular severities and the chain of people to inform when the events are not
handled must be clearly defined. This is another purpose of the event
management process described in 1.2.2, “Event management” on page 4.

Business impact escalation
Events can also be escalated based upon business impact. Problems that affect
a larger number of users should be resolved more quickly than those that impact
only a few users. Likewise, failures of key business applications should be
addressed faster than those of less important applications.

There are several ways to escalate events based upon their business
significance:

� Device type

An event may be escalated when it is issued for a certain device type. Router
failures, for example, may affect large numbers of users because they are
critical components in communication paths in the network. A server outage
may affect only a handful of users who regularly access it as part of their daily
jobs. When deploying this type of escalation, the event processor checks to
see the type of device that failed and sets the severity of the event
accordingly. In our example, events for router failures may be escalated to a
higher severity while events of servers remain unchanged.

� Device priority

Some organizations perform asset classifications in which they evaluate the
risk to the business of losing various systems. A switch supporting 50 users
may be more critical than a switch used by five users. In this escalation type,
the event processor checks the risk assigned to the device referenced in an
event and increases the severity of those with a higher rating.

� Other

It is also possible to perform escalation based on which resources a system
fails, assigning different priorities to the various applications and services that
run on a machine. Another hybrid approach combines device type and priority
to determine event severity. For example, routers may take higher priority than
18 Event Management and Best Practices

servers. The routers are further categorized by core routers for the backbone
network and distributed routers for the user rings, with the core routers
receiving heavier weighting in determining event severity.

An organization should look at its support structure, network architecture, server
functions, and SLAs to determine the best approach to use in handling event
escalation.

1.3.9 Maintenance mode
When administrative functions performed on a system disrupt its normal
processing, the system is said to be in maintenance mode. Applying fixes,
upgrading software, and reconfiguring system components are all examples of
activities that can put a system into maintenance mode.

Unless an administrator stops the monitoring agents on the machine, events
continue to flow while the system is maintained. These events may relate to
components that are affected by the maintenance or to other system resources.
In the former case, the events do not represent real problems, but in the latter
case, they may.

From an event management point of view, the difficulty is how to handle systems
that are in maintenance mode. Often, it is awkward to reconfigure the monitoring
agents to temporarily ignore only the resources affected by the maintenance.
Shutting down monitoring completely may suppress the detection and reporting
of a real problem that has nothing to do with the maintenance. Both of these
approaches rely on the intervention of the administrator to stop and restart the
monitoring, which may not happen, particularly during late night maintenance
windows.

Another problem is that maintenance may cause a chain reaction of events
generated by other devices. A server that is in maintenance mode may only
affect a few machines with which it has contact during normal operations. A
network device may affect large portions of the network when maintained,
causing a flood of events to occur.

How to predict the effect of the maintenance, and how to handle it are issues that
need to be addressed. See 2.10, “Maintenance mode” on page 72, for
suggestions on how to handle events from machines in maintenance mode.

1.3.10 Automation
You can perform four basic types of automated actions upon receipt of an event:

� Problem verification
 Chapter 1. Introduction to event management 19

It is not always possible to filter events that are not indicative of real problems.
For example, an SNMP manager that queries a device for its status may not
receive an answer due to network congestion rather than the failure of the
device. In this case, the manager believes the device is down. Further
processing is required to determine whether the device is really operational.
This processing can be automated.

� Recovery

Some failure conditions lend themselves to automated recovery. For example,
if a service or process dies, it can generally be restarted using a simple BAT
file or script.

� Diagnostics

If diagnostic information is typically obtained by the support person to resolve
a certain type of problem, that information can be gathered automatically
when the failure occurs and merely accessed when needed. This can help to
reduce the mean-time to repair for the problem. It is also particularly useful in
cases where the diagnostic data, such as the list of processes running during
periods of high CPU usage, may disappear before a support person has time
to respond to the event.

� Repetitive command sequences

When operators frequently enter the same series of commands, automation
can be built to perform those commands. The automated action can be
triggered by an event indicating that it is time to run the command sequence.
Environments where operators are informed by events to initiate the
command sequences, such as starting or shutting down applications, lend
themselves well to this type of automation.

Some events traverse different tiers of the event processing hierarchy. In these
cases, you must decide at which place to initiate the automation. The capabilities
of the tools to perform the necessary automated actions, security required to
initiate them, and bandwidth constraints are some considerations to remember
when deciding from which event processor to launch the automation.

1.4 Planning considerations
Depending upon the size and complexity of the IT environment, developing an
event management process for it can be a daunting task. This section describes
some points to consider when planning for event correlation and automation in
support of the process.
20 Event Management and Best Practices

1.4.1 IT environment assessment
A good starting point is to assess the current environment. Organizations should
inventory their hardware and software to understand better the types of system
resources managed and the tools used to manage them. This step is necessary
to determine the event sources and system resources within scope of the
correlation and automation effort. It is also necessary to identify the support
personnel who can assist in deciding the actions needed for events related to
those resources.

In addition, the event correlation architect should research the capabilities of the
management tools in use and how the tools exchange information. Decisions
about where to filter events or perform automated actions, for example, cannot
be made until the potential options are known.

To see the greatest benefit from event management in the shortest time,
organizations should target those event sources and system resources that
cause the most pain. This information can be gathered by analyzing the volumes
of events currently received at the various event processors, trouble-ticketing
system reports, database queries, and scripts can help to gain an idea about the
current event volumes, most common types of errors, and possible opportunities
for automated action.

IBM offers a service to analyze current event data. This offering, called the Data
Driven Event Management Design (DDEMD), uses a proprietary data-mining tool
to help organizations determine where to focus their efforts. The tool also
provides statistical analysis to suggest possible event correlation sequences and
can help uncover problems in the environment.

1.4.2 Organizational considerations
Any event correlation and automation design needs to support the goals and
structure of an organization. If event processing decisions are made without
understanding the organization, the results may be disappointing. The event
management tools may not be used, problems may be overlooked, or perhaps
information needed to manage service levels may not be obtained.

To ensure that the event correlation project is successful, its design and
processes should be developed with organizational considerations in mind.

Centralized versus decentralized
An organization’s approach to event management is key to determine the best
ways to implement correlation and automation. A centralized event management
environment is one in which events are consolidated at a focal point and
 Chapter 1. Introduction to event management 21

monitored from a central console. This provides the ability to control the entire
enterprise from one place. It is necessary to view the business impact of failures.

Since the operators and help desk personnel at the central site handle events
from several platforms, they generally use tools that simplify event management
by providing a common graphical interface to update events and perform basic
corrective actions. When problems require more specialized support personnel
to resolve, the central operators often are the ones to contact them.

Decentralized event management does not require consolidating events at a
focal point. Rather, it uses distributed support staffs and toolsets. It is concerned
with ensuring that the events are routed to the proper place. This approach may
be used in organizations with geographically dispersed support staffs or point
solutions for managing various platforms.

When designing an event correlation and automation solution for a centralized
environment, the architect seeks commonality in the look and feel of the tools
used and in the way events are handled. For decentralized solutions, this is less
important.

Skill levels
The skill level of those responsible for responding to events influences the event
correlation and automation implementation. Highly skilled help desk personnel
may be responsible for providing first level support for problems. They may be
given tools to debug and resolve basic problems. Less experienced staff may be
charged with answering user calls and dispatching problems to the support
groups within the IT organization.

Automation is key to both scenarios. Where first level support skills are strong,
semi-automated tasks can be set up to provide users the ability to easily execute
the repetitive steps necessary to resolve problems. In less experienced
environments, full automation may be used to gather diagnostic data for direct
presentation to the support staffs who will resolve them.

Tool usage
How an organization plans to use its systems management tools must be
understood before event correlation can be successfully implemented. Who will
use each tool and for what functions should be clearly defined. This ensures that
the proper events are presented to the appropriate people for their action.

For example, if each support staff has direct access to the trouble-ticketing
system, the event processor or processors may be configured to automatically
open trouble tickets for all events requiring action. If the help desk is responsible
for dispatching support personnel for problems, then the events need to be
presented to the consoles they use.
22 Event Management and Best Practices

When planning an event management process, be sure that users have the
technical aptitude and training to manage events with the tools provided to them.
This is key to ensuring the success of the event processing implementation.

1.4.3 Policies
Organizations that have a documented event management process, as defined
in 1.2, “Terminology” on page 4, may already have a set of event management
policies. Those that do not should develop one to support their event correlation
efforts.

Policies are the guiding principles that govern the processing of events. They
may include who in the organization is responsible for resolving problems; what
tools and procedures they use; how problems are escalated; where filtering,
correlation, and automation occur; and how quickly problems of various
severities must be resolved.

When developing policies, the rationale behind them and the implications of
implementing them should be clearly understood, documented, and distributed to
affected parties within the organization. This ensures consistency in the
implementation and use of the event management process.

Table 1-1 shows an example of a policy, its rationale, and implication.

Table 1-1 Sample policy

It is expected that the policies need to be periodically updated as organizations
change and grow, incorporating new technologies into their environments. Who
is responsible for maintaining the policies and the procedure they should follow
should also be a documented policy.

1.4.4 Standards
Standards are vital to every IT organization because they ensure consistency.
There are many types of standards that can be defined. System and user names,

Policy Rationale Implication

Filtering takes place as
early as possible in the
event life cycle. The
optimal location is at the
event source.

This minimizes the effect of
events in the network,
reduces the processing
required at the event
processors, and prevents
clutter on the operator
consoles.

Filtered events must be
logged at the source to
provide necessary audit
trails.
 Chapter 1. Introduction to event management 23

IP addressing, workstation images, allowable software, system backup and
maintenance, procurement, and security are a few examples.

Understanding these standards and how they affect event management is
important in the successful design and implementation of the systems
management infrastructure. For example, if a security standard states that only
employees of the company can administer passwords and the help desk is
outsourced, procedures should not be implemented to allow the help desk
personnel to respond to password expired events.

For the purposes of event correlation and automation, one of the most important
standards to consider is a naming convention. Trouble ticketing and notification
actions need to specify the support people to inform for problems with system
resources. If a meaningful naming convention is in place, this process can be
easily automated. Positional characters within a resource name, for example,
may be used to determine the resource’s location, and therefore, the support
staff that supports that location.

Likewise, automated actions rely on naming conventions for ease of
implementation. They can use characters within a name to determine resource
type, which may affect the type of automation performed on the resource. If
naming conventions are not used, more elaborate coding may be required to
automate the event handling processes.

Generally, the event management policies should include reference to any IT
standards that directly affect the management of events. This information should
also be documented in the event management policies.
24 Event Management and Best Practices

Chapter 2. Event management
categories and best
practices

Event management issues need to be addressed when an organization begins
monitoring an IT environment for the first time, decides to implement a new set of
systems management tools, or wants to rectify problems with its current
implementation. Often it is the tool implementers who decide the approach to use
in handling events. Where multiple tools are implemented by different
administrators, inconsistent policies and procedures arise.

The purpose of this chapter is to provide best practices for both the general
implementation approach an organization uses to monitor its environment and
the specific event management concepts defined in Chapter 1, “Introduction to
event management” on page 1. Product-specific best practices are addressed in
Chapter 6, “Event management products and best practices” on page 173.

This chapter is a compilation of best practices in regards to event management
and the rationale behind them. When reading this chapter, keep in mind the
following rules:

2

© Copyright IBM Corp. 2004. All rights reserved. 25

� Place more weight on the reasons that affect organizations when determining
which best practices to implement.

� Use of business impact software may affect which best practices to
implement.

Specifically, do not blindly start using a best practice from this chapter. Keep the
context of the best practice in mind and apply it to your specific needs. Be sure to
weigh the rationales given for these best practices.

2.1 Implementation approaches
There are many approaches for implementing an event management design.
Those that are used generally arise from the knowledge, experience, and
creativity of the systems management product implementers. Each approach has
its advantages and disadvantages which organizations must weigh when
deciding how to proceed.

Regardless of the approach selected, effective communication within the
organization, clear direction from management, a culture that does not assign
blame for or finger-point over missed problems, and clear event management
policies are critical to its success (see 2.2, “Policies and standards” on page 32).

Five of the more common approaches, and their pros and cons are discussed in
the following sections.

2.1.1 Send all possible events
When implementing tools, sending events is enabled for all monitors. All error
messages are extracted from logs of interest and forwarded through the event
management hierarchy.

This approach, while generally easy to implement, has many drawbacks. The
event management consoles, trouble-ticketing systems, or both become
cluttered with messages that may not represent actual problems. Operators and
support staffs are left with the challenge of sifting through large amounts of
information to determine which events or trouble tickets represent real problems
and require action. Bandwidth and processing cycles are wasted in handling the
extraneous events.

Of all the methods deployed, this one usually results in the most frustration to the
tool users. These uses often ignore events, close large numbers of them at once,
or cease using the tools to deal with the large event volumes.
26 Event Management and Best Practices

2.1.2 Start with out-of-the-box notifications and analyze reiteratively
The default settings provided with the systems management tools are used as a
starting point to determine which events to handle. Received events are analyzed
periodically to determine whether they are truly relevant to an organization.

This strategy relies on the belief that the vendor has chosen to report meaningful
information and that the values chosen result in a reasonable event volume. If the
tool vendor has done a good job in selecting defaults, this approach can be a
good one. If not, the tool users may still have the challenge of finding the real
problems among many extraneous events.

Another downside of choosing tool defaults as the starting point is that it does not
consider conditions or applications that are unique to the organization. For
example, if a homegrown application is used, no vendor-supplied tool will supply
defaults as to which application errors to report to the event management
processors.

2.1.3 Report only known problems and add them to the list as they
are identified

In this method, only events that indicate real problems are reported. When new
problems occur, the technicians responsible for resolving them determine
whether a log message can be extracted or a monitor deployed to check for the
error condition. The new events are implemented. When the problem reoccurs,
the events received are analyzed to ensure that they successfully reported the
condition in a timely manner.

This approach is sometimes used when an organization enlists an application or
systems support department to pilot use of the systems management tools.
Presenting the support people with real problems that they know how to handle
makes their jobs easier, helps reduce the mean-time to repair, and hopefully
makes them advocates of the tools to other support departments.

Support personnel like this approach. The events they receive are those that
actually require action. This eliminates the situation where administrators spend
time researching events only to find they do not require any corrective action. If
this occurs too often, the support personnel eventually ignore the events
presented to them.

Adding small numbers of new events at a time minimizes the possibility of event
floods, and therefore, problem tickets or service dispatches. The events report
conditions that the administrator has already resolved, so the resolution to the
problems are usually known and easily handled. Finally, since those informed of
the problems are already responsible for fixing them, they do not have the
impression that the tool is giving them additional work.
 Chapter 2. Event management categories and best practices 27

The drawback of this approach is that the problem must occur and be identified
as a real problem before it is reported. This relies on non-automated methods
such as user phone calls to report the problem. Thus, when an error occurs for
the first time, it is not automatically detected or reported.

2.1.4 Choose top X problems from each support area
This is a variation of the previous approach. Representatives from each support
area provide information about their top problems. The conditions can be
situations on which they spend the most time handling, or those that, while
infrequent, can have the greatest impact on the systems for which they are
responsible.

The approach differs from the previous one in that the problems can be
conditions that have not yet happened but are so critical or pervasive in nature
that they require immediate action if they occur. Also, monitors are implemented
in an attempt to prevent them from occurring at all.

Again, administrators like this approach because they control which notifications
they receive. Their most time-consuming and repetitive problem determination
and recovery tasks can be automated, freeing them for more interesting
challenges. Finally, they can stop manually monitoring for the situations that can
potentially cause the most serious outages or problems.

The downside is that the condition must be already known to the support staff
before it is reported. It does not catch problem conditions of which the
administrator is not yet aware.

2.1.5 Perform Event Management and Monitoring Design
Using the Event Management and Monitoring Design (EMMD) methodology, all
possible events from sources in the IT environment are analyzed and event
processing decisions are made for them.

This approach, while most time-consuming to implement, is the most thorough. It
offers the advantages of the other approaches while addressing their drawbacks.
Again, support personnel are only notified of real problems and have control over
the notifications they receive. Reviewing all possible events may highlight
previously unidentified potential problems and monitors may be implemented to
detect them. This makes this approach more proactive than the others.

Because this solution is the most encompassing, we recommend that you use
this one. Organizations can employ the methodology themselves, or contract with
IBM Global Services to lead the effort and use proprietary tools for the event
analysis, documentation, and implementation.
28 Event Management and Best Practices

Event Management and Monitoring Design
Since events are typically obtained from network and system monitoring agents,
event management and monitoring are related topics. The proper monitors must
be implemented to receive meaningful events into an event management
hierarchy at a rate at which they can be handled.

Therefore, another method of implementing event correlation and automation is
to simultaneously analyze the monitors that are available or already implemented
and the events they produce. IBM developed a proprietary methodology and
patented set of tools to address both monitoring and event processing. The
methodology and tools are available to clients as IBM Global Services offering
Event Management and Monitoring Design.

EMMD approach
The EMMD approach systematically analyzes monitors and events based on
either the resources that comprise a business function or the types of agents that
produce events. The client's environment typically determines the manner in
which the EMMD is used. In an organization with a high degree of separation by
business application, it makes sense to perform a service decomposition to
catalog which system resources and monitoring agents are applicable to critical
business functions, and analyze those using the methodology. The support
personnel responsible for the application are also accountable for the server
performance and can make decisions on the proper handling of both kinds of
events.

Alternately, monitoring agent analysis may be done in organizations where
support is by platform type or component rather than application. In these
environments, a support group handles all the events of a certain type,
regardless of the application or server that produces them. Therefore, the
support group can take responsibility for all events produced by the monitoring
agents they handle.

Methodology
Regardless of which way you use EMMD, you must follow these steps in the
methodology:

1. Set scope: Determine the scope of the project. Decide which services or
monitoring agent event sources to analyze. Often, critical or high-visibility
business functions are chosen when using the service decomposition
approach. For component analysis, the monitoring sources that produce the
most events, or those that report problems for the least stable platforms, are
typically selected.

2. Determine event handling policies: As discussed throughout this redbook,
best practices dictate that a set of guidelines exists to determine how to
handle events. This provides consistency across the organization and makes
 Chapter 2. Event management categories and best practices 29

it easier to decide which action to take for a particular event. In this step, key
members of the organization work together to develop these policies.

3. Document event repertoires: The events that can be produced by event
sources are compiled into worksheets used to document decisions about the
events. These lists can include all possible events from a given source, or
those routinely received at the event processors. Typically, all events from a
source are analyzed if there is a manageable number.

For sources that can produce a plethora of possible events, the events are
usually limited in one of two ways. The limitation can be based on the event
policies such as “Filter events related to configuration changes” or “Do not
report information only events”. Alternately, the events to be analyzed can be
limited to those that are typically generated by the source. This list is
comprised of each type of event produced by the source within a
representative time frame such as two to four weeks.

4. Select monitors and thresholds: Review existing monitors for relevance,
and suggest new monitors to ensure necessary events are reported.
Meaningful thresholds are set based on both best practices and on the
baseline performance of the machines to be monitored.

5. Document event handling decisions: Appropriate subject matter experts
(SMEs) decide the filtering, forwarding, notification, and automation actions
for each event in the event repertoire. These are documented in the event
repertoire worksheets. The captured information is reported based on the
level in the event processing hierarchy at which the processing should occur.
It includes such things as event severities, trouble-ticket priorities, and
automation script names.

6. Conduct event correlation analysis: Determine which events correlate
together, and assign primary, secondary, or clearing status to them. The
SMEs can suggest possible correlation sequences based upon the meaning
of the various events, and upon their experience in solving past problems that
may have produced the events. Help Desk personnel are also invaluable in
determining which events occur together since they frequently view all events
and visually correlate them to determine which require trouble tickets and
which should be dispatched to support staffs. In addition, you can use an
IBM-patented data mining tool to determine statistically which events often
occur together. This same tool can suggest possible correlation sequences.
The event relationships are depicted diagrammatically using Visio.

7. Review the deliverables: The project deliverables include the event handling
policies, completed event repertoire worksheets, and correlation diagrams.
Review these to ensure that they are understood both by those responsible
for handling the events and the implementers of the monitoring agents and
event processors.
30 Event Management and Best Practices

8. Define an implementation plan: Discuss ways to implement the design and
develop an implementation plan. The plan includes, among other things, the
order in which the event sources should be configured, the tasks required to
complete the implementation, responsible parties, and testing and backout
procedures.

Tools
To aid in the various steps of the methodology, IBM developed and patented a set
of tools. These tools serve to automate the design steps wherever possible and
produce configuration information that can be used in the implementation:

� EMMD tool: This is a Visual Basic tool that automates the creation of event
repertoire worksheets. Blank worksheets may be produced that are used by
the IBM practitioner to document the events from a given source. The tool can
also populate worksheets with event information from Simple Network
Management Protocol (SNMP) Management Information Bases (MIBs),
NetView trapd files, and IBM Tivoli Enterprise Console BAROC files. The
worksheets include such information as the event name, description, filtering
decisions, throttling parameters, forwarding, and automation commands or
script names. They also include notification and trouble-ticketing targets and
methods for each tier or event processor in the event management hierarchy.

Additionally, the tool can help to generate Visio stencils that represent each
event that requires correlation. These are used in the Visio diagrams to
document the event correlation sequences.

� EMMD workbooks: Based on Microsoft® Excel, these workbooks contain
macros that assist in the documentation of the event handling decisions. The
functions may include shadowing events that are filtered, propagating
information between the sheets that represent the various tiers of the event
management hierarchy, and generating IBM Tivoli Enterprise Console
classes and rules based on predefined templates to implement the design
using IBM Tivoli Enterprise Console.

� EMMD diagrams: The Visio diagrams depict the relationships among events,
showing primary and secondary problem events and those that clear them.
Using the stencils generated by the EMMD tool, the practitioner creates a
multi-page diagram that shows the event sequences. The diagram includes a
table of contents for easy navigation among the pages. Also, macros defined
in a base diagram allow for such functions as generating IBM Tivoli Enterprise
Console rules to implement the correlation sequences. These rules are a
starting point for correlating events and should be modified to fit into a
modular IBM Tivoli Enterprise Console rulebase when implementing the
EMMD design.

� Data Driven Event Management Design (DDEMD) tool: This data mining
tool can help to process lists of commonly received events. The events to be
 Chapter 2. Event management categories and best practices 31

processed are input via ASCII files. They can come from a wide variety of
sources such as Microsoft Windows® Event Logs, IBM Tivoli Enterprise
Console wtdumprl output, and log files.

The events are parsed to determine event type and relevant information within
the event. The various analysis functions of the tool, including reporting event
frequency by type and host, event rates by time-of-day, and statistical
correlation of events, can use the event details. There are also predictive
functions within the tool that enable the practitioner to see the impact of
implementing various filtering and correlation rules for the given list of events.

2.2 Policies and standards
Critical to the success of event management is the process of creating event
processing policies and procedures and tracking compliance with them. Without
this, an organization lacks consistency and accountability. When different support
groups implement their own event management, the tools used are not
configured to standards, making them difficult to configure and maintain.
Inconsistent tool use can affect measurements, such as mean-time to repair,
make accountability more difficult, or skew the problem counts that may be used
to determine staffing in the various support groups.

Each event handling action—filtering, forwarding, duplicate detection, correlation,
escalation, synchronization, notification, trouble ticketing, and
automation—should be described in a documented policy. This makes it easier to
make event processing decisions and implement systems management tools.

In this section, we discuss important policies and procedures to develop and
document in addition to those that specifically describe the major event handling
actions of filtering, duplicate detection, correlation, escalation, and automation.
For each, we recommend that you list the policy and its implications.

Note that some implications always follow from the policy, and others depend
upon your systems management toolset or organizational structure. Table 2-1
shows an example in which the implications always follow from the policy.
32 Event Management and Best Practices

Table 2-1 Policy and implications

If your problem management system is incapable of performing paging, you may
add an implication stating that you need to develop an interface to send the
trouble-ticket number to whichever event processor will trigger paging.

2.2.1 Reviewing the event management process
You must first keep in mind the dynamic nature of the event management
process. Organizations grow and change, developing new requirements and
outgrowing existing ones. While the event management process is developed to
address known issues, time, organizational changes, and experience often bring
others to light, requiring changes to the event management process.

These changes can be made to the event handling guidelines documented in the
policies and procedures, or to the implementation of the event processors that
filter, forward, correlate, automate, notify, and trouble ticket events. Periodically
review these at time intervals related to the rate at which your organization
changes.

Updating policies and procedures
Assign the responsibility for the iterative review and update of policies and
procedures to one person. This individual should understand your organizational
structure, be privy to information about upcoming changes, know the roles of the
various support groups, and be able to work with them to gather new
requirements and integrate them into the existing policies and processes.

The reviews can be scheduled to occur periodically, such as once a year. Or they
can be triggered by events such as reorganizations within the company, mergers
and acquisitions, changes in upper management (and hence visions and goals),
outsourcing, or additions of lines of business or applications.

Modifying systems management tool implementations
There are two types of tool modifications. The first relates to how the tools
address event management policies and procedures. The second relates to how
they handle specific events.

Policy Rationale Implications

Automatically page
for all severity one
events.

Improves mean-time
to repair.

To be meaningful, the notification
should include the trouble-ticket
number.

Minimizes assigning
the wrong support
person to the problem.

An audit trail is required to ensure the
process is working properly and to
record who is assigned to the event.
 Chapter 2. Event management categories and best practices 33

Updates to the event management policies and processes often imply changes
to the tools that implement them. Hence, these types of changes frequently
coincide. Other factors that affect this type of change are implementation of new
systems management tools or upgrades to existing ones. Typically, the new or
upgraded software is capable of providing new function or more effectively
implementing existing ones. Sometimes this means that the tool must be
implemented or reconfigured to enforce the policies and procedures previously
defined. Other times, the improved tools provide a better means of addressing
event management, implying changes to the underlying policies and processes.

Changes to how the tools process individual events are affected by several
factors and should be iterative to account for them. These changes are more
frequent than the changes that address policies and processes and should be
implemented more often:

� New event sources

As new hardware and software are added to the environment, new events
may be generated, or there may be changes to the use of existing ones.
Review the new events through a methodology such as IBM EMMD,
document the decisions for handling the events, and implement the changes.

� Problem post mortems

These are ideal situations to help identify the causes and resolutions for
problems. Use these sessions constructively to identify ways to monitor for
the future failures, new events to forward, and correlation sequences, and
implement them.

� Experience of operators/staff using the events and their correlations

Those who monitor the consoles for events often have a good sense of which
events flood, occur together, or can be ignored safely. Use their ongoing input
to tweak your event management implementation.

Often event processing decisions are initially made based on information in
messages manuals or on the educated guesses of SMEs. When an error
condition occurs, it may behave differently than anticipated. For example, the
message manual states the meaning of an error message that indicates an
important failure for which notification is desired. However, it fails to mention
that the subsystem will retry the failing process five times per second and
generate the error message each time it fails. Those watching the console
detect this and can provide the feedback necessary to suppress the duplicate
messages or find another means of detecting the condition.

2.2.2 Defining severities
The severity assigned to an event is an indication of the how critical a problem is
that it reports, which relates, in turn, to how quickly service must be restored to
34 Event Management and Best Practices

the failing system or resource. Event processors may use different terminology,
but most provide a range of severities that can be used to designate varying
degrees of criticality, ranging between “immediate attention required” and “this
can wait”.

Severity levels may already be defined as part of documented problem or change
management processes or service level agreements. In this case, use the
existing definitions. Otherwise, define severities and acceptable recovery times
as part of the event management process. For each severity, choose notification
methods appropriate for events of those critical levels.

Consider mapping severities to business impact. For example, define fatal to
imply a key business process is down and affects many users. Designate
warning to mean problems with non-critical resources or those that affect few
users.

This is important for two major reasons. First, it is easier to decide the severity to
assign to an event. When implementing event management, personnel from the
support organization may be called upon to review events and identify those for
which they desire notification. Part of this process is to assign severities to the
events and choose a notification type. Knowing the meanings of the various
severities simplifies this process.

For example, when the server that runs a key business application fails, it must
be handled immediately. If a fatal severity is defined to mean “respond
immediately” and “inform by paging”, the administrator can easily decide this is
the proper severity to assign to events reporting outages involving that server.

Second, clear definitions facilitate tool setup and maintenance. When the same
types of notifications are performed on all events of the same severity, the event
processing tool can be configured to merely check an event’s severity and take
the appropriate action. If there is no consistency, the event processor must check
additional parts of the event before making its determination, which complicates
the implementation.

When event processors use different severities, define mappings to show how
they relate. This is necessary to ensure events forwarded from one event
processor to another are assigned the proper severity at the receiver. Show how
the trouble-ticket severities map between all event processors in the hierarchy,
from the event sources and monitoring agents, through the correlation engines,
to the trouble-ticketing system. See Chapter 6, “Event management products and
best practices” on page 173, for a sample severity mapping.
 Chapter 2. Event management categories and best practices 35

2.2.3 Implementing consistent standards
One of the primary goals of the event management process is to automate the
filtering, duplicate detection, notification, correlation, and escalation of events
and the recovery of systems. Automation of any kind is easier when the
resources that are handled adhere to standards.

Organizations that already adhere to standards can more easily implement event
management than those that have not yet defined or implemented them. If your
organization is in the process of developing standards while implementing event
management at the same time, you may have to initially set up two types of
processing: one for machines that follow the convention, and one for machines
that do not follow the convention. This allows you to proceed with event
management without waiting until your environment is completely converted to
the new standards.

Use standards in your event management process, and keep them consistent
across the enterprise. There are always special cases which arise, but these
should be kept to a minimum. This minimizes the processing cycles that are
required and simplify configuring and maintaining tools.

The following sections document two examples of how commonly implemented
standards can facilitate event management.

Naming conventions
Naming conventions is one of the most important standards to have. Machines,
scripts, files, domains, and the like should all have consistent names across an
organization because they are commonly used or referenced in automation.

Depending upon your support structure, you may need to notify, page, or route a
trouble ticket to people based upon the geographic location of the failing machine
or by its device type. Having a standard naming convention simplifies this
process.

If the standard is to use a geographic location or device type in either the domain
names or in positional characters within the host name, the event processor can
easily determine whom to notify. When a failure occurs to RDUWWS01, for
example, automation can determine from the first three characters that the
device is in Raleigh and from the next two that it is a Windows Web server, and
notify based on this information.

It is much easier to determine the proper support group for a problem based on
geography or device type than by individual host. If the trouble ticket queue
names or e-mail user IDs follow a convention similar to the machine names, it
may be possible to create the notification target from values extracted from the
host name, avoiding the need to maintain the information separately in
36 Event Management and Best Practices

spreadsheets or files for individual hosts. This is advantageous, particularly in
large organizations with many systems located across many sites.

System configurations
Automation can be consistently applied to machines that have the same
configuration. For example, when a performance problem occurs on a machine, it
may be desirable to gather diagnostic data from the time that degradation occurs.
Otherwise, the condition may clear and the information disappear, leaving the
assigned support person unable to research the problem.

The tools needed to gather the diagnostics may be installed on some systems
but not others. Therefore, the automation can only be applied to a subset of the
environment. The systems management tool implementer must then determine
which systems have the required diagnostic tools installed, and implement two
types of event handling (one with diagnostics and one without) for the same
event.

Standard machine configurations eliminates this problem by ensuring that
predefined groups of systems are all configured the same.

2.2.4 Assigning responsibilities
Potentially many people may be involved in the event management process,
including support staffs, tool implementers, help desk and operations center
personnel, and managers. All have opinions about how to handle events based
their on experience in their jobs.

Definitely use their input when developing the event management process.
Including their ideas helps to ensure a robust solution that meets the needs of its
users. People who feel that they have influence are also more likely to embrace
the resulting processes, facilitating their enforcement.

However, assign specific responsibilities to the involved parties and designate a
final arbiter who will decide issues in dispute. Otherwise, the development
process may stall as the involved people seek consensus (which is often difficult
to obtain, especially in large groups).

Some of the roles to assign include:

� Process owner: Heads the development of the policies referenced in this
section. Has ultimate responsibility for the success of the event management
process.

� Systems management architect: Designs the technical solution to meet the
event processing requirements while adhering to appropriate policies and
standards.
 Chapter 2. Event management categories and best practices 37

� Tool implementers: Install, configure, and support the systems management
tools to process events to the specifications of the architect’s design.

� Subject matter experts: Supply knowledge about a particular platform or
system and determine the processing required for events within their areas of
expertise.

� Support staff: Handles problems with platforms and systems.

� Help desk: Provides the first level of support for users and give feedback that
is used by the SMEs to make event processing decisions.

� Managers: Enforce adherence to policy by their staffs and ensure problems
are addressed in a timely manner by responding to escalation procedures.

Consider that one person may fill multiple roles. For example, the SMEs are
usually part of the support staff that resolves problems for their areas of
expertise.

Assign people to the roles that defined in the previous list. This ensures that the
appropriate person is handling a given task, eliminates duplication of effort, and
provides accountability within your organization.

2.2.5 Enforcing policies
Given the importance of both the automated event handling policies and those
defined in this section, it is crucial to see they are followed. Therefore, define,
implement, and track compliance with policies. This ensures consistency of
design and ease of tool implementation and maintenance, resulting in a
successful event management endeavor.

The ramifications of not following policies and procedures vary with the policy
itself. Data validity, for example, may be adversely affected by not following the
policy requiring operators and administrators to close problems when they are
resolved. Only closed events are recorded in the Tivoli Enterprise Data
Warehouse database. Leaving problems in an open state can prevent them from
being recorded and reported within the warehouse, leading to incomplete or
misleading service-level reports.

One implication of enforcing policy is the necessity of a method of tracking
adherence to it. Record who takes which actions on an event. This lets you know
who to contact for the status of open problems and provides a means of
determining who invoked wrong actions on an event so you can ensure it does
not recur.
38 Event Management and Best Practices

2.3 Filtering
Filtering is, without question, an essential part of work in each event
management effort. This section discusses filtering, which in IT terms is
described as the process of blocking information based on a defined set of rules
and standards. In general, we define filtering as the part of the whole
engagement, where we try to remove as much redundant and unnecessary data
as possible.

The most difficult part is to determine what the right data is that we need to
effectively implement an event management which signals possible alert
situations. The following sections discuss the aspects of filtering in a systems
management environment. They also discuss best practices for the filtering task
itself. They do not cover device specific filtering methods and best practices.

2.3.1 Why filter
Obviously there is a need to restrict the data entering our event management
system, or filter them somewhere on their path toward the event management
system. Otherwise, we would not dedicate a whole section to this topic.

There are several reasons why filtering of events is most recommended:

� The pure amount of data produced by managed objects

In a complex IT environment, the amount of events produced by managed
objects can reach a high amount of discrete events being sent to a single
management instance. Many devices provide, by default, all events they are
available to offer, which, for some of those management agents can easily be
a list of several hundred events. If this is multiplied by the number of different
managed devices in a managed environment, we see that these amount of
possible events cannot seriously be managed.

� Redundant information produced by various monitoring agents inside a single
managed object

Often, various monitoring instances on a device provide the same information
and send them in the form of events. For example, the syslog subsystem on a
UNIX server provides critical information, while the SNMP agent running on
that server provides trap information about the same event.

� Network and bandwidth considerations, event server limitations

In a large and complex distributed environment the event-related traffic is
basically unwanted waste of resources. This applies both to the traffic
produced from status polling of devices and the traffic generated by devices
sending asynchronous unsolicited events over the network. Event-related
traffic can occupy a reasonable amount of bandwidth. In most environments,
 Chapter 2. Event management categories and best practices 39

network bandwidth is still a precious resource and is normally reserved for
productive matters. An increased system management traffic can be treated
itself as an degrading event.

Also, the receiving instance, whether a simple event console or a more
sophisticated business management system, cannot accept an unlimited
number of events per time frame. Often, the receiving management system
itself polls managed objects in regular intervals to monitor critical resources
on that object. If a threshold is exceeded, this information is translated into an
event and enters the event stream. Obviously, if management stations have a
limited capability to receive events, they have a limitation on the amount of
polling operations per time frame.

You can find a discussion about specific products and their capabilities in
Chapter 6, “Event management products and best practices” on page 173.

� Manageability

As a first rule, keep the event management system as simple as possible. Too
many events from a large number of different sources can lead to confusion.
An operator can soon start to ignore incoming events if they alarm for
duplicate events or, even worse, lead to wrong alarms and actions.

All of these points are reason enough to limit the amount of data arriving in the
event management system. Together they make the need for filtering essential.

2.3.2 How to filter
The main question we must ask is: “Which events do you need to do your job?”
Or better, we should ask: “Because most IT organizations today are service units
for the various other departments, which events do you need to fulfill the
agreements you made with your customers?”

In general, if a piece of information arrives in our management system and does
not indicate a loss or a degradation of services, it should not appear and should
be blocked. If it does not affect your service level agreements, remove it.

Keep in mind, that a particular event, in which you are not interested, may be of
some importance to other departments. Therefore, preventing the event from
being generated may not be the best idea.

Suppressing the delivery of an event, without making it completely unavailable to
other recipients, makes the simple term filtering more difficult. Everyone may
agree on filtering itself, but where the actual filter is applied can be vary from one
viewpoint to the other.
40 Event Management and Best Practices

2.3.3 Where to filter
Now we must ask: “Where do you need to filter unwanted events?” If we
remember the discussion in “Why filter” on page 39, we considered the occupied
network bandwidth as a good reason for filtering. The possible large amount of
events was another reason.

This can only lead to one rule: Filter as close to the source as possible. Filtering
as close to the source is, in most cases, the best method to block an event from
being delivered to the rest of the world. It saves bandwidth, helps to keep event
management systems manageable, and saves system resources needed for
production.

Filtering as close as possible, preferably directly at the source, should be the first
choice. But sometimes, you cannot achieve this goal for the following reasons:

� The event may be of some importance to other management instances. For
example, network operations may be interested in a toggling integrated
services digital network (ISDN) interface. The organization running the
corporate wide event console is, in most cases, not interested as long as the
network performance is not degraded.

� The event cannot be filtered at the source, because the event generator itself
is an all-or-nothing implementation. Either you buy all the events or you block
all of the events.

� Events generated as a result of a status poll operation are normally not of a
particular importance on the focal point level of the management system, in
case it is an event console implementation such as the IBM Tivoli Enterprise
Console. The status information is definitely needed for the actual status
poller to maintain a list of the current states of the managed objects. Status
information is also required if the focal point for the event management is a
system dedicated to business impact management. Business impact
management systems keep a record about the actual state of its managed
object to monitor complete business environments.

� Trying to filter the event at the source can result in a effort which is more
costly than just trying to catch the event on a higher level of event
management. For example, after a rollout of a high number of devices, it turns
out all the devices are, by default, configured to a positive forward all state.
Remotely accessing these devices and blocking the unwanted event
one-by-one at the source can be time consuming.

2.3.4 What to filter
Now we need to specify what to filter. This is by far the most time consuming task
related to filtering. Under normal circumstances, the various resources to be
 Chapter 2. Event management categories and best practices 41

managed are well known. But regardless of whether these resources are capable
of providing valuable information to a management system in form of events is
not necessarily known.

After the set of event sources is specified, we need to address all events of each
event source and analyze them for their value to the event management. Of
course, we do not limit the analysis of the events to filter. Decisions, correlation
candidates, and throttling parameters may be discussed and documented during
this stage.

Speaking of best practices, two suggested approaches exist to make filter
decisions and the correct correlation and escalation decisions. Refer to 2.5,
“Correlation” on page 51, and 2.7, “Escalation” on page 60, for more information
about correlation and escalation.

The first approach applies to environments, where little or no event processing
takes place. It may also apply to environments where events are generated, but
are treated as unwanted noise until a working systems management
environment is set up. In this case, you must complete these tasks:

1. Identify and define the event sources who are important to the management
organization. Often it helps if element chains are documented and there is a
given management view in place.

2. For each event source, build a list of all events offered by the event source.

3. Find an expert for the resource being analyzed and discuss the importance
(or lack of importance) of each event.

4. Find an expert who is responsible for the management of that particular
resource. Often this is the same person who knows the events that are
needed. Discuss whether the events should be included in the event
management.

5. Document these decisions.

The approach is somewhat static because it defines a set of event sources to be
analyzed and the results being implemented. If no iterative process is setup after
the initial work, the result is quickly outdated.

Define a process that, after the initial analysis, detects changes in the event flow
or additions and deletions in the set of event sources. It should also ensure that
the event management process is iterative.

This approach can be called filter by SMEs. The analysis and the resulting filter
decisions depend on the expertise of the people who are responsible for a given
resource.
42 Event Management and Best Practices

Another approach to obtain fundamental information about the events appearing
in a given environment is to analyze the events itself using a data mining
approach:

1. Obtain information about all events received in your organization over a time
frame of at least three months to have a solid base for analysis.

2. Normalize the data by extracting only the relevant information, such as:

– Time stamp
– Event type
– Event name

Try to limit the event information to a minimum. It is sufficient if the event can
be uniquely identified.

3. With a small part of the whole data repository, typically the events of a
two-week time frame, run an initial analysis. Make sure that the data contains
the information you expect.

– Use the whole data and analyze it.

– Are there any large amounts of a single event?

– Is there another event from the same source having the same or a similar
count?

Such a pattern often signals a violation event and its corresponding
clearing event.

– Are there groups of events from different event sources appearing with
similar counts?

This can be a initial problem causing other, secondary exceptions to occur.
What makes them correlation candidates?

– Are there more than two different events from one event source appearing
with the same or a similar count?

This can be a primary or secondary condition, too. For example, an
interface down SNMP trap sent by a network device is often followed by an
interface down event produced by the SNMP network manager, generated
by a status poll operation against this interface. An unsuccessful poll for
status against an interface can result in a node down event being
generated if the interface was the object’s only interface.

This type of group of events is a good filter candidate. You really need only
one indication to signal a problem. The same applies to the associated
clearing events. You often find an interface up trap, an interface up event,
and a node up event.

4. Define filtering. After you run such an event analysis, you still need SMEs for
the particular event source to finally define the filter conditions. Having solid
 Chapter 2. Event management categories and best practices 43

data about event occurrence and the amount of events for a particular
situation helps to keep the discussion short.

One last way to perform filter analysis is through problem post mortems. Analysis
of situations where a service degradation occurred and nobody was informed
may help to revise or find some filter decisions that were not made before.

Regardless of the method used to determine events to filter, filtering is never
implemented perfectly on the first try. You must continuously evaluate and
redefine your filtering methodology for filtering to be most effective. As business
needs and requirements change, you must also update your filtering
methodology.

2.3.5 Filtering best practices
Up to now, we discussed the need to filter and different methods to eliminate
unwanted events. There are some best practices for which events not to filter and
which events should never find their way into the management system.

Here are some best practices to implement for filtering:

� Do not filter or block events that have an exactly defined meaning, where an
automatic action can be issued. Nor should you filter the corresponding
clearing event.

� Do not filter clearing events for problem events you report. Administrators do
not know when an event has been resolved if they do not receive the clearing
event. Also, during correlation, a problem event may not be closed if a
clearing event is not received. Remember that clearing events are essential
for de-escalation purposes.

� Report any exception from the normal process only once. For example, we
mentioned the interface down trap, which causes an interface down and a
node down event. Only one event should be passed to the management
system. If possible, the primary event should be passed.

There is an exception to this rule. Sometimes it is useful to take the double
events to verify the situation. A node down may result from timing or network
problems. The interface down trap always signals a real exception. When the
interface down trap does not find its way into the management system, the
interface down and node down events are the only indications of a failing
interface.

� When using business impact software, do not filter status change events. This
renders the business impact software useless for providing status of objects.

� Always pass actionable events and their clearing events. An actionable event
must be acted upon by either automation or administrator intervention.
44 Event Management and Best Practices

� Do not double monitor a resource. Having multiple monitors check for a single
condition causes processing overhead and produces redundant events. Only
one problem should be reported to prevent more than one support person
from handling the same issue.

A possible exception to this rule is when multiple agents are needed to
validate that a problem is real and not a false positive. In this case, it is
acceptable to double monitor the resource as long as the events produced by
each monitor are correlated and only one reported.

� Filter false positives if possible to avoid unwanted and unneeded alerts and
events. If you page someone at 3 a.m., you better be sure it’s a real problem.

2.4 Duplicate detection and suppression
Duplicate event detection is the process of determining which events represent
the same instance of the same problem, and summarizing or suppressing them
in a way that simplifies the event management process. Its purpose is to save
cycles and system resources on event processors, and minimize bandwidth used
to send unnecessary events.

2.4.1 Suppressing duplicate events
Duplicate detection and suppression can be done in more than one way.
Depending on the case, the best practice can vary. Here are some common
methods to perform duplicate detection (sometimes referred to as
de-duplication):

� Send the first event and suppress the others. This approach is typically used
with events that state a failure in a system or equipment. Immediately
reporting the event minimizes the mean-time to repair.

� Send an event only after a predefined number is received. This practice,
commonly referred to as throttling, is often used for events that represent
peak conditions.

While some monitored variables, such as processor utilization, occasionally
reach peaks, this is not a problem unless sustained for a period of time. For
these types of events, do not send the first event. Summarize it with the
subsequent events and send one event if they reach a threshold. After the
event is sent, drop future occurrences until the time period expires or the
condition clears. For example, if more than five peak events are received in 10
minutes, there may be a problem that requires notification. Count the events
and send the fifth along with a count of the times it occurred.
 Chapter 2. Event management categories and best practices 45

� Send an event only after a predefined number is received and send all future
occurrences. While similar to the previous method, this differs in that all
events are forwarded when the threshold is reached.

This approach may be used when it is necessary to know the actual values
the variable reached. For these events, do not send the first event.
Summarize it with the subsequent events and send one event if they reach a
threshold. For example, if more than five peak events are received in 10
minutes, it may represent a problem and you need to be notified. When
subsequent events are received, extract the relevant values from them and
update the reported event.

This method is not generally used because it requires sending and
processing all events generated after the predefined number. In general, if all
the monitored values are required for problem determination or trending, this
information should be provided by another type of tool and not by events.

2.4.2 Implications of duplicate detection and suppression
Duplicate detection and suppression, when well done, are useful and can give
fast results for the event management process. However, in some cases, it is
important to ensure that you do not miss information, as illustrated in the
following examples.

Time window considerations
The first two examples illustrate how time windows affect duplicate detection and
suppression for peak events. In Figure 2-1, a duplicate detection and
suppression process was created for a processor utilization variable. In this case,
when one peak event arrives, it is buffered and a time window is created. If four
more events occur inside the time window, one event is sent to the event
management system. Note that no event is sent because only three events
occurred during the time window.

The problem in this case is that the last five events occurred over a time period
that is shorter than the defined time window, but no event is sent. This is because
one time window was opened upon receipt of the first event and no others were
started until the first one expired.
46 Event Management and Best Practices

Figure 2-1 Static time window for peak events

Figure 2-2 shows the same situation, but with another duplicate detection and
suppression process. For this example, every time a new event arrives, a new
time window is created. During the first time window, three events occur, the
same as in the last scenario. However, during the second window, five events
occur and one is sent.

Figure 2-2 Multiple time windows for peak event

First Event

Window Time Interval

Reset
Time

Window

First Event

Window Time Interval

Reset
Time

Window

Window Time Interval

Send
Event
 Chapter 2. Event management categories and best practices 47

There are appropriate times to use each of these methods to create time
windows:

� Use static time windows for situations that generate many (more than the
threshold) consecutive events in a short time. It is also appropriate when you
have severe performance constraints, since it does not create many time
windows, reducing overhead in the event processors.

� Use multiple time windows when the performance constraints are not so rigid,
fewer events arrive during the time windows, and the trigger number of
occurrences must always send an event.

Obviously, the methods employed depend upon the capabilities of the event
processing tool used.

Effect of clearing events on failure reporting
Make sure that resolved problems are closed or that duplicate detection
suppresses new occurrences of same problem, considering an outstanding
problem already reported. The next two examples discuss the effect of clearing
events on failure reporting.

Based on 2.4.1, “Suppressing duplicate events” on page 45, when a failure event
arrives, the first event reporting should be sent to the event management system.
Duplicate events should be suppressed during the time window. In the previous
example, if a clearing event occurs within the time window and is not used to
close the reported problem, subsequent failures within the time window are
treated as duplicates and not reported. Figure 2-3 shows this example.

For short time windows, operators viewing the events may notice the clearing
event and manually close the original problem, which resets the window.
However, this method is unreliable. The clearing event may become lost within
large volumes of events, particularly for long event windows. The originally
reported problem stays open, and subsequent failures are not reported.
48 Event Management and Best Practices

Figure 2-3 Clearing event does not reset the time window

The example in Figure 2-4 illustrates how resetting the time window and opening
a new one when the problem next occurs will resolve this problem.

Figure 2-4 Clearing event resets time window

A good practice is to correlate the failure event with its clearing event and close
the problem. This results in resetting the time window, clearing the duplicate
counter, and ensuring new occurrences of the problem are reported.

Time Window

Reset
Time

WindowClearing
Event

Send
Event

Time Window

Time Window

Send
Event

Reset
Time

Window

Clearing
Event

Send
Event
 Chapter 2. Event management categories and best practices 49

2.4.3 Duplicate detection and throttling best practices
We make several recommendations for duplicate detection and throttling. We
also provide the rationale behind these recommendations:

� Perform duplicate detection as close to the source as possible.

This practice saves cycles and system resources on event processors, and
minimizes bandwidth used for sending unnecessary events.

When possible, configure the event source to detect duplicates and suppress
them. If it is incapable of performing these actions or if implementing at the
source causes undue, cumbersome tool configurations, use the closest event
processor capable of performing the function.

� Use throttling for intermittent problems that may clear themselves
automatically and do not always require action. After a problem is reported,
suppress or drop duplicates.

It is frustrating for a support person to investigate a problem only to find that
the problem has disappeared or requires no action. If this occurs too often,
the support person loses faith in the systems management tools and begins
to ignore its notifications.

� For events that indicate problems always requiring action, inform when the
first event is received, and suppress or drop duplicates.

This notifies the support person most quickly and minimizes the mean-time to
repair for the problem.

� Do not use duplicate events to re-inform whether the original problem has
been handled. Instead, use escalation.

Using duplicate events as reminders that a problem is still open is a bad
practice. The extra events clutter consoles, possibly forcing the operator to sift
through many events to find the meaningful ones. If there are too many
events, the console user may begin to ignore them or close them in mass.
See “Unhandled events” on page 60 for a discussion about using escalation
for events that have not been handled in a timely manner.

This bad practice typically arises in organizations that point fingers for
unhandled problems and assign blame. Those who are responsible for
resolving problems often need to justify why they miss problems and blame
the tool for not informing them. The event management implementers, fearing
these reproaches, configure the tools to send all occurrences of a problem
rather than just one. Unfortunately, this compounds the problem because now
the support person has to handle many more events and can still miss ones
that require action.

Management needs to create an environment on which problem post
mortems are used constructively, minimizing blame and enabling
50 Event Management and Best Practices

administrators to pursue and fix the causes of missed events rather than
creating event floods to avoid blame.

� Use duplicate detection for open and acknowledged events.

Duplicate detection is often implemented for open events but not
acknowledged ones. These are equally as important because they indicate
that the problem is being addressed but is not yet corrected. Since someone
is notified of the problem, there is no reason to re-inform with subsequent
events.

2.5 Correlation
Several sources can help to determine the relationships among events. SMEs
within the organization can provide input about events in their areas of expertise.
Vendors can also furnish information about the events produced by their
software. Sometimes the messages manual for a product supplies event
groupings by stating that a message is one of a series and listing the other
messages that appear with it.

Data mining tools that employ statistical analysis, such as the proprietary
software used in the IBM Data Driven Event Management Design (DDEMD)
services offering, can suggest possible correlation sequences. Problem post
mortems can help to determine events that frequently occur together or to
validate proposed event sequences. Which sources of information an
organization uses depends upon the skill level of its SMEs, the willingness or
ability of its vendors to share information, and its access to statistical tools.

Often the event management implementer is left with the challenge of making
sense of the information gathered and taking a best guess as to which of these
potential correlation sequences to implement. Overzealousness may lead to
correlating events that do not necessarily associate and dropping real problems
as a result. An overly cautious approach may require more operator intervention
to manually close or associate events. The best practices that follow are general
guidelines to use in determining which sequences to implement.

2.5.1 Correlation best practices
The first step in determining what to correlate is to collect information from the
sources identified previously. After the potential sequences are identified, apply
these guidelines to choose which one to implement:

� Only correlate events whose relationship is clearly understood.

Correlation should be implemented only when the association between the
events is known. Implementing a best guess can result in correlation
 Chapter 2. Event management categories and best practices 51

sequences that inadvertently drop real problems because they are
erroneously thought to be symptom events. It is better to have an operator
manually handle an event several times until its relationship to other events is
known than to implement automatic associations that may not be valid.

As discussed in 2.2, “Policies and standards” on page 32, the event
management process should be iterative and the event handling decisions
should be updated as new information becomes available. Start with the
sequences you know, and add to them based on the experience of your
operations and support staffs.

� Automatically clear problem events when possible.

Implement this type of correlation sequence whenever feasible. This ensures
that the accuracy of the list of open events from which the operations and
support staffs work. It also prevents duplicate detection from flagging new
occurrences of a problem as duplicates of the resolved problem.

It is usually easy to identify the clearing events associated with problem
events. Monitoring agents can often be configured to generate them. The
product documentation frequently describes the association between the
problem and clearing events. Messages extracted from logs can be more
difficult to clear. Sometimes only the problem is recorded and the recovery
condition is not. In these cases, a policy is needed to ensure that operators
manually close problems when they are resolved.

Implementing clearing event sequences is also easy. Many monitoring
products supply the rules necessary to do this type of correlation. Ways in
which the IBM Tivoli Enterprise Console product can be configured to clear
events are discussed in detail in 6.3, “Correlation” on page 218.

Remember to close the clearing events as well as the problem events. This
minimizes the number of events that display on operator consoles and
reduces overhead at the event processor.

� Correlate events that show a worsening condition.

Sometimes when a condition intensifies, multiple events are generated to
show the progression of the problem. Correlate these types of events, and
keep only the first in the series. Update it with the higher severities as the
other events are received. If desired, include a threshold or other appropriate
information, such as the time stamp from those events, and then drop them.

This processing ensures that the original, reported event is available for event
synchronization. When the problem is closed in the trouble-ticketing system
or in another event processor, this event is then correctly closed. If another
event is kept, the synchronization process does not know to look for it, and the
problem may remain open indefinitely.
52 Event Management and Best Practices

Learn how IBM Tivoli Enterprise Console can correlate and escalate
problems in 6.3, “Correlation” on page 218, and 6.5, “Escalation” on
page 262.

� Report all events requiring action, not just primary events.

Part of understanding the relationship among events is knowing how action
taken to resolve the problem referenced by one event affects the conditions
reported by related events. This information must be obtained before
determining whether a secondary event requires action.

Sometimes resolving the primary problem automatically fixes the symptom
problem. In this case, no further action is required. Other times, the symptom
condition does not clear automatically when the primary problem is resolved,
necessitating action for the secondary event. See “Root cause correlation” on
page 11 for examples of correlation sequences in which the secondary events
require action and those in which they do not.

To ensure all problems are resolved, report all events requiring action, even if
they are symptom events. Some implications of this are discussed in 2.5.2,
“Implementation considerations” on page 54.

� Drop secondary events that do not require action, unless they are status
events required by a business impact manager.

If an event does not require action, it is not needed at the event processor. To
prevent clutter on the processor’s console, drop the event. Some implications
of this are discussed in 2.5.2, “Implementation considerations” on page 54.

The only exception to this rule is listed in the following practice for users of
business impact software.

� Forward all status events to business impact software, even those that do not
require action.

Business impact managers are used to show the effects of system resource
failures upon business functions. The proper functioning of business impact
software relies upon it accurately reflecting the status of each of the system
resources that constitute its business views.

When a resource known by the business impact manager changes status, its
new state needs to be reflected in both tool’s database and business views.
The effect the status change has on other resources is calculated, and the
affected resources and views are modified to reflect their new states.

Therefore, if using business impact software, forward all status events to it.
 Chapter 2. Event management categories and best practices 53

2.5.2 Implementation considerations
While product-specific implementation is discussed in Chapter 6, “Event
management products and best practices” on page 173, some general
guidelines apply regardless of the tools that are used:

� If no clearing event is sent to report a resolved condition, require operators to
close the appropriate event.

Leaving open problems in an event processor can lead to incorrect error
reporting. Namely, the duplicate detection process may think there is an
outstanding problem and discard an event that reports a new problem. Also,
some data warehousing tools only load closed events into their databases.
Keeping problems open prevents them from being recorded in the
warehouse, and subsequently being included in trending and service level
agreement reports.

To prevent this from happening, implement clearing events. However,
sometimes this is not possible. For these events, the operator should
manually close the event through the trouble-ticketing system or event
processor’s console.

This policy should be documented in the event management process
guidelines, and compliance with it should be enforced and tracked.

� Link symptom events requiring action to the problem events upon which they
depend.

If a symptom event requires action to resolve the problem it reports, the action
most likely cannot be executed until the primary problem is resolved. For
example, a process that depends upon free space in a file system cannot be
restarted until that space is available.

To show dependency between events, link them in the event processor or
trouble-ticketing systems. The events may be linked by updating fields in each
to show its relationship to the other. Another approach is to copy the relevant
information from the symptom event into the primary and then drop the
secondary.

The support person assigned to the problem can read the additional text to
determine what actions may be required to handle the symptoms. Then they
can either perform those action if appropriate or requeue the event or events
to a different group once the primary problem is resolved.

� Repeat lower level correlations at higher levels.

Correlation may fail for a couple of reasons:

– The events may arrive too far apart. When it receives an event, the event
processor often sets a timer to determine how long to wait before reporting
the event as a problem. If an associated event or perhaps even its root
54 Event Management and Best Practices

cause event is received after the timer expires, no correlation occurs and
both events are treated as primary problems that require action.

In a multi-tiered environment, the events may be forwarded to a higher
level event processor. They may arrive at the higher level closer together.
Defining the same correlation sequence at that processor allows for the
chance that they arrive within the correlation window. The events can
possibly be correlated and the appropriate event can be reported.

– Memory constraints in the event processor may prevent the events from
being correlating. If the processor relies on the presence of the events in
cache to associate them, correlation fails if one of the events is dropped
from cache due to memory shortages.

Again, the higher level processor may not have the same constraints and
may be able to perform the correlation.

� Allow sufficient time to receive events before you correlate them.

Setting timers in an event processor is an art. Waiting too little for events can
result in missing the correlation between events and reporting them all as
problems, even the symptom events not requiring action. Lengthier correlation
windows eliminate this problem, but may introduce others. If the timer is set
too long, there may be a delay in reporting the problem, resulting in a longer
mean-time to repair. Also, events that are caused by different error conditions
may be erroneously correlated.

Observe the rate at which associated events are generated by sources and
received by event processors to choose meaningful timer values. This
information can be obtained from logs at the event sources and processors,
and from problem post mortems.

� Correlate events from clusters, and escalate problems as more machines in
the cluster experience them.

Clusters are groups of two or more systems typically used for load balancing
or failover. If one machine in the cluster reports an event, there may not be a
problem. For example, in a failover environment, only one machine in the
cluster may need to run an application at a time. In this case, if the monitoring
agents detect the application is not running on one server, this is a normal
state and does not need to be reported. The problem exists when the
application is not running on any clustered system. This concept also applies
to grid computing.

In a load-balancing cluster, the situation is slightly different. If one system
experiences a problem, it should be addressed. However, it is less critical
than if every system in the cluster has the same problem. Use differing
severities to reflect the business impact of these two distinct conditions.
 Chapter 2. Event management categories and best practices 55

Implement cross-host correlations to handle the unique event reporting
requirements for clusters and to ensure the proper error conditions are
detected and reported.

� Perform topology-based correlation for network events using an SNMP
manager.

Since the SNMP manager knows the network topology, it is capable of
performing topology-based correlation. Many SNMP managers provide the
ability to correlate network events out-of-the-box.

Performing topology-based correlation between network and server events
requires supplying the network layout information to the event processor at
which these events converge, typically not an SNMP manager. While it is
possible to provide the topology to other types of event processors, the
procedure is often complex and difficult to implement. Most networks are
dynamic, implying frequent updates to the topology information supplied to
the processors. This quickly becomes impractical, particularly in large
networks.

If the SNMP manager can detect the status of non-networking resources,
such as services, it can be used to perform topology-based correlation for
events concerning those resources. You can find a description of how
NetView implements this type of correlation in 6.3.1, “Correlation with
NetView and IBM Tivoli Switch Analyzer” on page 218.

2.6 Notification
Notification is a key step in the event management process. It is useless to detect
an error condition unless action is taken to correct it. While automation is used
increasingly to recover from problems, there are still many situations that require
the intervention of an administrator to resolve. Notification is the means by which
the appropriate person is informed to take action.

2.6.1 How to notify
This section discusses the methods of notification from your event processing
tool and the advantages and drawbacks of each. Figure 2-5 shows an overview
of the types of notification. Depending on the structure of your business, you will
handle your notifications in different ways.
56 Event Management and Best Practices

Figure 2-5 Types of notifications

With event processing tools, there are typically three ways to implement
notifications:

� Console viewing by operators

Operators watch the console looking for events that require action. When they
see an event, they respond by taking action themselves or manually inform
another person. Having operators view the console and then manually notify
support teams gives you the advantage of having someone to verify events
manually when they happen and give the notification to the right person.

The disadvantages include human error, for example missing an event on the
console. The disadvantages also involve the costs of keeping and training a
person to watch the console.

� Direct paging and e-mailing from the event processing tool

Directly paging from the event processor, through scripts or executables that
are triggered by criteria of an event, gives you the functionality of not having
an operator continuously watch the console. However, it is difficult to maintain
the proper lists of which groups to notify for which problems. This information,
already kept in the trouble-ticketing system, needs to be duplicated in the
event processor in different places such as rule bases or custom scripts. It is
also difficult to track the notifications or ensure they are received.

� Integration with a trouble-ticketing system for automatic notifications

The main advantage of integrating with a trouble-ticketing system is that you
tie in with tools and processes that already exist within your organization at
the help desk, operations, or command center. It is much easier to track
on-call lists and the right support groups for notifications. Timetables for

Direct Page
or E-mail

Trouble
Ticketing

E-mail Page Automatic
Notification

Support Group

Event Processing Tool

Manual
Notification

Console
 Chapter 2. Event management categories and best practices 57

notifications are also easier to create and maintain within trouble-ticketing
systems.

It is also easier to assign each trouble ticket to the proper groups based on
information within each event. For example, if you integrate your
trouble-ticketing system with your asset management system, you can
automatically assign tickets to the proper support group based on the
hostname slot from your event.

2.6.2 Notification best practices
This section discusses the best ways to design and implement problem
notification:

� When possible, handle all notifications through integration with a problem
tracking tool.

Many trouble-ticketing systems provide all three notification methods: a
console for viewing open problems and e-mail and paging capabilities.
Performing these functions from a single place simplifies system setup and
maintenance. See 2.6.1, “How to notify” on page 56, for more details.

� Notify someone about all problem or actionable events

Before you start thinking about sending notifications for your event processing
tool, review the events you are receiving and classify them into two separate
groups:

– Informational events: Events that do not show a system as being down
or having a problem such as clearing events

– Problem or actionable events: Events that indicate a system or
application is unavailable or has a problem such as process or service
down events

Usually it is a good idea to notify only on events that require a individual or
support group to take action, specifically problem events. You do not want to
notify someone about informational events, especially if it is after hours.

Next go through all of your problem events and decide which group or
individual receives the notification. It is a good idea to set up a database or
spreadsheet if you are not using a trouble-ticketing system.

Note: While it is not a common practice to notify about clearing events,
support groups may want to know when their system is back up. If this is
the case, write your notification rules or scripts so that the notification
comes from the original down event being closed and not the clearing
event.
58 Event Management and Best Practices

� Consider the severity of the problem, the time of day, and critical level of the
failing system when determining what notification action to take. Page for
higher severity problems and critical resources, and notify others by e-mail.

After you decide which types of events require notification, go through each
type and determine the severity at which you want to notify. Two automated
methods are used for notification (console viewing is not automated):

– Paging: Sending text or numeric messages to a paging device or cell
phone

– E-mail: Sending messages through the organization’s e-mail system

When trying to determine the severity of the event, keep in mind the
importance of the host from which the event is coming. Try to relate the
severity of the event to the importance of the failing system.

Determining the severity for the event is directly related to the notification
method chosen. When you page someone, you can reach them at all hours of
the day. When you e-mail, you cannot reach someone unless they are logged
in and checking their mail. Therefore, it is a good idea to have the higher
severity or priority problems send a page and have the lower severity
problems send an e-mail.

While you determine this, keep in mind the time of day that these notifications
are sent. Although it is not suggested, some trouble-ticketing systems can
send different types of notifications at different times of day such as sending
an e-mail during the day and paging at night. Usually it is best to keep your
notifications standard, either e-mail or page based on the problem severity.
This is for easier maintainability. However, you must watch for sending
unwanted or false pages, especially after hours.

� Ensure that after-hours paging does not occur for non-critical problems.

After you set up your severities and methods for notifications, double check to
make sure that you are not sending notifications for non-critical problems.
Also, remember that the notification process is on-going and that when a
mistake or false page is sent, you must take the proper steps to ensure that it
does not happen again.

� Report problems with a notification system by some other means.

Obviously, if the primary notification system is experiencing problems, it
cannot be relied upon to report a problem with itself. Use another event
processor or backup method to report problems with the notification system.
 Chapter 2. Event management categories and best practices 59

2.7 Escalation
Escalation is the process of increasing the severity of events to correct perceived
discrepancies in their importance and to ensure problems receive appropriate
and timely attention. Best practices always depend on an organization’s
environment and policies. It is no different for escalation.

In this section, some escalation recommendations are provided for different
environments. Use those which most closely reflect your organization.

Also keep in mind hardware and performance issues when creating escalation
processes. The number of escalated events needs to be well defined and
controlled, ensuring that perceived discrepancies are corrected while minimizing
processing overhead.

2.7.1 Escalation best practices
As discussed in Chapter 1, “Introduction to event management” on page 1, there
are several different types of escalation. Each is important to the event
management process and should have at least one policy that defines the
standard way to implement it within an organization. As with all standards and
policies, this facilitates tool implementation and maintenance.

This section covers the best practices for the three types of escalation.

Unhandled events
Without a clear, well-defined escalation policy for unhandled events, it is possible
that problems may be reported but never resolved. An assigned support person
may be too busy to work on a problem or not know how to proceed. Escalation
ensures that events are handled in a timely manner by creating a greater sense
of urgency through raising event severities, notifying additional people, or both.

Escalating problems is often used in help desks and network operations centers.
It helps management by advising of situations in which those responsible for an
event do not follow the procedures or cannot complete the job in time. With this
information, managers can better coordinate the work force. For example, if an
operator has too much work and cannot handle an event in time, the problem is
escalated to the manager, who can allocate an idle operator to help with its
resolution. See the first best practice in the list that follows this discussion.

The question becomes how long to wait to see if an event is being handled. It is
possible to set different durations based on event type, host priority, time of day,
and other factors. However, this quickly becomes a maintenance nightmare. An
easy, effective alternative is to base it on severity. See the second and third best
practices in the list that follows this discussion.
60 Event Management and Best Practices

Next, decide what needs to occur within the time interval. Two typical actions are
acknowledging and closing the event. The person assigned to a problem can be
given a limited time, based on the severity of the problem, to acknowledge the
event or close it. This informs the event management system that the problem is
being addressed or is successfully resolved. If the time interval expires without
event acknowledgement or closure, the problem is escalated. See the fourth best
practice in the list that follows this discussion.

Regardless of whether you choose to escalate based on acknowledging or
closing events or both, you must define the escalation chain or hierarchy of
people to inform for unhandled problems. See the fifth best practice in the list that
follows this discussion.

The best practices to consider for unhandled events are:

� Increase the severity of outstanding events after an appropriate time interval.

This is an effective way to draw attention to such events, which should result
in corrective action. Also, higher severities are usually defined to mean that
the problems need to be resolved more quickly. Since time has already
elapsed, there truly is less time to resolve the problems to meet service level
agreements.

� Set consistent time intervals for all events of the same severity.

This method means that all events of severity warning should be escalated if
they are not handled within the same time duration. Events of another
severity, such as critical, may be, and usually are, assigned a different
interval, but that interval still applies to all events of that severity. The
exception is the severity assigned to clearing events. Since clearing events
should be closed automatically, there should never be a need to escalate
them.

When severities are defined properly, they represent the urgency with which
an event should be handled. They already account for service-level
agreements (SLAs) and operations-level agreements (OLAs). If they are
developed considering the severities discussed in 2.2.2, “Defining severities”
on page 34, the severity definitions already contain information about the
acceptable time to resolve problems.

Moreover, it is generally easier to implement automated escalation based on
severity than on a combination of other factors. When adding a new event that
require action, ensure that it has the right severity. Then little or no additional
configuration or coding is required to integrate it into an existing, automated
escalation process.
 Chapter 2. Event management categories and best practices 61

� Set escalation intervals to shorter than acceptable resolution times.

The severity definitions tell how quickly to handle an event. Escalate before
this time interval expires to allow the informed support person to take
corrective action within an acceptable time frame.

Avoid waiting to escalate until after the documented resolution time has
passed. This is too late because the service level is already in violation,
rendering it impossible to resolve the problem within SLA guidelines.

� Escalate when an event remains unacknowledged or unresolved.

Checking for both of these conditions is the best way to ensure that SLAs are
met. Set the time interval for acknowledgement to a shorter duration than for
closure. That way, if the event is unacknowledged and the problem escalated,
the support person notified has enough time to work on the problem to meet
the SLAs.

� When escalating an unhandled event, inform both the originally assigned
support person and others that the problem now has a higher severity.

The responsible person may have accidentally forgotten about the event or
may have been busy with other problems. The escalation serves as a
reminder of the outstanding problem. It is also a courtesy to the administrator
who may be measured on problem resolution time.

Notifying others that the event has changed increases the chance that it will
be handled. If the original support person, previously unable to respond to the
event, is still not in a position to pursue it, someone else can take
responsibility for it.

Also, if the informed parties have authority, they can more readily ensure that
the problem is handled by either reprioritizing the assigned support person’s
tasks or delegating the problem to someone else.

Always notify the originally assigned support person when an event is
escalated, because that individual is accountable. However, do not notify
everyone for each escalation. Create levels of escalation, and choose to
whom to notify for each escalation. For example, a manager may not care
each time an event is escalated, but needs to know if a service-level violation
has occurred.

Business impact
This type of escalation is based on the premise that problems with a greater
business impact should be handled more quickly than others. For example,
suppose two servers fail. One affects only a few internal employees, while the
other prevents customers from placing orders. Business impact escalation
increases the severity of the second server down event to ensure it receives
priority handling.
62 Event Management and Best Practices

Escalating based on the criticality of resources implies knowledge of the
business impact of failures. It is necessary to understand the components that
comprise a business application to use this form of escalation. Often,
organizations can easily determine which server provides the front end to their
business functions. They may be less likely to know the back-end servers with
which that system communicates for data and other processing.

When an organization determines the systems used for business applications
and their relationships, it can perform a risk assessment. This term is generally
used to denote the process of assigning priorities to resources based on their
value to the business. Designating a system as high risk implies that its failure
has detrimental effects on critical business functions.

� Increase severities of key events reporting problems with the greatest
business impact.

Use the risk assessment value to determine what severity to assign to an
event. Assign the same severity to events that reference resources of the
same risk classification. For each risk classification, choose the severity
defined with the most appropriate problem resolution time.

For example, routers may be classified as core and distribution. Core routers
handle the traffic in the network backbone and are used by most business
applications. Distribution routers connect remote locations to the backbone
and serve smaller groups of users.

Core routers may be assessed as high risk, and distribution routers may be
assessed as medium risk. Suppose that critical severity was defined to mean
more than one user is affected, and that fatal was defined to mean that most
users are affected. The proper severity for a distribution router down event is
critical. For a core router down, it is fatal. Since there are probably fewer core
routers, set the severity of the router down event to critical, and escalate it to
fatal if it is received for a core router.

� Perform business impact escalation for key events only.

Some events by their nature are not critical and should not be treated as
such, even when reporting problems with a critical resource.

Consider again the server running the customer order application. If a server
down event is received for this device, it requires immediate attention and the
event severity should be adjusted to reflect this. However, if a backup power
supply on the server fails, it may not need to be changed immediately. Do not
perform escalation for the second event, even though it applies to the high
risk server.

� Escalate for business impact as early in the event life cycle as possible.

Ideally, an event is generated with the severity that best reflects both the
nature of the problem reported and its business impact. This minimizes
 Chapter 2. Event management categories and best practices 63

overhead in the event processors that handle it. In reality, many event sources
are incapable of determining business impact or are not easily configured to
do so. In these cases, an event processor must perform the business impact
escalation.

Escalating as early in the event life cycle as possible minimizes the need for
event synchronization later. It ensures that the event severity is accurately
represented to users of intermediary event processors. Also, since the
change occurs before initial notification of the problem, there is no need to
renotify for the severity change.

Do not duplicate business impact escalation at multiple levels of the event
management hierarchy. Otherwise, events may be escalated several times,
increasing their severities higher than originally intended.

Such products as IBM Tivoli Business Systems Manager provide a means of
visually determining the business impact of problems. This can be used by
operators who manually escalate events from a console or by support personnel
to determine the business effects of a problem they are working.

Worsening condition
This form of escalation differs from those previously mentioned in that it deals
with multiple events. In the escalation types previously discussed, business
impact and repair time trigger changing the severity of a single event. Here the
driving factor is receipt of a new event indicating a worsening condition of the
original problem.

� When escalating a worsening condition, keep the first event and escalate its
severity, adding information to it if necessary.

There are several reasons to keep the first rather than subsequent events. A
trouble ticket may have already been opened for the first event. When the
ticket is closed, event synchronization procedures attempt to close the
corresponding event in other event processors. If it does not exist, the
synchronization fails. The problem event that still exists in the event processor
remains open, leading to subsequent occurrences of the problem being
discarded by duplicate detection.

Also, keeping the first event ensures that the time at which the failure first
occurred is recorded and available for problem determination.

Update the original event with desired information from the new event such as
the value of a monitored variable exceeding its threshold. After updating the
original event, discard the others. This reduces overhead at the event
processors.

� When escalating worsening conditions, inform both the originally assigned
support person and one or more others of the problem’s higher severity.
64 Event Management and Best Practices

The same reasons apply here as for unhandled problems since the increased
severity again implies less time to resolve the underlying issue (see
“Unhandled events” on page 60).

In addition, if a monitored variable reported in the event is governed by SLAs,
notify those responsible for the SLAs when the reported value is about to or
has caused a violation.

� Do not de-escalate for lessened conditions.

Sometimes the term de-escalation is used to denote lowering the severity of
an event. The new severity can indicate a lessened or resolved problem.

De-escalate events only when they are resolved. There are several reasons
for this. For example, you do not want to inform someone late at night about a
critical problem only to give them a warning. Also, a problem may oscillate
between two severities. The event processors incur unnecessary overhead by
repeatedly changing event severity.

Most monitoring agents do not send events to indicate a lessened severity.
They normally inform as a problem increases in severity, and re-arm only
when the condition is resolved.

2.7.2 Implementation considerations
Escalation can be performed automatically by a capable event processor or
manually by console operators. Therefore, consider the first best practice in the
list that follows.

Any monitoring agent or tool capable of the function can escalate a problem. The
best place depends on both the tools used and the type of escalation. Consider
the last two best practices in the list that follows.

For implementation, consider the following best practices:

� Automate escalation whenever possible.

When escalation is automated for unhandled problems, it occurs as soon as
an acceptable, predefined time interval has expired. Similarly, a worsening
condition and business impact escalation, when automated, occur
immediately upon receipt of the relevant events. Operators perform escalation
less precisely, only when they notice that a condition requires it.

If you do not have a well-defined escalation process or it is too complicated to
escalate using your toolset, allow operators to do it. Holding them
accountable for ensuring the timely handling of problems gives them incentive
them to perform the required escalation.

� Use the trouble-ticketing system to escalate problems that do not receive
timely action.
 Chapter 2. Event management categories and best practices 65

This type of escalation typically requires modifying an open trouble ticket and
notifying support personnel. These functions are best performed in the
trouble-ticketing system itself. See 2.6, “Notification” on page 56, and 2.9,
“Trouble ticketing” on page 68, for details.

If trouble-ticketing software is not used, automate the escalation using a
capable event processor, preferably the same one used to notify for problems.

� Perform worsening condition and business impact escalations at the first
capable event processor that receives the relevant event or events.

These types of escalation are event driven, rather than timer dependent. They
can be performed most quickly when handled immediately by the first receiver
of the relevant events. Escalating at the lowest level of the event processor
hierarchy facilitates event synchronization because it is generally easier to
synchronize events upward through the hierarchy than downward. See the
following section for details.

Escalating for business impact at the first capable processor ensures that the
event has the correct severity when sent to subsequent event processors in
the hierarchy. This minimizes the need to synchronize the events between the
processors.

2.8 Event synchronization
Changes made to events at one event processor can be propagated to others
through which the event has passed. This is known as event synchronization.

There are two main areas where event synchronization is key:

� Forwarding and receiving events through a hierarchy of event processors
� Integrating with a trouble-ticketing system

Any event processor or trouble-ticketing system can change an event. Depending
on the event processor that performs the update, the event changes must be
propagated upward through the hierarchy (see Figure 2-6). Typically, the
trouble-ticketing system notifies support personnel about problems and is at the
top of the hierarchy. Therefore, changes made to trouble tickets are generally
propagated downward to other event processors. If any event processor modifies
an event, the synchronization is upward to the trouble-ticketing system and any
event processors above it in the hierarchy, and downward to lower event
processors.
66 Event Management and Best Practices

Figure 2-6 Upward and downward event synchronization

In general, it is easier to synchronize upward. Most event processors have the
capability to automatically synchronize events upward, sometimes by merely
reforwarding the changed event through the event processor hierarchy.
Downward synchronization is more difficult and often requires custom coding.

2.8.1 Event synchronization best practices
When dealing with forwarding and receiving events through an event processor
hierarchy, the most important aspect of the event is its status. By status we mean
whether the event is open, closed, acknowledged, or dropped.

� Synchronize the status of events among event processors, including the
trouble-ticketing system.

You want to make sure that, if an event is closed or dropped at one level of the
hierarchy, it is also closed or dropped at every other level. If this is not done,
you will have orphaned events in an open state. This can cause problems if
you have any type of duplicate detection on that event.

Event
Status

Change

High Level
Event

Processor

Change
Corresponding

Event Status

Change
Corresponding

Event Status

Low Level
Event

Processor

Event Status
Change
 Chapter 2. Event management categories and best practices 67

Consider an orphaned event that was closed at a different level event
processor when the problem that caused the event was resolved. The
problem starts happening again, which generates another event. The event is
sent to the event processor where, because of the existing orphan event, it is
dropped as a duplicate.

It is important that the rules and any scripts that you set up at your event
processors that deal with event forwarding and synchronization deal with the
status of events.

When you deal with the integration of a trouble-ticketing system, keep in mind
the status of an event. You may want to start with synchronizing the open and
closed status of your trouble tickets with the open or closed status of the
underlying events. Make sure that if your trouble ticket is closed, it closes the
associated event and vice versa.

To take this one step further, you can send events back and forth when the
event or ticket is updated. For example, if the problem ticket that was opened
is acknowledged by the support group that opened it, you can have a
communication sent back to the event processor changing the status of the
event that caused the ticket to be generated.

� At a minimum, propagate event severity changes upward to the
trouble-ticketing system and higher level event processors.

When a lower level event processor escalates an event, this information
should flow upward. Notification typically occurs either at the trouble-ticketing
system or a higher level event processor. As discussed in 2.7, “Escalation” on
page 60, when events are escalated, someone needs to be informed.
Therefore, the event processor used for notification needs to be told that the
event has been escalated. Upward event synchronization performs this
function.

When consoles are used at different levels of the event processor hierarchy,
severity and other event changes may need to propagate downward.
Suppose an organization has a central event processor at its main site that is
used by its after-hours help desk. It also has distributed event processors in
various time zones for use by support personnel during normal business
hours. The central help desk raises the severity of an event on its console
based on a user call. When the distributed support personnel assume
ownership of the call in the morning, they need to know that the problem has
been escalated.

2.9 Trouble ticketing
This section discusses integrating your event processing tool with a
trouble-ticketing system. The focus is on event management, not problem
68 Event Management and Best Practices

management. This section presents some best practices for problem
management. They are mentioned, as necessary, as they relate to the integration
of a trouble-ticketing system with an event processor.

2.9.1 Trouble ticketing best practices
This section covers the typical integration of a trouble-ticketing system with an
event processor by discussing the process flow, which is illustrated in Figure 2-7.

Figure 2-7 Trouble ticketing process flow

We start with an event. When this event arrives at the event processing tool, it
has already gone through filtering and correlation. If it is determined through
these processes that this event requires action, then the event processing tool
sends this event to the trouble-ticketing system. See the first best practice in the
list that follows this example.

After the event reaches the trouble-ticketing system, that system cuts a ticket.
The ticket is assigned to the proper support group based on criteria within the
event. That support group is then notified based on which notification was set up
for this problem's priority. See the second best practice in the list that follows this
example.

After the support group receives the page, it usually starts to fix the problem.
During this process, it should keep the trouble ticket updated with their progress.
When the problem is fixed, it should close the trouble ticket. This causes the
trouble-ticketing system to trigger a communication to the event processing tool
to close the event. Therefore, if the problem happens again, a new event is

Acknowledge
Event

Open
Ticket

Notify
Support

Event Fix
Problem

Close
Ticket

Close Event

Requirements
Met?

Event Processing Tool Trouble-ticketing System

Trouble-ticketing System

Support Group
 Chapter 2. Event management categories and best practices 69

generated that opens a new ticket. The support group must then determine why it
did not actually resolve the problem. See the last three best practices in the list
that follows this example.

In this example, you can implement the following best practices:

� Send all events to the trouble-ticketing system from the same event
processor.

Most trouble-ticketing systems interface only to one event processor at a time.
Also, this approach ensures that the trouble-ticketing system can initiate a
close of the corresponding event when the ticket is closed.

� At the time of ticket creation, send a communication back to the event
processing tool to acknowledge the event that triggered this ticket to be
opened.

This usually takes place to prevent further tickets from being opened for the
same problem. Duplicate detection should take place with the event as long
as it is in acknowledged status. See 2.4.3, “Duplicate detection and throttling
best practices” on page 50, for more details.

� If a trouble-ticketing system is in use, use it to report all problems requiring
action and only those problems.

Now you can take the events from the previous section on notification that you
decided were problem or actionable events. At this time, you can consider
sending them to the trouble-ticketing system.

If you are not careful in choosing events that are going to open a ticket, you
may start having problems in a couple different areas. If you have too many
events going back and forth between your event processing tool and your
trouble-ticketing system, you start to use up resources. This can happen both
in the network and on the machines that are running the software.

The more events you send between your event processing tool and the
trouble-ticketing system also takes a toll on your event synchronization. If you
send loads of unnecessary events to open problem tickets, there is a greater
chance that the acknowledging or closing events may be missed or dropped.

Another reason to choose your events carefully is to avoid mis-notifying
support teams. You should only really notify critical, system down, or business
impacting events that require action from support teams. If you start sending
needless or unimportant pages to support groups, there is a big chance they
may ignore the important ones.

You must also be careful with a reporting standpoint, which is usually carried
out from the trouble-ticketing system. You do not want to have unimportant
problems skew the reports.
70 Event Management and Best Practices

In today's IT environment, it is essential to keep a good partnership between
systems management and the various support teams. If the support teams
have problems with the way tickets are opened and notifications are handled,
it is hazardous to your event management system.

� Prioritize tickets based on event type, time-of-day, and criticality of source.

After you have events opening trouble tickets, consider the priority of the
tickets that are opened. Figure 2-8 displays a sample event severity mapping.

Figure 2-8 Mapping severities at the event processor

Usually it is a good idea to set the severity of your events at the source. This
means that, when you send your event to the event processing tool, it should
be sent with the severity that matches the priority of the ticket in the
trouble-ticketing system.

Be aware of your company's current service levels when determining severity
or priority. The severity that you use to send the event in should match the
service levels defined in your organization for the event type, time of day, and
criticality of the source. When setting up an integration with trouble ticketing,
follow the processes and procedures already defined at your help desk. This
makes it easier with the whole event management setup to tie into systems
that are already in place.

� Implement on-call lists.

There are two ways to notify support groups from your trouble-ticketing
system:

Event Sources

Prio
rity

 1

Fatal Event

Warning Event Priority 3

Critical Event

Priority 2

Severity Map at the Event Processor
 Chapter 2. Event management categories and best practices 71

– On-call lists: Notify only the person on call. Maintain lists within the
trouble-ticketing system of the current on-call personnel.

– Group paging: Page the whole support group. The person who is on call
takes the call and the rest ignore the notification.

Usually it is wiser to go with the on-call list notification. This is because you
send only one notification for each problem. It is less likely that notifications
are dropped or ignored by support personnel who believe someone else is
handling the problem. Escalation policies implemented in the trouble-ticketing
system ensure that the problem is handled in a timely manner. See
“Unhandled events” on page 60 for more information.

On-call lists are generally held within the trouble-ticketing system. This makes
it easier to maintain because it is closer to the group listings. The lists usually
go by a weekly basis depending on your organization. Keep in mind that it is
important to keep these lists up to date.

2.10 Maintenance mode
When a system is in maintenance mode, its normal processing is disrupted by
administrative functions such as applying fixes, reconfiguring components, or
upgrading software. During that time, it is highly likely that one or more of the
system’s resources is unavailable. If any of these resources is monitored for
availability, events may be generated to report the down condition.

The resource may be down intentionally because it is being maintained, with the
expectation that it will soon be restored to service. In this case, there is no need
to alert anyone about its condition. However, its unavailability may be completely
unrelated to the system maintenance being performed, requiring that someone
be informed. The difficulty is in differentiating between the two situations.

Ideally, whenever system maintenance is performed, the administrator knows
which resources are impacted and temporarily stops monitoring only those
resources for the duration of the maintenance. In reality, this is nearly impossible
to implement. Often, it is unclear as to exactly which resources are affected by
the maintenance. Even if they are explicitly identified, it may be awkward to shut
down monitoring for only those resources. Maintenance mode often entails
rebooting a system one or more times. The monitoring agents will most likely
restart automatically and need to be stopped again. Also, errors are often
reported by other systems that normally access the system being maintained. It
is impractical to assume that the appropriate monitors are shut down on other
systems as well.

Although the ideal is impossible to attain, a mechanism must be in place that
accounts for events from systems in maintenance mode to ensure that
72 Event Management and Best Practices

extraneous events are not reported and real problems are not lost. A good
approach is to inform the appropriate event processors that a system is in
maintenance mode. Then have them take special action on the events from or
about that system.

2.10.1 Maintenance status notification
An event processor needs to be informed when a system enters maintenance
mode so it can take special action for events from the system. It must also know
when to resume normal processing for those events. Therefore, a method is
required to place a system into and remove it from maintenance mode.

� Only those processors that normally receive events concerning a system
should be notified about its maintenance status.

If an event processor handles events from or about a system, it should be
informed that the system is entering or leaving maintenance mode. This
ensures that it can take the appropriate actions for events it may receive, as
described in 2.10.2, “Handling events from a system in maintenance mode”
on page 74.

Limiting the notification to only relevant event processors prevents the others
from using cycles to check events for reference to the machine in
maintenance mode.

� Use events to notify an event processor that a system is entering or leaving
maintenance mode.

The event processors already have the ability to act upon events. The events
from or about a machine in maintenance mode can be easily correlated with
the maintenance notification event, and appropriate action taken.

Using events rather than some other means of notification eliminates the
need for the event processor to access outside sources to determine which
machines are in maintenance mode. If external files or queues are used to
store the maintenance information, additional code may be required for the
event processor to access that data.

� Automate the generation of the events as much as possible.

In sophisticated environments, the organization may use the change
management system to automatically generate the maintenance notification
events based upon its schedule. The shutdown and startup scripts or
command files used during maintenance may also be modified to send the
notifications.

The most common practice is to have the administrator send the events.
While this method relies on the administrator’s memory, it allows for
emergency changes that may not be included in the change management
 Chapter 2. Event management categories and best practices 73

system. It also allows for maintenance that does not require specific
shutdown scripts to execute.

The administrator is provided with a desktop icon or script to run that
automatically produces the required event. The change management
procedures are updated to include generating the maintenance mode
notification events as a required step in maintaining a system.

� Report extended maintenance mode situations as problems.

Experience has shown that administrators are more likely to notify when a
system is entering maintenance mode than when it is leaving. They want to
ensure that they are not informed of bogus problems about a machine that
they are servicing. However, it is human nature to want to complete the
maintenance as quickly as possible, particularly when it is performed after
hours. As a result, many support people neglect to inform when a system is
again operational. A method is needed to handle this situation.

First, the event processor needs to be given a time estimate for the
maintenance window. This information can be sent in the maintenance mode
notification event, stored on external media, or hardcoded into the event
processor’s rules. While any of these approaches work, sending the
information in the event allows the greatest flexibility with the least effort. The
administrator can easily differentiate between such maintenance (for
example, parameter reconfiguration) and lengthier changes (such as software
upgrades and database reorganizations). Modifying files and rules is more
complex and more prone to error.

At the start of maintenance, the event processor can set a timer. After the
elapsed time exceeds the estimate, the processor can generate an event to
inform the administrator that the machine is in maintenance mode longer than
expected, or it can merely resume normal event processing for the system.
Administrators generally prefer to be notified. This prevents a potential flood
of problem events, should the system still be legitimately in maintenance
mode.

2.10.2 Handling events from a system in maintenance mode
When an event processor knows that a system is in maintenance mode, it can
take appropriate action for events received from or about that system. The best
practices to use for handling those events depends upon the organization and its
policies for systems maintenance.

� In environments where the administrator maintaining the box has total control
over the machine, host-based maintenance may be appropriate.

Giving an administrator total control over a machine in maintenance mode
implies that it is acceptable to affect any system resource during the
maintenance window. This approach also assumes that the administrator is
74 Event Management and Best Practices

fully responsible for restoring all processes when the maintenance is
complete. Therefore, events received from or about the box during this time
do not require action and may be discarded.

We refer to the processing of dropping the events for systems in maintenance
mode as host-based maintenance. This is a relatively simple method of
handling the events and is easy to implement. However, it relies on the
administrator to properly restore all functions on the machine. A condition
may arise such as a filesystem filling that an administrator does not normally
notice during maintenance mode. These problems may go unreported in
host-based maintenance.

� Where host-based maintenance is not appropriate, cache events and report
them after maintenance mode is terminated.

Caching events received from or about a system in maintenance mode
ensures that real problems unrelated to the maintenance are not lost. It also
preserves the correlation relationship among events. This solution should be
favored in organizations where production applications may continue to run
on a system that is undergoing maintenance for other processes. It may also
be used to validate that the system is completely restored afterwards.

When the event processor receives events for the system undergoing
maintenance, it caches them. It can also apply correlation rules to them to
drop extraneous events and to clear problems. When the machine comes out
of maintenance mode, the event processor waits a short time to receive and
process clearing events for the system resources affected by the
maintenance. It then reports any outstanding problems.

Events for which no clearing event is available are always reported using this
method, even if the problem they reference no longer exists. Whenever
possible, configure monitoring agents to send clearing events. This minimizes
the number of these events that are inadvertently reported.

2.10.3 Prolonged maintenance mode
Sometimes the resolution to a problem is known but cannot be immediately
implemented. For example, a short-on-storage condition may arise because a
machine does not have adequate memory. Adding memory to the system is
planned, but the hardware is scheduled to ship in a few days.

In these situations, it is undesirable to report the error every time it occurs. The
solution is known, but cannot yet be implemented. There are several ways to
handle this situation. The first is to reconfigure the monitoring agent so it does
not report the error. This effectively stops the event from flowing. However, it
relies upon the memory of an administrator to restart monitoring after the fix is
implemented. In the case of hardware, the solution may not be implemented for
 Chapter 2. Event management categories and best practices 75

several weeks. It is highly likely that the support person will forget to re-enable
the monitor at that time.

A second approach allows the event to remain open until it is resolved and to
discard duplicates in the meantime. This method also has some problems. The
problem may occur intermittently and be cleared automatically by an event.
Leaving the event open requires a reconfiguration of the event processing rules,
which has the same drawbacks as reconfiguring a monitor. Also, some event
processors perform duplicate detection only on events in cache, which is cleared
when the processor is recycled.

To address the shortcomings of the other two solutions, we propose that you
temporarily ignore events whose resolution is known, but cannot yet be
implemented.

To implement this solution, the event processor needs to be told which event to
ignore, from which host, and for how long. This information may need to be
stored in an external file or queue so it can be accessed by the event processor
upon restart. If the event processor supports this, it may be loaded into cache at
startup for more efficient runtime access.

Note that normal maintenance mode event processing does not require storing
the list of nodes being maintained on external media. Maintenance windows are
expected to be relatively short. They may be scheduled so that they do not occur
when the event processor is scheduled for reboot.

When the event processor receives an event, it checks to see if the event should
be temporarily ignored and suppresses it if appropriate. If the event is not
reported, a support person does not waste time pursing a known problem.

There are several advantages of this solution. The monitors and event
processing rules can remain intact. This implies that an administrator does not
need to remember to restore monitoring of the system resource. As soon as the
estimated time has passed, the resource is monitored again. During this
prolonged maintenance mode, the system is still monitored for other conditions
that are unrelated to the known, but not yet fixable problem. Finally, if desired, the
event can be correlated before it is ignored. This may prevent the investigation of
symptom events for which no action can be taken.

2.10.4 Network topology considerations
When a network device is placed in maintenance mode, a potentially large
number of systems can be affected. If the component is a single point of failure,
any network traffic that traverses a path containing it may be disrupted. In this
76 Event Management and Best Practices

case, it is necessary to know the network topology before determining whether
an event is the result of the maintenance.

In this case, we propose the best practice to use the topology-based correlation
capabilities of SNMP-based managers to handle events resulting from network
maintenance.

While it is possible to provide network topology information to other types of
event processors, the procedure is often complex and difficult to implement. Most
networks are dynamic, implying frequent updates to the topology information
supplied to the processors. This quickly becomes impractical, particularly in large
networks.

Allowing the SNMP-based manager to correlate the events means that only the
root cause event is presented to the other event processors. This event
references the network component being maintained. Since the other event
processors were informed the network device is under maintenance, they can
handle the event as described in 2.10.2, “Handling events from a system in
maintenance mode” on page 74.

When a network component is maintained, some events caused by the
maintenance may be reported. For example, a Web server that is trying to
access its database server across the network path may report a communication
failure. Since neither the Web server nor the database server is in maintenance
mode, the event is reported.

While it is possible, theoretically, to handle these cases, it is usually not worth the
effort involved. The communication between any two devices may be affected by
a large number of networking components. Moreover, in today’s grid and
on-demand environments, it is not unusual for an application to run on different
hosts when required. Not knowing on which server the application runs at any
given time makes it difficult to determine which applications are affected by a
network failure.

Consider redundant network paths to minimize communication outages due to
both network component failures and maintenance.

2.11 Automation
There are several ways to plan for and implement automation. Some
organizations choose to implement correlation first and then to analyze their
common problems, identifying events that may be used as triggers for automated
action. Others decide automated actions at the same time as filtering,
 Chapter 2. Event management categories and best practices 77

correlation, and notification. Still others use problem post mortem investigations
to uncover automation opportunities.

The approach that an organization chooses depends upon the current
monitoring environment, event management policies, and the employees’ skill
levels. If little or no monitoring is in place, a company may decide to analyze all
possible events from a monitoring tool before implementing it, making filtering,
correlation, notification, and automation decisions concurrently. In environments
with robust monitoring already in place, automation may be added to it. Where
staffs are highly skilled and can provide insight into which events should trigger
automation, the decisions can be made reliably before problems happen. Novice
support staffs may wait until problems occur before they identify automation
opportunities, working with vendors’ support centers to gain insight into the
reasons the problems occurred and how to prevent them.

Regardless of how an organization decides to handle planning and implementing
automation, there are several best practices to observe as explained in the
following sections.

2.11.1 Automation best practices
The first step in implementing automation is deciding which events should trigger
automated actions. Here are several guidelines to use in making this
determination:

� Do not over automate.

Sometimes organizations are overzealous in their correlation and automation
efforts. In a desire to improve the efficiency of their monitoring environments,
they quickly set up automation for everything they can.

There are some pitfalls to this approach that arise from not understanding the
ramifications of potential automated actions before implementing them. For
example, a locked account resulting from a user mistyping a password several
times needs to be reset, but if it was caused by hacking attempts, a security
investigation may be required. Automatically resetting accounts based upon
receipt of the account locked event is not a good idea.

Similarly, an event may be used to report more than one problem,
necessitating different actions depending upon which problem caused the
event. Perhaps actions may be required when an event references a certain
host but not others.

These are a few examples of things to consider when determining whether
automated action is appropriate for an event. Remember, it is better to be
judicious in choosing automated actions and implement fewer than to
implement automation whose consequences are unknown.
78 Event Management and Best Practices

� Automate problem verification whenever possible.

Sometimes it is not possible to filter all events that do not indicate real
problems. For example, as discussed in 1.3.10, “Automation” on page 19, an
SNMP manager that queries a device for its status may not receive an answer
back due to network congestion rather than the failure of the device. However,
the manager believes the device is down and sends an event. Before
assigning this event to someone, it is advantageous to determine if it is truly a
problem.

SMEs who understand various event sources well may be able to identify
events such as this one that may sometimes be false alarms. Likewise, help
desk personnel learn from experience which events do not always represent
problems. Use the expertise of these people within the organization to list
events that require verification.

After the events are identified, work with the SMEs to determine if the problem
verification procedures lend themselves to automation and automate
whenever possible. This minimizes the amount of time that the support staffs
spend investigating false events.

� Automate gathering diagnostic data if the data may disappear before the
problem is investigated, multistep or long running procedures are required to
capture it, or support staff lacks the skills to acquire it themselves.

In cases where diagnostic data may disappear before a support person has
time to respond to the event (such as the list of processes running during
periods of high CPU usage), automating the gathering of diagnostic data may
be the only way to determine the cause of the problem. All events reporting
these type of intermittent problems should have automated diagnostic data
collection associated with them.

The situation is less clear for events whose diagnostic information remains
available in the system until requested by an operator. In these cases,
automate the diagnostic data gathering if multiple steps are required to obtain
the data. This way, the user does not have to remember the steps, and user
errors, such as typos, are eliminated.

Also, if the diagnostic gathering procedures take a long time to run,
automating the data collection ensures that the data is available to the
support person sooner, reducing the mean-time to repair for the problem.

Automating diagnostic data gathering in circumstances where the user can
type a single command to produce the data may not make sense, since the
user has to run at least one command to view the collected data as well. In
this case, unless the command takes a while to run or the support staff is not
highly skilled, do not automate the data collection. This saves on cycles in the
event processors handling the event.
 Chapter 2. Event management categories and best practices 79

� Automate recovery only for real problems that always require the same
sequence of actions.

Obviously, if an event does not represent a real problem, it does not require a
recovery action, automated or otherwise.

For real problems, be sure that the same sequence of actions is always
required to resolve the problem before automating. This sequence can
contain conditional logic, as long as all the possible conditions and the actions
to take for them are known. Also, ensure that the steps can be automated. A
sequence of actions that requires operator interaction with a graphical user
interface (GUI), for example, may not be automatable.

See the first best practice, “Do not over automate”, in this list for additional
considerations in determining whether to automate the recovery action.

� Consider cross-platform correlation sequences for possible automation
opportunities.

Cross-platform correlation refers to the process of associating events about
different system resources. These event sequences are often excellent
sources for automated recovery actions.

Often, cross-platform correlation sequences result in symptom events that
require action. This is because the support person handling the first resource
type does not usually have administrative responsibility for the second. Also,
many systems are not sophisticated enough to recognize the system
resources affected by a failure and to automatically recover them when the
failure is resolved.

In “Cross-platform correlation” on page 13, we provide an example of a
process that dies as a result of a full file system. The corresponding events
can be associated, and the process can be restarted automatically when the
filesystem problem clears.

2.11.2 Automation implementation considerations
We discuss several types of automation that can be executed upon receipt of an
event. You must perform these in a specific order to ensure that the desired
results are achieved.

� Automate as close to the source as possible.

There are several factors that determine where to automate.

– The selected tool must be capable of performing the automation. For
example, when implementing automated action for a network device using
SNMP commands, the tool used to perform the automation must be
capable of communicating via SNMP.
80 Event Management and Best Practices

– The automation should be easily maintainable. Sometimes it is possible to
perform the action from more than one tool. If it is difficult to implement
and maintain the automation using the tool closest to the source, use the
next closest one instead.

– Performance considerations may dictate which tool to use for automation.
If a tool requires many processing cycles or uses much bandwidth to
automate a particular function, it should be overlooked in favor of one that
performs better.

– If correlation is required before executing an automated action, the closest
point from which automation can be triggered is the event processor at
which the events in the associated events converge.

� Check to see if a device is in maintenance mode before performing any
automated actions.

As discussed in 2.10, “Maintenance mode” on page 72, if a device is in
maintenance mode, any problems reported for that device are suspect. No
automated recovery actions should be taken for events received about
devices in maintenance mode. Diagnostic automation can be performed, if
desired. This ensures that the diagnostic data is available should the problem
still exist after the device comes out of maintenance mode.

� Perform problem verification automation first.

If this type of automation is done, it should always precede all other types of
event processing such as correlation, recovery and diagnostic automation,
notification, and trouble ticketing. None of these actions is necessary if there
is not really a problem.

� Perform automated diagnostic data collection after verifying that the problem
really exists and prior to attempting recovery.

Obviously, if there is not really a problem, no diagnostic data is required.
However, you must perform this step before you perform the recovery actions,
since the diagnostic data sometimes disappears after the problem is resolved.
An example of this is logs that are overwritten whenever an application starts.

� For real problems for which recovery action is desired, try the recovery action
prior to reporting the problem. If it fails, report the problem. If it succeeds,
report the situation in an incident report.

For the reasons stated earlier, this type of automation should succeed both
problem verification and diagnostic data gathering automation. However,
running recovery actions should be performed prior to reporting problems.
This ensures that only events requiring operator intervention are reported
through notification and trouble ticketing. If the recovery action succeeds, the
problem should not be reported to prevent unnecessary events from cluttering
the operator console.
 Chapter 2. Event management categories and best practices 81

Sometimes it may be useful to know a problem occurred, even if it recovered
automatically. Consider, for example, an automated action to remove core
files from a full UNIX file system. When the file system fills, an event is sent,
which triggers the removal of core files from the file system, freeing adequate
space. Since the file system now has an acceptable amount of freespace in it,
the problem is closed and not reported. An application may be producing core
files repeatedly and filling the file system. It is useful to know about this
condition to identify and resolve the application problem.

Opening incident reports for conditions that are automatically recovered is the
preferred method to track them. Incident reports make the information
available to a support person when they choose to examine it. Reviewing the
incident reports highlights flapping or fluttering error conditions, such as the
one described earlier, and may lead to their resolution.

2.12 Best practices flowchart
In this chapter, we discuss the best practices for the various types of processing
to perform for events. The purpose of this section is to recommend the order in
which to perform the processing. The flowchart in Figure 2-9 shows a
recommended sequence for handling events.

Figure 2-9 Event processing flowchart

Filtering
and setting
severities

Problem
validation

automation

Duplicate
detection

and
throttling

Correlation Recovery
or data

gathering
automation

Trouble
ticketing

Notification Escalation

Set initial
severity based

on problem type
and escalate it
for business

impact

Drop
unnecessary
events ASAP

Perform filtering
either at source
or first capable
event processor

Verify event
represents a
true problem

Perform
validation either

at source or
first capable

event
processor

Determine if
event is a

duplicate and
increment

repeat count

Throttle by
checking

repeat count to
see if problem

should be
reported

Compare event
to other events

to see if it is
primary cause

or requires
action

Link secondary
events requiring
action to their
primary events

Drop unnecessary
secondary events

Trigger
automation to

gather diagnostic
data or attempt

recovery

Open a trouble
ticket for true

problems
requiring action

Report incident
for problems
recovered by
automation

Notify that action
is required,

preferably from
trouble ticketing

system

Escalate if
action is not

performed in a
timely manner

Event flow
82 Event Management and Best Practices

In general, if best practices dictate performing the event processing as close to
the source as possible and a monitoring agent is capable, consider configuring
the agent to perform the function. For example, IBM Tivoli Monitoring can be
configured to perform such tasks as filtering unnecessary events, throttling
based on number of times a condition occurs, correlating multiple error
conditions before reporting, and executing automation.

For actions best performed at a central site, such as trouble ticketing and
notification, rely on the appropriate event processors to perform those functions.

Perform filtering and forwarding first. If an event is not necessary, suppress it in
the source or as close to it as possible. If it is necessary or you are not sure, set
severity based on the problem type and potential business impact, if known.
Handling filtering first prevents handling unnecessary events, saves network
bandwidth, and minimizes processing cycles required at event processors higher
in the event management hierarchy.

At this point, the event represents a potential problem. If possible, verify the
condition through automated means. Ideally, perform problem validation as close
to the source as possible. Again, this practice saves bandwidth and processing
power by suppressing unnecessary events as early as possible.

If the event survives filtering and problem validation, it likely is a real problem.
However, it may have already been reported, or it may recover itself after a short
time. Perform duplicate detection and throttling to block the event from traveling
further if it is already reported. Ensure that it is forwarded if it happened a
predefined number of times within a given time frame. Increment a counter of
occurrences of an event within a time frame. This provides data that the support
person can use to determine the extent of the problem and the load the event
processor is handling.

Next, compare the problem event to other received events and classify them as a
primary or secondary event. If it is a secondary event that requires action, link it
to the primary and forward it. If it does not require action, drop it to prevent further
processing load on this and other event processors. If necessary, delay the
comparison long enough to allow other related primary events to be received.

At this point, the event represents a problem requiring action. Before informing a
support person, perform automation to gather diagnostic data or attempt

Note: The exact event processing sequence that you implement depends
upon the capabilities of the various monitoring agents and event processors in
your environment. This flowchart was developed with the Tivoli product suite in
mind.
 Chapter 2. Event management categories and best practices 83

recovery, if desired. Use incident reports to record success recovery and trouble
tickets for unsuccessful.

The appropriate event processor or trouble-ticketing system can then inform the
support person there is a problem requiring action. If the problem is not
acknowledged or resolved within a preset time interval, escalate the problem by
raising its severity or notifying additional support personnel.
84 Event Management and Best Practices

Chapter 3. Overview of IBM Tivoli
Enterprise Console

This chapter provides an overview of the IBM Tivoli Enterprise Console product
and its main components. For detailed information about how IBM Tivoli
Enterprise Console is used for event management, see Chapter 6, “Event
management products and best practices” on page 173.

To learn about the architecture behind the IBM Tivoli Enterprise Console, see
IBM Tivoli Enterprise Console User’s Guide, Version 3.9, SC32-1235.

3

© Copyright IBM Corp. 2004. All rights reserved. 85

3.1 The highlights of IBM Tivoli Enterprise Console
The IBM Tivoli Enterprise Console product is a powerful, rules-based event
management application. It integrates network, systems, database, and
application management. And it provides sophisticated, automated problem
diagnosis and resolution to improve system performance and reduce support
costs. The product focuses on time to value and ease-of-use with out-of-the-box
best practices to simplify and accelerate deployment.

The highlights of IBM Tivoli Enterprise Console include:

� Provides a centralized, global view of your computing enterprise

� Filters, correlates, and automatically responds to common management
events in many tiers so events can be treated as near the source as possible

� Implements best-practices event management out-of-the-box

� Extends end-to-end management and diagnosis of your IT environment,
through the integrated network management and auto-discovery functions of
NetView

� Acts as a central collection point for alarms and events from a variety of
sources, including those from other Tivoli software applications, Tivoli partner
applications, custom applications, network management platforms, and
relational database systems

The IBM Tivoli Enterprise Console helps to effectively process the high volume of
events in an IT environment by:

� Prioritizing events by their level of importance

� Filtering redundant or low-priority events

� Correlating events with other events from different sources

� Determining who should view and process specific events

� Initiating automatic actions, when appropriate, such as escalation,
notification, and the opening of trouble tickets

� Identifying hosts and automatically grouping events from the hosts that are in
maintenance mode in a predefined event group

IBM Tivoli Enterprise Console also includes IBM Tivoli Risk Manager (limited
license). It provides monitoring and management of firewalls and intrusion
detection systems. And it includes IBM Tivoli Comprehensive Network Address
Translator to enable integrated management of overlapping IP domains.

Refer to the following product documentation to gain more detailed information
regarding IBM Tivoli Enterprise Console:
86 Event Management and Best Practices

� IBM Tivoli Enterprise Console Command and Task Reference, Version 3.9,
SC32-1232

� IBM Tivoli Enterprise Console Installation Guide, Version 3.9, SC32-1233

� IBM Tivoli Enterprise Console Rule Developer's Guide, Version 3.9,
SC32-1234

� IBM Tivoli Enterprise Console User’s Guide, Version 3.9, SC32-1235

� IBM Tivoli Enterprise Console Release Notes, Version 3.9, SC32-1238

� IBM Tivoli Enterprise Console Event Integration Facility Reference, Version
3.9, SC32-1241

� IBM Tivoli Enterprise Console Adapters Guide, Version 3.9, SC32-1242

� IBM Tivoli Enterprise Console Rule Set Reference, Version 3.9, SC32-1282

You can find this documentation on the following Web site:

http://www.ibm.com/software/tivoli/library

3.2 Understanding the IBM Tivoli Enterprise Console
data flow

This section explains IBM Tivoli Enterprise Console as a process, with inputs,
processing, and outputs. Viewed this way, IBM Tivoli Enterprise Console is a
powerful application composed of integrated tools to collect event input and
translate it into useful event management information and automated problem
diagnosis and resolution output.

Figure 3-1 shows how each component of IBM Tivoli Enterprise Console fits into
the process.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 87

http://www.ibm.com/software/tivoli/library

Figure 3-1 IBM Tivoli Enterprise Console process and components

3.2.1 IBM Tivoli Enterprise Console input
During event collection, IBM Tivoli Enterprise Console’s function is to detect all
variations in the source that can possibly represent a cause or effect of a problem
or incident, format that information in a standard way, and ensure that these
variations should be processed by IBM Tivoli Enterprise Console.

IBM Tivoli Enterprise Console can collect events from a variety of event sources,
including internal events, events from IBM Tivoli Enterprise Console adapters,
and from integration with other Tivoli or non-Tivoli applications. Events can be
buffered at the source, gateway, and server. This helps to prevent problems in the
network or with unavailable services resulting in loss of event information.

The Adapter Configuration Facility (ACF) is a powerful tool for centralized
configuration of a great number of source clients. It uses some of the capabilities
provided by Tivoli Management Framework to create profiles with adapter
configurations and distribute them to groups of endpoints. ACF enhances IBM
Tivoli Enterprise Console’s ability to perform rapid deployment and maintenance.

Input Processing Output

Type text Type text Type text
ACF

EIF

Adapters

Event Server

State Correlation

NetView

Trouble
Ticketing

Event
Database

UI Server

IBM Tivoli Enterprise Console

TEC Gateway
Event

Console

Input Processing Output
88 Event Management and Best Practices

3.2.2 IBM Tivoli Enterprise Console processing
Processing a huge number of events for problem diagnosis and resolution is the
main role of IBM Tivoli Enterprise Console. Event processing is done in many
instances, in different places, in the following order in which they occur:

1. The initial processing is done in the event source by the adapter. It filters
events directly in the source before they are sent to the IBM Tivoli Enterprise
Console gateway.

2. In the gateway, state correlations are responsible for summarizing events to
the IBM Tivoli Enterprise Console server.

3. The server then correlates the various events from different sources into a few
root cause and service impact events. It performs automated actions to
resolve the root cause problem.

4. The event console is used for output and final processing. Operators use it to
view events and sometimes change them manually based on their own
experience or organizational procedures.

IBM Tivoli Enterprise Console processing can be divided by the meaning of its
objectives, in two parts: problem diagnosis and resolution attempts. Most of the
work is done during problem diagnosis when the events are filtered, correlated,
and actions are taken to find the root cause of the problem.

After finding the root cause, actions are taken to solve the problem. If the problem
remains, another problem diagnosis and resolution attempt can be done.

Figure 3-2 shows the relationship between these parts and their input and
output.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 89

Figure 3-2 Processing fluxogram

3.2.3 IBM Tivoli Enterprise Console output
The purpose of the output is to provide detailed information to the right people
when they need it. IBM Tivoli Enterprise Console can send output to consoles
and databases.

The IBM Tivoli Enterprise Console is used as the first output, giving Tivoli
Administrators the ability to view and interact with problems. This complements
the automatic processing with manual problem diagnosis and resolution
attempts.

Event databases are used as output as well to record event information for future
processing and reporting. IBM Tivoli Enterprise Console can be integrated with
other applications, such as trouble ticketing, customer relationship management
(CRM), and billing systems.

Automatic Problem
Diagnosis

Clear Event

Yes

Yes

TEC Processing

TEC Output (Console)

Manual Problem
Diagnosis

Manual Resolution
Attempts

Problem
solved?

Automatic
Resolution
Attempts

Root
cause
found?

TEC Input
90 Event Management and Best Practices

3.3 IBM Tivoli Enterprise Console components
This section provides an overview of the IBM Tivoli Enterprise Console
components. They are described in the order in which an event flows from its
source to the operator.

3.3.1 Adapter Configuration Facility
The ACF provides the ability to configure and distribute Tivoli adapters from a
central site, using a graphical user interface (GUI). The ACF allows you to create
profiles for adapters, configure adapter configuration options, and distribution
options. The adapters can then be distributed to the profile’s subscribers using
menu options or drag-and-drop functionality. This feature allows changes to be
made in a central location and then distributed to the remote endpoints or
managed nodes.

3.3.2 Event adapter
An adapter is a process that monitors resources so that they can be managed.
These monitored resources are called sources. A source is an application (for
example, a database) or system resource (for example, an Network File System
(NFS) server). When an adapter detects an event generated from a source
(generally called a raw event), it formats the event and sends it to the event
server. The event server then further processes the event.

Adapters can monitor sources in the following ways:

� An adapter can receive events from any source that actively produces them.
For example, Simple Network Management Protocol (SNMP) adapters can
receive traps sent by the SNMP.

� An adapter can check an ASCII log file for raw events at configured intervals if
the source updates a log file with messages.

An event adapter can buffer events. When event buffering is enabled for an event
adapter and the event source cannot connect to the event server, events are
buffered until a connection can be established to the event server. When a
connection is established, the event adapter sends the buffered events to the
event server.

You can specify one or more secondary event servers for an event adapter. A
secondary event server is a backup event server that receives events when the
IBM Tivoli Enterprise Console gateway cannot contact the adapter-specified
event server. You can specify one or more secondary event servers in the IBM
Tivoli Enterprise Console gateway configuration file.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 91

3.3.3 IBM Tivoli Enterprise Console gateway
The IBM Tivoli Enterprise Console gateway receives events from TME® and
non-TME adapters and forwards them to an event server. By default, the IBM
Tivoli Enterprise Console gateway uses a connection-oriented service to the
event server. A connection-oriented service is one that establishes a connection
when the IBM Tivoli Enterprise Console gateway is started, and the connection is
maintained for all events.

The IBM Tivoli Enterprise Console gateway provides the following benefits:

� Greater scalability, which allows you to manage sources with less software
running on the endpoints

� Improved performance of the event server

The IBM Tivoli Enterprise Console gateway bundles events before sending
them to the event server. This reduces the amount of communication tasks
that the event server or the Tivoli server must perform.

� Simple deployment of adapters and updates to adapters using profiles in the
Adapter Configuration Facility

� New to IBM Tivoli Enterprise Console 3.9, the IBM Tivoli Enterprise Console
gateway

This gateway can provide event correlation and filtering closer to the sources.
This reduces the number of events sent to the event server and improves
network performance by decreasing the amount of network traffic.

3.3.4 IBM Tivoli NetView
IBM Tivoli NetView is now included with the IBM Tivoli Enterprise Console
product set. The Tivoli NetView component provides the network management
function for the IBM Tivoli Enterprise Console product. The Tivoli NetView
component monitors the status of network devices and automatically filters and
forwards network-related events to the IBM Tivoli Enterprise Console product.

Note: With the introduction to the state correlation gateway, IBM Tivoli
Enterprise Console is moving away from Tivoli Availability Intermediate
Manager. This product’s purpose was to offload processing from the IBM Tivoli
Enterprise Console Server by executing event correlation itself, and it was a
separate install IBM Tivoli Enterprise Console. The new IBM Tivoli Enterprise
Console gateway state correlation feature is built directly into IBM Tivoli
Enterprise Console 3.9. You should begin merging your existing AIM
environment to the state correlation engine.
92 Event Management and Best Practices

Tivoli NetView is a different product that is integrated into IBM Tivoli Enterprise
Console. For more information about Tivoli NetView, see Chapter 4, “Overview of
IBM Tivoli NetView” on page 101.

3.3.5 Event server
The event server is a central server that handles all events in the distributed
system. It uses a relational database management system (RDBMS) (event
database) to store events. Then it evaluates these events against a set of classes
and rules to determine if it should receive the event first and then respond to or
modify the event automatically. Only one event server can be in each Tivoli
management region.

3.3.6 Event database
IBM Tivoli Enterprise Console uses an external RDBMS to store the large
amount of event data that is received. The RDBMS Interface Module (RIM)
component of the Tivoli Management Framework is used to access the event
database.

For additional information about the event database, see the IBM Tivoli
Enterprise Console Installation Guide, Version 3.9, SC32-1233.

3.3.7 User interface server
The user interface server is a process, which runs on a managed node in a Tivoli
Management Region (TMR). It is responsible for providing a communication
channel between event consoles and the event server. It handles transaction
locking and prevents multiple consoles from responding to the same event. It
also handles automatically updating event status on all event consoles.

3.3.8 Event console
Event consoles provide a GUI that allows the IT staff to view and respond to
dispatched events. A senior administrator configures multiple event consoles
based on the responsibilities of the IT staff. Users can have independent or
shared views of events.

New to IBM Tivoli Enterprise Console 3.9, there are two versions of the event
console as discussed in the following sections.

Java event console
The Java™ version of the event console has existed since IBM Tivoli Enterprise
Console 3.7. It can be installed on a managed node, endpoint, or a non-Tivoli
 Chapter 3. Overview of IBM Tivoli Enterprise Console 93

host. The Java event console provides a set of features needed by Tivoli
Administrators to perform configuration tasks, start Tivoli NetView functions, run
local automated tasks, and manage events.

Web event console
The Web version of the event console is new with IBM Tivoli Enterprise Console
3.9. You can use it only to manage events from a Web browser. The Java console
is still necessary to perform any other task available from the event console.

3.4 Terms and definitions
The following section describes the major terms used with IBM Tivoli Enterprise
Console. It also presents some new features in IBM Tivoli Enterprise Console
3.9.

3.4.1 Event
The central unit of information is the event. An event is any significant change in
the state of a system resource or application. Events can be generated for
problems and for successful completions of tasks. Events provide many different
types of information, such as a host being down, someone unsuccessfully trying
to log in to a host as an administrator, or a hard drive being nearly full. Events
can also be generated to clear other events.

In IBM Tivoli Enterprise Console, an event is an object that has been created
based on data that is obtained from a source that is monitored by an event
adapter. Each event is identified by a class name, which the event adapter
defines.

Examples of class names include Su_Success, Su_Failure, No_Permission, and
Printer_Toner_Low. Class names are used to label events, but each event
contains additional information that helps to define and locate a potential
problem. Sample event information is provided as an example to manage
requests for additional event information that an operator might need. Each event
class has a template, which can be modified to include additional information
about an event and the action required to resolve the problem. This facilitates the
creation of a comprehensive online system of event information and
troubleshooting.

3.4.2 Event classes
Adapters separate information into event classes. They format the information
into messages that represent specific instances of event classes. Then, they
94 Event Management and Best Practices

send the information to the event server. The event server processes the
information, along with information received from other adapters.

Event classes can be divided into subclasses to facilitate a further breakdown of
information so that more detailed rules can be applied to the event information.
Essentially, event classes are an agreement between the adapter and the event
server about what information the adapter sends to the event server.

Event classes are defined in event class definition files. The base event class
definition file (root.baroc) is located in the
$BINDIR/TME/TEC/default_rb/TEC_CLASSES directory. Additionally, other
event classes are subclasses of the base event class. For event classes, you can
create Basic Recorder of Objects in C (BAROC) files and specify the event
server to load those files.

You can have multiple BAROC files on an event server. When you develop a new
adapter, in the BAROC files, define the types of events that the adapter can send
to the event server.

See the IBM Tivoli Enterprise Console Rule Developer's Guide, Version 3.9,
SC32-1234, for a detailed discussion about BAROC files.

3.4.3 Rules
A rule consists of a set of expressions used to determine if an event meets the
rule conditions. A rule also includes a set of actions that are taken when an event
meets the specified rule conditions.

A rule can specify, but is not limited to, the following actions:

� Duplicate detection: Automatically discard duplicate events within a specific
time interval.

� Thresholding: Accumulate events until a certain number are received within
a time interval. Then issue one representative event.

� Escalation: Increase the severity of an event or perform an action if a certain
number of events are received within a time interval.

� Correlation: Based on the relationships between events and system
problems, emphasize the most important event relating to a problem (typically
the root cause of the problem) and reduce the significance of those events
that are merely effects that are corrected when the root cause is corrected.
For example, if an uninterruptible power supply shuts down a system

Note: Event classes are classifications of events. Do not confuse them with
Tivoli objects.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 95

gracefully during a power failure, IBM Tivoli Enterprise Console can indicate
that the root cause of the shutdown is the power failure before personnel are
dispatched to repair the system.

There are five types of rules as discussed in the following sections.

Plain rule
A plain rule is used with incoming new events, or with previously received events
to be re-analyzed. Re-analysis of a previously received event is called a redo
request.

Plain rules allow you the flexibility to use any predicate or Prolog feature in its
actions.

Change rule
A change rule is used with previously received events that have a request to
change their information. A request to change an event’s information is called a
change request. For change requests, the change rules are checked before the
change is actually made. This timing lets you develop rules to take action
depending on the old value of an attribute, the new value of the attribute, and the
origin of the change request. Change requests can be generated by:

� An event console, for example, an administrator changes the status of an
event from OPEN to CLOSED

� Calling certain predicates within rules, for example, the
place_change_request predicate

� Receiving an event from an adapter with a value of CLOSED for the status
attribute

Change rules allow you the flexibility to use any predicate or Prolog feature in its
actions. They can only specify plain actions. Redo actions and reception actions
are considered errors when they are specified in change rules.

Timer rule
The timer rule is used when a previously set timer on an event expires. Timers
can be set on an event with the set_timer predicate in a rule. Sometimes you may
want to wait for a period of time so that related events come in to help identify the
root cause of a problem. Or perhaps you want to wait to ensure the event
condition lasts long enough to be a problem where action is needed. With timer
rules, you have the flexibility to use any predicate or Prolog feature in its actions.

Timer rules can only specify plain actions. Redo actions and reception actions
are considered errors when they are specified in timer rules.
96 Event Management and Best Practices

Simple rule
Use simple rules with incoming new events or a redo request. A simple rule is not
as flexible as a plain rule. For example, it contains predefined conditions and
actions, and you cannot use a predicate or any Prolog feature in its actions. A
simple rule does not do any correlation with other events in the event cache,
except for dropping duplicate events.

Correlation rule
Use correlation rules with incoming new events or a redo request. A correlation
rule lets you establish a causal relationship between two event classes. One
event either causes the other to be generated or causes the other to be closed.

With a correlation rule, you can propagate the value of the status attribute from a
cause event to an effect event. For example, when closing a cause event, a
linked effect event can be automatically closed. Correlation rules are called
compound rules in the rule builder dialogs.

3.4.4 Rule bases
A rule base is a collection of event class definitions, rules that apply to those
event classes, and predicates that are used by rules. A rule base on the IBM
Tivoli Enterprise Console event server is the master container from which rule
base targets are created. Rule base targets are the actual rule bases used by rule
engines to process events.

Depending on the context of discussion, the term rule base and rule base target
may be used interchangeably. You may have only one active rule engine
managing events in a given IBM Tivoli Enterprise Console event server. If you
have multiple layers of IBM Tivoli Enterprise Console event servers, which
inherently means multiple TMRs, you may have multiple rule engines.

When there is more than one rule engine managing events in the environment,
the rule bases used by the rule engines in that environment are referred to as
distributed rule bases. In a distributed rule base environment, event classes and
rules must be synchronized among all the rule engines. To keep these
synchronized, all rule base development should be done from a central location
and distributed out to all IBM Tivoli Enterprise Console event servers.

With the release of IBM Tivoli Enterprise Console 3.7 and later, we recommend
that you use the wrb command for rule base manipulation procedures. This
command provides more flexibility and function than the current rule builder
available on the Tivoli desktop. Do not modify any files used internally by an
event server to manage rule bases with a text editor. Use the wrb command or
the rule builder to manipulate rule bases.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 97

The rule compiler provided with release IBM Tivoli Enterprise Console 3.7 and
later must be used to compile rule bases. Although an older rule base
(pre-release 3.7) may appear to compile successfully with the newer compiler,
the proper objects for a distributed rule base environment are not created. You
must upgrade older rule bases before you use them in an IBM Tivoli Enterprise
Console 3.7 or higher rule base environment.

3.4.5 Rule sets and rule packs
Rule sets are files that contain rules. Typically, related rules are contained within a
rule set. Rule sets can be imported into a rule base target using the wrb
command.

When a rule base is compiled, rule sets are replicated to rule base targets that
specify which rule sets to import. When a rule base is used by a rule engine,
generally the rules are processed in the order defined within a rule set and the
order of how the rule sets were imported into the rule base target. You can alter
regular rule processing order by using certain predicates within the rules.

Another way to import rule sets into a rule base target is with rule packs. Rule
packs are a convenient way to package a group of rule sets to be imported into a
rule base target in a single operation. Rule packs are used to combine a group of
rule sets that are used in multiple rule base targets. When a rule base is
compiled, the rule base targets receive rule pack contents, which are rule sets.

Before you can import rule sets and rule packs into rule base targets, you must
import them into the rule base on the IBM Tivoli Enterprise Console event server.
Again, the rule base on the IBM Tivoli Enterprise Console event server is the
master container for all of the objects that comprise rule base targets. There are
multiple ways to import rule sets and rule packs into a rule base, using various
options of the wrb command.

For example, you can use the following options:

� cprb option with the –rulesets and –rulepacks suboptions

This copies an existing rule base into another rule base and copies the rule
sets and rule packs from the source rule base.

� crtrp option with the –import suboption

This creates a rule pack and imports rule sets into it.

Note: The order of rule sets defined for a rule base target is important, since it
affects rule engine performance. Placement of the rule sets determine
evaluation order by the rule engine. A starter set of rule sets is provided by
Tivoli with the default rule base.
98 Event Management and Best Practices

� imprprule option

This imports rule sets into an existing rule pack.

� imprbrule option

This imports rule sets into a rule base.

� –lsrbpack option with the –detailed suboption

Use this to list the rule packs in a rule base.

� –lsrbrule option

Use this option to list the rule sets in a rule base.

You can also import rule sets into a rule base using the GUI Rule Builder.

3.4.6 State correlation
Chapter 8, “Writing rules for the state correlation engine”, in the IBM Tivoli
Enterprise Console Rule Developer's Guide, Version 3.9, SC32-1234, is a great
resource to learn about the details of the state correlation engine.

The state correlation engine is a correlation service that runs on an IBM Tivoli
Enterprise Console gateway or adapter. It assists the IBM Tivoli Enterprise
Console event server by running a correlation closer to the source of the event
and reducing traffic by discarding, or consolidating events, that match the
correlation rules.

The state correlation rules used are defined via Extensible Markup Language
(XML) syntax, and not Prolog, unlike the event server rules engine. The
correlation rules are defined from a Document Type Definition (DTD) file, named
tecsce.dtd on the gateway or adapter. The default XML file is located in
$BINDIR/TME/TEC/default_sm/tecroot.xml. There are sample XML rule files on
the IBM Tivoli Enterprise Console Non-TME Installation CD in the directory
/EIFSDK/samples/state_correlation.

Machines in your environment that are used for state correlation (IBM Tivoli
Enterprise Console gateways and adapters) are also known as state machines.
Most state correlation rules are defined using state machines. A state machine
gathers and summarizes information about a particular set of related events. It is

Note: IBM Tivoli Enterprise Console administrators and rule writers will find
that the new state correlation engine uses rules defined in an XML syntax.
This is quite a change from prolog-based rules for the IBM Tivoli Enterprise
Console event server. This should represent a streamlined approach to define
rules for state correlation engines, using the latest technologies.
 Chapter 3. Overview of IBM Tivoli Enterprise Console 99

composed of states, transitions, summaries, and other characteristics, such as
expiration timers and control flags.

There are five state-based rule types that are all based on state machines:
duplicate, threshold, pass-through, resetOnMatch, and collector. Each state
machine looks for a trigger event to start it. There is one stateless rule
type—match.

A state-based rule operates on a sequence of events arriving at the state
correlation engine, while a stateless rule operates on a single, current event. A
rule can contain the following elements:

� Predicates for matching events relevant to that rule
� Actions that run after the rule triggers
� Attributes, such as a threshold limit

There are six rule types as explained in the following list. Each rule analyzes
incoming events based on predicates that you specify. Depending on this
analysis, each received event is either discarded by the rule or forwarded to the
actions specified in the rule. If no action is specified, the events are forwarded to
the gateway.

� Duplicate: The first event is forwarded, and all duplicate events are
discarded. All the events that match the rule are forwarded.

� Match: All of the events that match the rule are forwarded.

� Collector: Events are collected for the time specified in the rule and then all
events are sent individually to the server.

� Threshold: A single event is sent to the server when the threshold is
reached.

� Pass-through: The events are sent to the server only if a specific set of
subsequent events arrives during a time window.

� Reset on match: The events are sent to the server only if a specific set of
subsequent events does not arrive during a time window.

See Chapter 6, “Event management products and best practices” on page 173,
for examples of some of these rule types.

Note: An event is analyzed according to the time it arrives at the state
correlation engine, not at the time it originates. In some circumstances, this
can affect the behavior of time-based rules, such as thresholding rules. For
example, if the connection between an event source and the gateway is lost,
events are cached at the adapter until the connection becomes available
again. When the connection is restored, all of the cached events are sent at
once, which may trigger a threshold rule unexpectedly.
100 Event Management and Best Practices

Chapter 4. Overview of IBM Tivoli
NetView

This chapter discusses the purpose and capabilities of IBM Tivoli NetView
distributed, a typical intermediate manager for IP networks. It also discusses the
ability for NetView to provide information for other parts of a system’s
management environment such as the IBM Tivoli Enterprise Console or IBM
Tivoli Business Systems Manager. The actual version of NetView, which is
covered in this book, is Version 7.1, Release 7.1.4.

Although NetView runs under various UNIX platforms and under Microsoft
Windows, we refer to the UNIX types of NetView. You can find a more detailed
discussion about the various NetView distributions in Chapter 2, “Event
management categories and best practices” on page 25.

The actual NetView documentation is distributed with NetView. You can find it in
the Portable Document Format (PDF) under /usr/OV/books/C/pdf and in
Hypertext Markup Language (HTML) format under /usr/OV/books/C/html.
Updated versions of the documentation are located on the IBM Tivoli Web site at:

http://www.ibm.com/software/tivoli/library

4

© Copyright IBM Corp. 2004. All rights reserved. 101

http://www.ibm.com/software/tivoli/library

On UNIX and Linux platforms, man pages exist for most of the processes and
main applications provided by NetView. Simply type:

man app_name

Here app_name is the name of the process, configuration file, or application for
which you are searching.

4.1 IBM Tivoli NetView (Integrated TCP/IP Services)
This section gives a brief overview of the capabilities and features of IBM Tivoli
NetView (also known as Integrated TCP/IP Services) distributed. It also provides
a short list of related documentation.

For more than a decade, IBM Tivoli NetView for distributed systems has been the
major application from IBM to monitor and manage IP network resources in a
distributed environment. It provides the capabilities shown in Figure 4-1, which
we discuss briefly in this section.

Figure 4-1 NetView’s main capabilities

Tip: Although the documentation is available on the NetView media, you need
to install it in a separate installation step. To move the documentation into the
mentioned directories, enter the following command:

nvinstal -K books

Network
Management

Network
Discovery

Root Cause
Analysis

SNMP
Management

Distributed
Management Topology
102 Event Management and Best Practices

In addition, NetView can provide information to other management applications
such as IBM Tivoli Enterprise Console.

NetView is distributed as part of the IBM Tivoli Enterprise Console under the
component name TEC Integrated TCP/IP Services as well as the stand-alone
product IBM Tivoli NetView distributed. Because the functions and capabilities
of both distributions are mostly identical, we use the short name NetView
throughout this document.

As a typical IP manager, NetView performs several tasks that are necessary to
retrieve information from network resources and to manage them accordingly.
These NetView capabilities include:

� Network discovery: NetView discovers the local IP network automatically
and identifies the type and capabilities of the discovered resources. Discovery
can be limited to a part of the network such as the local backbone or even the
local subnet only. Through further configuration, you can include or exclude
particular parts of the network into the discovery process. Also, you can
configure NetView to limit discovery to a certain number of net devices such
as servers and connection elements (router/switches). NetView then displays
only these devices along with the network segments in which they reside.

� Simple Network Management Protocol (SNMP) management: NetView
proactively manages network resources through the SNMP protocol as
defined in RFC 1157. NetView covers both areas in SNMP management:

– Retrieval of information by polling SNMP Management Information Base
(MIB) entries from discrete network objects

– Processing of asynchronous events in the network delivered as SNMP
traps to the management system.

� Topology display: NetView show the network topology including network
segments and their connecting routers, as well as other connecting resources
such as hubs, switching devices, terminal servers, etc. Remember, NetView is
considered an IP manager. It discovers your layer 3 (IP topology).

� Distributed management: This function accesses NetView management
systems from various locations inside the network domain and across
firewalls with the help of Java-based consoles.

� Root cause analysis: NetView automatically analyzes and detects the root
cause of a network problem. This eliminates the generation of a high number
of unwanted events and clearly points to the real cause of the problem.

Starting with NetView Version 7.1, NetView has become more tightly integrated
with other management applications such as Tivoli Enterprise Console and IBM
Tivoli Business Systems Manager. This extends its management flexibility with
 Chapter 4. Overview of IBM Tivoli NetView 103

the ability to provide both network management and, to a given extent, systems
management and business systems management.

NetView 7.1.4 introduces more integration facilities to other Tivoli components
such as the Tivoli Data Warehouse. We discuss these new features in 4.4,
“Changes in NetView 7.1.3 and 7.1.4” on page 124.

In addition to its main tasks, NetView can act as an integration platform for a
large number of third-party applications. An example is the popular suite of
management applications available to manage Cisco devices.

In addition to its ability to manage IP networks, NetView can analyze and display
ISO Layer 2 information, such as Switch Port assignments, status, and more,
through its Web console. In conjunction with the IBM Tivoli Switch Analyzer
companion product, NetView extends its root cause analysis capabilities down to
Layer 2 in switched network environments.

For more information about IBM Tivoli NetView, refer to the following publications:

� Tivoli NetView for UNIX User's Guide for Beginners, Version 7.1, SC31-8891
� Tivoli NetView for UNIX Administrator’s Guide, Version 7.1, SC31-8892
� Tivoli NetView for UNIX Administrator’s Reference, Version 7.1, SC31-8893
� Tivoli NetView Web Console User’s Guide, Version 7.1, SC31-8900

You can find publications about NetView, application programming interface (API)
and programmer reference publications, on the Web at:

http://www.ibm.com/software/sysmgmt/products/support/

The IBM Redbook Tivoli NetView 6.01 and Friends, SG24-6019, covers most of
the NetView Version 6 architecture and background information. For examples
about how to interface NetView with other systems management applications or
to integrate NetView into those applications, consult these IBM Redbooks:

� Tivoli Web Solutions: Managing Web Services and Beyond, SG24-6049
� Tivoli Business Systems Manager Version 2.1: End-to-end Business Impact

Management, SG24-6610

4.2 NetView visualization components
This section discusses the various subcomponents of NetView and its main
features. For the user, NetView consists of two parts:

� A GUI: Displays the actual state of the managed network
� An event console: Displays events either sent to NetView in the form of SNMP

traps by managed objects or generated by NetView itself to signal changes in
the status of the NetView managed objects.
104 Event Management and Best Practices

http://www.ibm.com/software/sysmgmt/products/support/

You display the graphical environment by using the X Window-based native End
User Interface (EUI).

In case access from a remote location is required or for information purposes, a
Java-based console provides access to NetView topology views and to an event
console. The Java console can be configured to show a subset of the actual data
for a given user group or a specific part of the network

In addition to these directly visible components, the NetView product uses
several additional subcomponents that carry out essential tasks to effectively
manage complex networks.

4.2.1 The NetView EUI
The NetView EUI provides a graphical representation of the discovered network
and the actual state of the managed elements. The EUI for the UNIX and Linux
versions of NetView are based on X Window and should execute under most
UNIX window managers. The EUI for NetView for Windows is based on the
native Windows graphic environment. To differentiate between the X
Window-based EUI and the NetView Web console, the X Window EUI is also
called native NetView console.

Figure 4-2 shows a typical native NetView console. The native console consists
of the following parts, which are launched when NetView is started:

� Map view: Represents the main EUI window. It displays the NetView topology
information called maps. It also allows you to perform various activities and
further configuration of NetView via a menu bar implementing menu tree that
you can extend and customize.

� Event console: Displays, by default, all events generated by NetView itself,
as well as the SNMP traps being sent to NetView by network elements. To
receive traps from other network elements, you must configure the actual
network device to forward traps to the NetView server.

� Tool window: Gives you several shortcuts to often used functions and a
navigation window, which you can use to quickly select a submap in the
NetView topology.

Important: In case you access NetView via a Windows workstation using a
local X server, such as Exceed, an additional empty window named dummy
shell is displayed. Do not close this window simply because it seems to be of
no particular use. If you do, it closes all other NetView windows that you may
have opened in your session.
 Chapter 4. Overview of IBM Tivoli NetView 105

Figure 4-2 Typical NetView EUI components

NetView’s menu system contains entries to access various configuration steps
from within the NetView EUI. It also provides menu entries to several integrated
functions, such as a MIB browser, a real-time graphing tool and other useful
applications. You can access and launch most of those applications from a UNIX
command line, but you have to provide all necessary parameters. When
launching these applications from the NetView menu, the relevant information is
provided by the EUI.

4.2.2 NetView maps and submaps
The central work area of the NetView EUI is the map window. NetView organizes
its graphical views in submaps, which are related to each other.

It starts with a root map as shown in Figure 4-3. From the root map, you can
select various representations of NetView managed elements. Additional
applications that provide a graphic representation also place their root symbols
on this map. By default, the root map contains three symbols:
106 Event Management and Best Practices

� Manager submap: Contains all NetView servers visible to the selected
NetView.

� Smartset submap: Contains all the default and custom smartsets.

� IP Internet map: Contains all elements of the discovered IP (Layer 3)
topology.

� Arbitrary number of other root map entries depending on the number of
third-party applications you may have integrated into NetView.

Figure 4-3 shows the NetView top-level map as it should appear right after the
installation of NetView. All graphical views positioned below the root map are
called a submap.

Figure 4-3 NetView root map display

If you click the IP Internet icon, the top-most level of the NetView topology map is
displayed. Figure 4-4 shows the top level of our lab environment shortly after we
set it up when we started to write this redbook. For a complete layout of the lab
environment see Figure 7-1 on page 360.

The IP Internet submap represents the IP topology since NetView could discover
it. On this map, only routers, location symbols, and IP segments are displayed
since they make up the IP topology. In Figure 4-4, you can see two routers and
several segments connected through the routers.
 Chapter 4. Overview of IBM Tivoli NetView 107

This submap also gives more information. If you examine the segment
192.168.111, notice that the connection line between the routers appears dotted,
marking a serial connection. Also the color of that segment is magenta, unlike
the other segments drawn. Magenta is the color for an administratively down
segment.

Figure 4-4 NetView top topology map

Our lab environment contains only a few elements, so that the IP Internet
submap displays all the essential information without customization. As your
network grows, the IP Internet will likely be crowded with elements, demanding
more configuration. If the map becomes too crowded, you can move parts of the
topology into location symbols. NetView connects these locations accordingly. To
108 Event Management and Best Practices

demonstrate the location symbol, we moved the segments connected to router
rdur02 and the router into a location called NC_net. Figure 4-5 shows the result.

Figure 4-5 Using location symbols

You can use a location symbol to group your network. Even nested locations are
supported. NetView automatically reconnects the locations to the correct
connector elements. Only the IP Internet submap allows the position of location
elements and assures the correct connection of elements.

All the submaps that are discussed don’t accept custom elements or elements
copied or moved from other submaps. NetView displays those elements but does
not control or change them.
 Chapter 4. Overview of IBM Tivoli NetView 109

The next lower level in the NetView topology is represented by the IP segment
symbols. Clicking an IP segment symbol brings you to the connection submap.
Figure 4-6 shows segment 9.24.106.144 of our lab environment.

Figure 4-6 The connection submap

The connection submap contains a lot of useful information such as:

� The type of the underlying segment topology: In our case, it is an Ethernet
bus segment. Other segment types displayed here are, for example, token
ring or Fiber Distributed Data Interface (FDDI).

Note: With NetView version 6.0, a new configuration file was introduced. It
allows you to set up a topology layout using location symbols. NetView uses
the definitions in /usr/OV/conf/location.conf, creates the defined locations and
their associated submap, and places the elements into the submaps only at
discovery time. The supplied location.conf file contains comments about how
to build a location layout.
110 Event Management and Best Practices

� Routers which have interfaces assigned to this IP segment: In our case, two
routers are connected to the segment. You can verify this with the IP Internet
submap as shown in Figure 4-4 on page 108.

� Any other element of type connector, for example Ethernet switches, terminal
servers, or print servers displayed: In Figure 4-6, the Ethernet switch, which
connects the NetView server to the lab environment, is correctly placed.

Double-clicking a segment symbol brings you to the segment level where all the
discovered elements, which are part of the particular network segment, are
placed. In addition to the connector type elements that we already know, you find
all the remaining discovered elements such as printer, workstations, etc.

Figure 4-7 shows the segment map of our discussed topology. You can see one
additional element, which is the NetView server residing in this segment.

Figure 4-7 A segment submap

The segment map contains all network elements discovered and managed in the
particular segment. It is the only submap where NetView places managed
 Chapter 4. Overview of IBM Tivoli NetView 111

elements that own a single IP interface and don’t have a special topology-related
meaning.

The lowest level of submaps that you will find in NetView is a representation of
interfaces. You can access this submap from each higher level submap by
clicking a real element or object. Figure 4-8 shows the interface submap of our
router rdur02. It displays all the configured interfaces and their status. You can
see three running, one unmanaged, and one interface, which is set to
administrative down.

Figure 4-8 The interface submap

The change of interface status affects all other submaps. In case of a
multi-interface object, such as an router, the change of an interface from up to
down status changes or propagates the status up to the highest level. All upper
level submaps change to yellow, which signals that at least one interface in the
related submap chain is of status down.

4.2.3 The NetView event console
As discussed in 4.2.1, “The NetView EUI” on page 105, an event console is
launched as part of the NetView EUI. However, the NetView configuration allows
112 Event Management and Best Practices

you to change the appearance of the EUI. Often you find that the event console
disconnected from the main NetView window. Refer to “Suggested NetView EUI
configuration” on page 402, which discusses how to customize EUI behavior.

The NetView event console (Figure 4-9) displays all events arriving in the form of
SNMP traps as well as those generated by NetView itself. By default, all arriving
events that are not a log type are displayed only in the console.

Figure 4-9 The NetView event console

The event console allows you to perform a few important tasks such as these:

� Switch the representation of events between line mode as shown in
Figure 4-9 or card mode where the events are displayed in a card file manner.

� Select single events and retrieve all information for the event.

Note: We use the term event for both SNMP traps sent from remote SNMP
agents to NetView and for messages that NetView generates as a result of a
state change detected by polling a device. The messages triggered by a state
change are in the same format as the SNMP traps received. Both types of
message are an asynchronous event issued by NetView as a result of a
(synchronous) polling operation and true asynchronous traps. NetView
processes both types exactly the same way.
 Chapter 4. Overview of IBM Tivoli NetView 113

� Attach notes to specific events which are then included in reports that you can
generate from a part or all events in the console.

� Create dynamic event consoles and apply filter definitions to this console to
display only specific events.

You can configure the event console through a configuration file and tailor it to
your needs. “Event console configuration” on page 403 lists examples of
common event console configurations.

4.2.4 The NetView Web console

The new Java-based NetView client is shown in Figure 4-10, enables you to
access NetView from anywhere within your network. You can access it with a
stand-alone application that you can download using NetView’s built-in Web
server. Or you can use a Java plug-in for your Web browser. Access to NetView
through the Web console is granted on a per-user basis. You can assign each
user a definable role giving more or less restricted access to NetView, as well as
a specific view and a limit on access to the graphical information.

Note: Before you launch a Web console, you must configure at least one user
using the NetView native interface. See “Web console security” on page 407.
114 Event Management and Best Practices

Figure 4-10 NetView Web console

The Web console provides graphical information about node status, as well as:

� An event browser that displays incoming events according to the actual user
role and view

� An MIB browser that can retrieve MIB variables from all objects in your
network

� A set of commonly used SNMP or IP-based diagnostics ranging from
connectivity tests to limited systems management operations such as file
system monitors

� Basic management capabilities, such as manage or unmanage an object or
acknowledge or unacknowledge a certain status of an object

Any changed status is accordingly propagated among all working instances of
the NetView console.
 Chapter 4. Overview of IBM Tivoli NetView 115

� Several Layer 2 switch diagnostics are not available with the NetView native
console. These include:

– Port view (Figure 4-11) which displays switch port along with its current
spanning tree status, Media Access Control (MAC) address, forwarding
status and the IP address connected to the port

– A switch status view, which summarizes the spanning tree and IP status of
each port

– A MAC view, which shows the relationship between the MAC address, IP
address, and host name for each port

– A list of inactive ports

Figure 4-11 Port view of NetView switch diagnostics

� The same menu extension as for the native EUI if IBM Tivoli Switch Analyzer
is installed

You can perform an impact analysis on the connector objects (router and
switches) and rediscover the layer 2 topology used by the IBM Tivoli Switch
Analyzer.

� Ability to extend the Web console menu and add your own applications to the
menu

Results of custom menu entries can be displayed only in a Web browser.
116 Event Management and Best Practices

4.2.5 Smartsets
Smartsets or collections were introduced in NetView version 4 and became more
and more important. In general, a smartset displays objects stored in NetView’s
object database and groups them based on rules in a separate submap. Some
NetView components create smartsets automatically, for example the servmon
application. You can access the smartsets via a separate set of submaps via the
NetView root map as shown in Figure 4-12.

In Figure 4-12, the smartset contains all the switches in our lab environment. The
objects inside a smartset are not connected in any way. The submap simply
collects NetView managed objects based on the rule that is specified.

Figure 4-12 NetView smartsets
 Chapter 4. Overview of IBM Tivoli NetView 117

The advantages of smartsets are:

� They collect objects with identical attributes.

� They allow you to quickly check the status of a group of managed objects
sharing the same attributes. For example, a smartset containing the routers in
your environment can be used as an overview window to see the actual state
of the routers without traversing a complex topology.

� Smartset rules allow the definition of dynamic smartsets. For example,
NetView administrators often define a smartset, which contains all servers
marked as down by NetView. The smartset contains only the critical servers.
As soon as an object becomes available again, it is automatically removed.

You can define your own smartsets. A smartset editor is provided to help you with
the definition. You can access the smartset editor via the native console menu.
Select Tools →SmartSet Editor... from the NetView menu. This opens the
SmartSet Editor window shown in Figure 4-13.

Figure 4-13 SmartSet Editor

In this window, you can add, modify, and remove smartsets. The smartset editor
allows you to define simple rules using an interactive window. For more complex
rules, when the rule exceeds four expressions, the smartset editor automatically
displays the rule in a text only format.
118 Event Management and Best Practices

To define a rule, the smartset editor offers several features:

� Boolean operators: Used to connect different parts of the rule in the form
expression_1 && expression 2 || expression 3. Supported boolean
operators are and (&&), or (||), and not (!).

� Comparison operators: Used to compare the contents of an attribute with a
constant or a general expression. Supported comparison operators are: =
(equal), != (not equal), > (greater than), < (less than), >= (greater than or
equal to), <= (less than or equal to), ~ (contains), and !~ (does not contain).

� Subnets: Specifies all objects in a single subnet. For example IN_SUBNET
9.24.106.128 includes the objects rdur01, rdusw01,rduatc01, and rduarm01
of our lab environment on the smartset.

� Object list: Lets you define a static list of single objects that you can select on
a submap to be included into the smartset.

� Attribute: Lets you specify any attribute of an object and compare the
contents with a constant expression. If this expression is true, the object is
included into the smartset.

� Smartset rule: Can be used to include or exclude the objects defined by
another existent smartset rule into the actual smartset.

“A smartset example” on page 417 shows an example of a dynamic smartset.

4.2.6 How events are processed
This section gives an overview over the relationship between event processing
daemons in NetView. For an in-depth discussion about event processing inside
NetView and how the different processes are involved in event processing, see
Tivoli NetView for UNIX User's Guide for Beginners, Version 7.1, SC31-8891.

The main entry point for any SNMP trap and any NetView generated event is the
well behaved trapd daemon. This daemon, or process, listens on port 161, which
is the well-known port to receive SNMP traps. The trapd daemon communicates
with several other NetView processes to distribute the events. Figure 4-14 shows
the relationship between the processes in regard to event processing.

The process follows this sequence:

1. Trapd logs all incoming traps and events to trapd.log. After logging, the
application can directly process the event. Trapd also sends events to:

– pmd: The postmaster daemon which further distributes events to
registered processes

– nvcorrd: The NetView correlation daemon
 Chapter 4. Overview of IBM Tivoli NetView 119

2. pmd receives events from trapd, applies routing information, and passes the
events to the ovesmd daemon. This daemon forwards events after filtering to
registered applications and to the log agent ovelmd. ovelmd logs all events
and stores them into the ovevent log. This log is the only source of event
information for dynamic and historical events. Events displayed in the
NetView event console are taken from this log file.

3. Nvcorrd correlates and compares events with rules defined with the rule
editor and stored as rule sets. Depending on the decisions made in the rule
sets, information as passed to the actionsvr daemon and, if necessary, to the
nvpagerd daemon. Also, nvcorrd passes events to nvseverd.

4. nvserverd forwards events to the IBM Tivoli Enterprise Console. A NetView
rule set must be assigned to nvserverd, which allows filtering of unnecessary
events before they are forwared to IBM Tivoli Enterprise Console.

Figure 4-14 Process relationship for event and trap processing

4.3 Supported platforms and installation notes
This section describes the supported operating systems. It includes some
installation notes that you should review prior to installing IBM Tivoli NetView.

trapd

Applications

orsd

Applications

nvpagerd

Applications

nvcorrd

pmd

ovesmd

actionsvr

ovelmd

nvserverd client nvevents

trapd.log

orsd db

ovevent.log
120 Event Management and Best Practices

4.3.1 Supported operating systems
The IBM Tivoli NetView distributed product is supported on several platforms:

� AIX®: V4.3.3 (Maintenance Level 09)

� AIX: V5.1 (Maintenance Level 01)

� AIX: V5.2

� Solaris: V2.8, V2.9 (with all Sun-required patches)

� Linux Intel®:

– RedHat Version 7.2 (2.4.7-10 kernel)
– RedHat Advanced Server Version 2.1
– SuSE Version 7.2 (2.4.4-4GB kernel)
– UnitedLinux Version 1.0

� Linux for zSeries®:

– RedHat Version 7.2
– SUSE LINUX Enterprise Server 7.2 for S/390® and IBM Eserver®

zSeries (SLES 7)
– UnitedLinux Version 1.0

NetView is not supported on 64-bit Linux for zSeries systems. The code is
distributed on separate media for the UNIX, Linux, and zSeries platforms.

4.3.2 Java Runtime Environments
NetView requires Java Runtime Environment (JRE) 1.3.1 on the following
platforms:

� AIX
� Solaris Operating Environment (hereafter referred to as Solaris)
� Linux Intel
� Linux for zSeries

4.3.3 AIX installation notes
NetView is supported on AIX Versions 4.3.3 maintenance Level 10 and 5.1
maintenance level 01.

In addition to the AIX operating system release and the required maintenance
level, NetView depends on the number of additional system components which
apply to both supported versions of the operating system:
 Chapter 4. Overview of IBM Tivoli NetView 121

� The X11.compat package

– X11.compat.lib.X11R5
– X11.compat.fnt.pc

� X11.vfb

� bos.compat.links

You must install these components before you install NetView. NetView performs
a prerequisite check after the installation of the NetView catalog files, but before
it starts to distribute the NetView images. In case the prerequisite check fails, you
can look in /tmp/ NVS_714_BIN_before.output to determine the failing packages.

After a successful installation, the NetView daemons list (see Example 4-1)
should be running.

Example 4-1 NetView processes overview

Glasi-/usr/OV/conf >nvstat
NOTE: ovspmd is process 20210
DAEMON NAME PROCESS PARENT DEPENDENCIES
actionsvr 22632 ovspmd nvsecd,nvcorrd
ems_log_agent 26316 ovspmd nvsecd,ems_sieve_agent
ems_sieve_agent 25804 ovspmd nvsecd,pmd,ovtopmd
mgragentd 22486 ovspmd nvsecd
netmon 23810 ovspmd vsecd,ovtopmd,trapd,ovwdb
nvcold 25034 ovspmd nvsecd,ovwdb
nvcorrd 23516 ovspmd nvsecd,trapd
nvlockd 23090 ovspmd nvsecd
nvpagerd 19668 ovspmd nvsecd
nvsecd 17592 ovspmd
nvserverd 24348 ovspmd nvsecd,nvcorrd
ovactiond 24772 ovspmd nvsecd,trapd
OVORS_M 21124 ovspmd nvsecd,pmd
ovtopmd 25546 ovspmd nvsecd,trapd,ovwdb
ovwdb 20504 ovspmd nvsecd
pmd 22018 ovspmd nvsecd
servmon 18070 ovspmd ovwdb,trapd,nvcold
snmpCollect 26064 ovspmd nvsecd,trapd,ovwdb,ovtopmd
snmpserver 20962 ovspmd nvsecd
trapd 21700 ovspmd nvsecd,pmd
trapgend 22832 ovspmd nvsecd
webserver 23738 ovspmd ovwdb
122 Event Management and Best Practices

4.3.4 Linux installation notes
Make sure that all required additional packages (in the following list) are installed
before you begin the NetView installation:

� binutils
� inetd
� ucd-snmpd: Has different package names in various distributions
� xvfb: Named XFree86-Xvfb under Red Hat and xextra under SuSE

� pdksh: Install from the NetView installation media, located under /RPMS

� The man pages don’t integrate under SuSE. You must rename the files under
/usr/OV/man. The man pages reside under various directories in
/usr/OV/man, name man1 man 8. You need to add an extension to the man
page files to reflect the subdirectory:

a. Change into the subdirectory, for example:

cd /usr/OV/man/man1

b. Rename the files

>for i in $(ls);do mv $i $i.1;done

c. Repeat steps a and b for all the manx directories.

d. Recreate the man page index database by typing:

mandb -c

Note: The netviewd daemon is missing. This process provides a NetView map
in case the NetView EUI is not active and must be registered to NetView. You
can do this by typing:

/usr/OV/bin/ovaddobj /usr/OV/lrf/netviewd.lrf

Note: If you decide to install NetView under a higher SuSE release than
SuSE 7.2, be aware that the xextra package no longer exists. The frame
buffer package, xvfb, which is required is still available.

In this case, you must switch off the prerequisite checking of nvinstall. To
switch the prerequisite checking off, create an empty file under /tmp with
the name noNVPrereqCheck.
 Chapter 4. Overview of IBM Tivoli NetView 123

4.4 Changes in NetView 7.1.3 and 7.1.4
This section presents an overview of the most significant enhancements
introduced into NetView V7.1.3 and 7.1.4 for the scope of this book. You can find
a complete list of enhancements beginning with the last major version (for
example NetView V 7.1) and a list of actual fixes in the readme documentation.

4.4.1 New features and enhancements for Version 7.1.3
The new features and enhancements for Version 7.1.3 are outlined in the
following sections.

Web console enhancements: Menu integration
The NetView EUI provides an interface to customize the NetView menu tree to
integrate third-party or custom applications into NetView. These application are
launched in a given context, for example based on a selected object on a
NetView map.

Applications interface into NetView using application integration files (ARF) that
are placed under /usr/OV/registration/C. All registration files in this path are read
during NetView startup and linked to the appropriate parts of NetView.

For the Web console, NetView 7.1.3 introduces a similar, but limited mechanism.
It is limited in that the Web console security concept does not allow a full
integration into the Web console. The output of any application that you provide
is always redirected into a Web browser. If a menu from the Web console is
selected, a Uniform Resource Locator (URL) launch is initiated. This causes the
integrated Web server to launch your application and passes the appropriate
context information to the program. The context information is taken by the same
mechanism as for the native menus.

Any program output is sent to a Web browser. We suggest that you format the
output in the HTML format. Plain text output is also displayed as a Web page. In
this case, it appears in different colors regardless of whether it is sent via the
stdout or the stderr channel.

The configuration of the Web console menus take place with the help of Web
Application Registration Files (WARF). The difference between ARF and WARF
files is their format. While ARF files use a proprietary C style format to describe
menus and their attributes, WARF files use standard Extensible Markup
Language (XML) files to describe the menu behavior.

For an actual example of the Web console integration, see “Web console menu
extension” on page 408.
124 Event Management and Best Practices

Secure Sockets Layer security
As an additional security measure, you can configure the Web console to use
Secure Socket Layer (SSL) communication. You can configure SLL
communication via the NetView server setup utility as explained here:

1. Stop all Web consoles.

2. Select Configure →Configure Web Server →Enable Web Daemons.

3. Set Enable Web Server daemon and Enable SSL for Secure Web Server
Communications to yes.

4. Specify a port or keep the default port designation.

5. Start and stop the Web server daemon.

Revised Tivoli Enterprise Console Integration for Version 7.1.3
NetView Version 7.1.2 marks the beginning of a somewhat tighter integration into
the IBM Tivoli Enterprise Console. When distributed with IBM Tivoli Enterprise
Console, NetView becomes a subcomponent of IBM Tivoli Enterprise Console
called Integrated TCP Service Component.

The integration of IBM Tivoli Enterprise Console and NetView is provided on both
sides:

� An IBM Tivoli Enterprise Console rule set named netview.rls provides the
necessary correlations for several essential network events. On the NetView
side, a special NetView rule set, tec_its.rs, filters the relevant network events,
formats them, and forwards the events to IBM Tivoli Enterprise Console.

� The process, dispsub, is loaded together with the NetView EUI. In case an
IBM Tivoli Enterprise Console operator clicks a network event on the IBM
Tivoli Enterprise Console, this action sends an SNMP trap with context
information to the Integrated TCP Service Component. Dispsub accepts the
information and launches a read-only submap on the IBM Tivoli Enterprise
Console operators screen.

� Alternatively, you can use IBM Tivoli Enterprise Console to launch the Web
console to give the IBM Tivoli Enterprise Console operator all the capabilities
of a full blown Web console, including the Web console diagnosis.

� On the Integrated TCP Service Component side, a menu entry is added
which allows a NetView operator to verify which IBM Tivoli Enterprise
Console events are sent for a given node.

Note: After logging on to the Web console using port 8080 with SSL enabled,
the session switches to port 8443 instead of port 8080.
 Chapter 4. Overview of IBM Tivoli NetView 125

4.4.2 New features and enhancements for Version 7.1.4
This section discusses the enhancements made to NetView Version 7.1.4 since
most apply to the scope of this redbook.

Service discovery and monitoring
Up to NetView Version 7.1.3, a special application, nvsniffer, was used to
discover TCP services running on managed nodes. After discovery of a service,
nvsniffer could check the status of the service. Monitoring the status of services
becomes more important and is part of a consistent event management.

Up to NetView Version 7.1.4, the nvsniffer utility was used to discover services on
nodes managed by NetView. Actually, nvsniffer only checked the TCP port that
you specified in its configuration for the presence of a listening process. If a
process was detected on a well-known port nvsniffer, it assumed the service to
be present. With the detected information about available services, nvsniffer
created several smartset containing nodes on a per service base.

With NetView 7.1.4, the nvsniffer application is replaced by a new process called
service monitor, which is implemented as the nvservmon daemon.

Part of managing a network requires that you know which nodes carry essential
services for your enterprise. Often, the status of a node in a network
management environment is determined on the status of its interface. A critical
service on that node, such as a Web server, can be down without affecting the
interface.

The new service monitor, servmon, provides a function to discover and monitor
these services. It is set up via a configuration file where you specify both the
discovery and the status monitoring method for a given service. The syntax of the
configuration file is identical to the syntax of the nvsniffer configuration.

The difference between nvsniffer and servmon is that servmon has full
integration into NetView. The server can be stopped, started, and configured via
the NetView server setup. To can access the configuration page, you click
Administer →Server Setup to launch the NetView server setup utility.

In general, servmon replaces and extends the functions of nvsniffer. Unlike
nvsniffer, it can respond to topology status changes and changes in smartset
membership. servmon detects traps received by trapd and messages generated
by nvcold, enabling servmon to maintain internal discovery and monitoring lists.

The servmon daemon detects and acts on the following traps:

� Node Up
� Node Down
126 Event Management and Best Practices

� Node Marginal
� Node Added
� Node Deleted
� Node Managed
� Node Unmanaged
� Interface Added
� Interface Deleted
� Service Removed (from a node)
� Service Managed
� Service Unmanaged
� Change Service Polling Intervals
� SNMP Address Changed
� Demand Poll (Forced Poll)

The servmon daemon detects and acts on the following messages from the
nvcold daemon:

� Collection (SmartSet) Added
� Collection (SmartSet) Deleted
� Collection (SmartSet) Object Added
� Collection (SmartSet) Object Removed

Unlike nvsniffer, servmon acts on these events. For example, when a node down
is received, this event is intercepted by servmon. Servmon checks if a service is
monitored on that affected node and generates a service down event for that
node as shown in Figure 4-15.

Figure 4-15 Service down event generated by servmon

Servmon also supports the new severity escalation for critical nodes. When a
service running on a NetView managed object is detected, servmon adds a field
 Chapter 4. Overview of IBM Tivoli NetView 127

that describes this service to the NetView object database. Note the following
fields:

� isITMEndpoint
� isITM_IBM_WebSphere_Application_Server
� isITM_IBM_WebSphere_MQ
� isITM_IBM_DB2

If a service is missing on a given node for a certain amount of time (default is 7
days), the fields are removed. Then the fields are used for severity escalation,
which we discuss in “Enabling Tivoli Enterprise Console event severity
escalation” on page 129.

Revised Tivoli Enterprise Console integration for Version 7.1.4
NetView now supports both the socket-based IBM Tivoli Enterprise Console
communication as it was supported in former releases of NetView and, with
NetView 7.1.4, the Tivoli communication method. You must install a Tivoli
endpoint on your NetView server if you intend to use the Tivoli communication
method when forwarding events to IBM Tivoli Enterprise Console. To specify the
IBM Tivoli Enterprise Console communication, use:

� nvinstal with the -T flag for the Tivoli communication method or the -t flag for
socket based IBM Tivoli Enterprise Console communication

� nvits_config script: The same flags apply as with the nvinstal utility.

From the NetView native console, click Administer →Server →Configure →
Configure event forwarding to Tivoli Enterprise Console. In the window
shown in Figure 4-16, complete the fields. If you select the Tivoli communication
method, the window shows one or more Endpoint instance numbers. You must
select one instance. Usually you see only one endpoint instance.
128 Event Management and Best Practices

Figure 4-16 IBM Tivoli Enterprise Console configuration window

Enabling Tivoli Enterprise Console event severity escalation
For nodes monitored by the IBM Tivoli Monitoring product, IBM Tivoli NetView
can now query IBM Tivoli Monitoring servers for information that can help to
escalate the severity of Tivoli Enterprise Console events for endpoint nodes that
are monitored by IBM Tivoli Monitoring.

Using the ITMQUERY function, you can query IBM Tivoli Monitoring servers for
information about IBM Tivoli Monitoring server endpoints and the services that
are installed on these endpoints. ITMQUERY is also used to add and delete IBM
Tivoli Monitoring servers monitoring nodes, which are detected by servmon. All
configured IBM Tivoli Monitoring servers are queried for their nodes and their
resource models.

This new connection between the network management instance and the
monitoring instance is used by the IBM Tivoli Enterprise Console interface:

Note: The IBM Tivoli NetView documentation refers to an ITMQUERY
function. However, the actual command is written in lowercase and can be
executed via /usr/ov/bin/itmquery.
 Chapter 4. Overview of IBM Tivoli NetView 129

� The NetView IBM Tivoli Enterprise Console Adapter forwards two new events
to IBM Tivoli Enterprise Console to allow correlation and an increase in
severity for critical resources. The state correlation engine built in the NetView
IBM Tivoli Enterprise Console adapter is used for this purpose.

� Upon receipt of a TEC_ITS_NODE_STATUS or TEC_ITS_ROUTER_STATUS
event where the status is DOWN or MARGINAL and the affected node owns
any "isITM_*" attributes, a TEC_ITS_NODE_SERVICE_IMPACT event is
generated for each IBM Tivoli Monitoring service attribute found on the node.
This includes the node host name and the affected service.

� Upon receipt of a TEC_ITS_SUBNET_CONNECTIVITY where the status is
UNREACHABLE and the affected nodes own one of the "isITM_*" attributes,
a TEC_ITS_SUBNET_SERVICE_IMPACT event is generated for each
affected IBM Tivoli Monitoring-related service.

4.4.3 First failure data capture
The first failure data capture (FFDC) function provides a means to collect data
after the first failure of a Tivoli NetView daemon. The FFDC subsystem
automatically collects and archives necessary data at the time of failure. You can
use this information to analyze the problem, or you can send the data archive to
IBM Customer Support.

The FFDC subsystem does not collect any data in case a daemon is stopped in a
friendly manner using the ovstop command.

FFDC increases the tracing and logging activity and can affect your initial
discovery. Because an initial discovery occurs rather seldom in a working
environment, the overall impact of FFDC should be moderate.

To turn off the FFDC function permanently, use the following procedure:

1. Edit the /usr/OV/conf/FFDC/autotrace.properties file.
2. Set the following property to TRUE:

NV_AUTOTRACE_DISABLE=TRUE

Use the following procedure to turn off and on the FFDC function for the current
Tivoli NetView session. The FFDC function remains off until the Tivoli NetView
product is stopped and restarted.

Note: At the time this book was written, no particular information about the
atctl command was available. In general, you use this command to control
(start or stop) the FFDC subsystem.
130 Event Management and Best Practices

1. Enter the following command to turn off tracing and check for residual tracing
information:

/usr/OV/bin/atctl off NVD

2. Enter the following command to remove Tivoli NetView AutoTrace channel 60:

/usr/OV/bin/atctl remove 60

3. Enter the following command to remove Tivoli NetView AutoTrace channel 0:

/usr/OV/bin/atctl remove 0

4. Enter the following command to confirm that the Tivoli NetView AutoTrace
function is stopped:

/usr/OV/bin/atctl info

As an alternative to these four steps, you can put everything in a script. Simply
enter the following command to turn on the Tivoli NetView AutoTrace function:

/usr/OV/bin/atctl init /usr/OV/conf/FFDC/autotrace

FFDC operations are logged under /usr/OV/log/FFDC.log. Additional issues
regarding FFDC are discussed in 4.5, “A closer look at the new functions” on
page 131.

4.5 A closer look at the new functions
This section give a more in-depth look at some of the new feature provided with
NetView 7.1.4 as they were used in our lab.

4.5.1 servmon daemon
The new servmon daemon provides a method for discovery and monitoring of
important services. The servmon configuration file, /usr/OV/conf/servmon.conf,
allows you to choose which services are important to your environment. The
configuration file comes with the services defined in Example 4-2.

Example 4-2 servmon configuration file excerpt

#isITMEndpoint||||/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.DiscoveryMonitor||*|0

#isITM_IBM_WebSphere_Application_Server|WAS|||/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.se
rvmon.DiscoveryMonitor||*|0

#isITM_IBM_WebSphere_MQ|MQ|||/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.DiscoveryMo
nitor||*|0
 Chapter 4. Overview of IBM Tivoli NetView 131

#isITM_IBM_DB2|DB2|||/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.DiscoveryMonitor||*
|0

#isService_IBM_DB2|50000|IBM_DB2_Servers|IBM DB2 Server|||*|20

#isService_IBM_WebSphere_MQ|1414|IBM_MQ_Servers|IBM MQ Server|||*|20

#isRMON|1.3.6.1.2.1.16.1.1.1.1|RMON|RMON|/usr/OV/jars/snmpServiceTest.jar@com.tivoli.netview.sn
mpServiceTest.SnmpAttributeDiscoveryMonitor|/usr/OV/jars/snmpServiceTest.jar@com.tivoli.netview
.snmpServiceTest.SnmpAttributeDiscoveryMonitor|*|20

#isService_IBM_WebSphere_Application_Server|9090 9080 80 WAS|WebSphereServers|IBM WebSphere
Application
Server|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpDiscoveryMonit
or|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpDiscoveryMonitor|*
|20

#isService_IHS|80 IHS|IHS|IBM HTTP
Server|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpDiscoveryMonit
or|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpDiscoveryMonitor|*
|20

By default, each service that is defined is commented out. You must either
remove the pound symbol (#) from the beginning of the service that you want to
monitor or define a new service to monitor, using the syntax described in the
servmon configuration file. Also note that the sermon daemon is enabled by
default, although the default configuration does not monitor any services.

If you make customizations to the configuration file, and there are syntax or
format errors in your configuration, the log file servmon.log is created under the
/usr/OV/log directory. If errors are found with the configuration file, the service
definition where the error or errors were found is ignored.

During our testing with servmon, we found that you need to stop and start the
servmon daemon after you make any changes to the configuration file for those
changes to take effect. After you define a service within the configuration file, and
that service is found during the service discovery, a new smartset object is
created for each service found, with the name specified in the configuration file.
132 Event Management and Best Practices

Figure 4-17 shows a sample of the smartsets created using servmon. In this
example, four new smartsets were created: Apache, IBM_DB2_Servers, IHS,
and WebSphereServers.

You can view the status of services in two ways by default through the NetView
console:

� Smartsets

When viewing smartsets, you can open one of the newly created servmon
discovered services, and view which hosts are running that specified service.
This view helps you to see the service status for all hosts for a given service.

� Hosts

When viewing the NetView map by hosts, you see the servmon discovered
services under each host view that is running one or more of the defined and
discovered services. This view helps you to see the status of all discovered
services from a given host.

Servmon also gives you the ability to set the polling interval for service discovery
and status. This polling interval is specified in the definition of the service in the
configuration file. Another feature of servmon is its ability to stop monitoring
down services. By default, if a service is down for seven days, servmon removes
it from the list of discovered services on a per host basis. This option is also
configurable from within the configuration file. You can also modify the polling
interval and Service Down Delete Interval via the SNMP Configuration window.
 Chapter 4. Overview of IBM Tivoli NetView 133

Figure 4-17 Servmon smartset after service discovery

4.5.2 FFDC
Example 4-3 shows the result of a short test in our lab environment. We stopped
a few NetView processes to collect some FFDC data.

The FFDC subsystem writes the results of abnormal process terminations into
/usr/OV/PD/FFDC. For each day, a directory is created which holds the data for
that day.
134 Event Management and Best Practices

Example 4-3 FFDC entries under /usr/OV/FFDC

Glasi/ >cd /usr/OV/PD/FFDC
Glasi/usr/OV/PD/FFDC >ls -l
total 24
drwxrwxrwx 2 root system 512 Sep 22 16:07 2003.09.22
drwxrwxrwx 2 root system 512 Sep 23 13:56 2003.09.23
drwxrwxrwx 2 root system 512 Sep 25 08:15 2003.09.25
Glasi/usr/OV/PD/FFDC >

Inside the directories, you find a compressed tar file for each occurrence of an
abnormal termination in the form process_nameFFDC_num.tar.compressor as in
Example 4-4, where process_name is the name of the crashed process, num is a
consecutive numbering for that particular process, and compressor designates
the compression program used. FFDC first looks for the gzip program. If it does
not find the program, it uses the normal UNIX compress utility.

Example 4-4 FFDC per day repository

Glasi/usr/OV/PD/FFDC >cd 2003.09.25
Glasi/usr/OV/PD/FFDC/2003.09.25 >ls -l
total 15352
-rw-rw-rw- 1 root system 1769363 Sep 25 08:11 netmonFFDC_0.tar.gz
-rw-rw-rw- 1 root system 2007975 Sep 25 08:14 netmonFFDC_1.tar.gz
-rw-rw-rw- 1 root system 1997498 Sep 25 08:15 nvserverdFFDC_0.tar.gz
-rw-rw-rw- 1 root system 2080110 Sep 25 08:14 ovtopmdFFDC_0.tar.gz
Glasi/usr/OV/PD/FFDC/2003.09.25 >

The compressed file contains a tar archive, which contains all the collected data.
The data differs from daemon to daemon, but in general, it contains the possible
core files, important system and network information, and related log files at the
time of the problem.

Example 4-5 shows the typical contents of a netmon FFDC archive.

Example 4-5 Typical contents of a netmon FFDC archive

Glasi:/usr/OV/PD/FFDC/2003.09.25 >tar -tvfnetmonFFDC_1.tar|more
drwxrwxrwx 0 0 0 Sep 25 08:14:52 2003 ./
-rw-rw-rw- 0 0 14179 Sep 25 08:11:59 2003 ./core
-rw-rw-rw- 0 0 86 Sep 25 08:14:51 2003 ./corefile.timestamp
-rw-rw-rw- 0 0 1117342 Sep 25 08:14:51 2003 ./errpt.out
-rw------- 0 0 15728896 Sep 25 08:14:50 2003 ./netmon_snap.at
-rw-rw-rw- 0 0 3479 Sep 25 08:14:51 2003 ./no_a.out
 Chapter 4. Overview of IBM Tivoli NetView 135

-rw-rw-rw- 0 0 14250 Sep 25 08:14:51 2003 ./ps_efl.out
-rw-rw-rw- 0 0 2410 Sep 25 08:14:51 2003 ./sysenv
-rw-rw-rw- 0 0 17766 Sep 25 08:14:52 2003 ./netview_root.log
-rw-rw-rw- 0 0 19336 Sep 25 08:14:52 2003 ./netview_daemon.log
-rw-rw-rw- 0 0 65168 Sep 25 08:14:52 2003 ./nettl.LOG00
-r--r--r-- 0 0 3473 Sep 25 08:14:52 2003 ./ovsuf
-r--r--r-- 0 0 303 Sep 25 08:14:52 2003 ./version
-rw-rw-rw- 0 0 52898 Sep 25 08:14:52 2003 ./netmon.trace
-rw-r--r-- 0 0 65919 Sep 25 08:14:52 2003 ./trapd.log
-rw-r--r-- 0 0 19293 Sep 25 08:14:52 2003 ./ipmap.log
-rw-r--r-- 0 0 2760 Sep 25 08:14:52 2003 ./netmon.conf
-rw-r--r-- 0 0 698 Sep 25 08:14:52 2003 ./communityNames.conf
Glasi:/usr/OV/PD/FFDC/2003.09.25 >

Files to be included into a FFDC archive are specified under
/usr/OV/conf/FFDC/scripts. This directory contains a set of files and scripts that
are commonly used and a set for each process being watched by FFDC as in
Example 4-6.

Example 4-6 Part of /usr/OV/conf/FFDC/scripts

Glasi:/usr/OV/conf/FFDC/scripts >ls -l
total 208
-r-xr-xr-x 1 root system 12009 Aug 16 03:31 common_FFDC
-r--r--r-- 1 root system 207 Aug 16 03:31 common_FFDC.files
-r-xr-xr-x 1 root system 84 Aug 16 03:31 netmon_FFDC
-r--r--r-- 1 root system 182 Aug 16 03:31 netmon_FFDC.files
-r-xr-xr-x 1 root system 58 Aug 16 03:31 nvcold_FFDC
-r-xr-xr-x 1 root system 13 Aug 16 03:31 nvcold_FFDC.specific

You should not change the common_FFDC fileset. Perform any configuration, for
example for directories, etc., in /usr/OV/conf/FFDC/FFDC.properties.

Each of the process specific filesets can consist of two or three files, which follow
a common name convention. The files always begins with process_name_FFDC,
where process_name is the name of the process:

� The script file being called by the FFDC control program is named
process_name_FFDC. At the time this book was written, the scripts call the
common_FDDC script with the name of the process as the only parameter.

� A file named process_name_FFDC.files lists, on a line-by-line base, the full
path of any file to be included in addition to the information already included
by the common_FFDC script.
136 Event Management and Best Practices

� A file named process_name_FFDC.specific specifies specific processing for
that particular process. For example, the results of a netstat command
should be added to the archive.

Integrating third-party processes
We now show an example of how to add another process into the FFDC
subsystem. Processes that are being included need to fulfill these prerequisites:

� They must have an entry in the NetView ovsuf file under /usr/OV/conf/ovsuf.

� They must exist as an native executable. The processes started via the
wrapper application /usr/OVservice/spmsur, in general the newer Java-based
processes, did not integrate at the time this book was written.

In our example, we integrate the IBM Tivoli Switch Analyzer main process,
coordinator, into the FFDC system. In addition to the default information, we
include the IBM Tivoli Switch Analyzer configuration files, its log files, and its
caches.

1. Make backup copies of all files that you are going to modify.

2. In case you want the change temporarily, modify the itsl2 entry in /usr/OV/suf.
Select the entry marked with 0 in position 1 as shown in Example 4-7. Locate
the three consecutive colons at the end of the entry and replace the colons
with the reference to a new FFDC script we will create. Example 4-7 shows
how to make the entry.

Example 4-7 The ITSL2 ovsuf entry

0:itsl2:/usr/OV/ITSL2/bin/coordinator:OVs_YES_START:ovtopmd,trapd,ovwdb::OVs_WE
LL_BEHAVED:30:/usr/OV/conf/FFDC/scripts/itsl2_FFDC:5:

3. If you want the integration to be permanent, you can make the same
modification in the local registration file for the itsl process, ITSL2.lrf, located
under /usr/OV/lrf.

4. Change to the /usr/OV/conf/FFDC/scripts directory. In this directory, using the
editor of your choice, create two files named itsl2_FFDC and itsl2_FFDC.files.
You can copy two files from the directory and modify them accordingly.

5. In the itsl2_FFDC file, add a line, as shown in the following example, to call
the common script along with the constant itsl2 as in Example 4-8. The
itsl2_FFDC file is called from the FFDC subsystem in case the coordinator
process ends in an unfriendly way.

/usr/OV/conf/FFDC/scripts/common_FFDC itsl2
 Chapter 4. Overview of IBM Tivoli NetView 137

6. Open or create itsl2_FFDC.files and provide a list of process-specific
information files. We included the IBM Tivoli Switch Analyzer configuration
files and the cache files as in Example 4-8.

Example 4-8 Contents of itsl2

Glasi:/usr/OV/conf/FFDC/scripts >more itsl2_FFDC.files
/usr/OV/log/netmon.trace
/usr/OV/log/nettl.LOG00
/usr/OV/ITSL2/conf/cd_api.ini
/usr/OV/ITSL2/conf/coordinator.ini
/usr/OV/ITSL2/conf/correlator.ini
/usr/OV/ITSL2/conf/event_controller.ini
/usr/OV/ITSL2/conf/event_receiver.ini
/usr/OV/ITSL2/conf/ext_cmd_server.ini
/usr/OV/ITSL2/conf/ov_cmd_server.ini
/usr/OV/ITSL2/conf/ov_event_adapter.ini
/usr/OV/ITSL2/conf/poll_server.ini
/usr/OV/ITSL2/conf/topo_server.ini
/usr/OV/ITSL2/conf/cache/corr_cache
/usr/OV/ITSL2/conf/cache/corr_event_num
/usr/OV/ITSL2/conf/cache/event_cache
/usr/OV/ITSL2/conf/cache/raw_event_num
/usr/OV/ITSL2/conf/cache/topo_cache
/usr/OV/ITSL2/conf/cache/corr_cache
/usr/OV/ITSL2/conf/cache/corr_event_num
/usr/OV/ITSL2/conf/cache/event_cache
/usr/OV/ITSL2/conf/cache/raw_event_num
/usr/OV/ITSL2/conf/cache/topo_cache
Glasi:/usr/OV/conf/FFDC/scripts >

7. Test the file if you are allowed to end a process. Otherwise, trust the output
shown in Example 4-9, which shows the results of a kill -15 signal issued
against the coordinator process of the IBM Tivoli Switch Analyzer.

Example 4-9 Contents of the itsl2 FFDC archive

Glasi:/usr/OV/PD/FFDC/2003.09.26 >ls
itsl2FFDC_0.tar.gz
Glasi:/usr/OV/PD/FFDC/2003.09.26 >
Glasi:/usr/OV/PD/FFDC/2003.09.26 >gzip -d itsl2FFDC_0.tar.gz
Glasi:/usr/OV/PD/FFDC/2003.09.26 >
Glasi:/usr/OV/PD/FFDC/2003.09.26 >tar -tvfitsl2FFDC_0.tar
drwxrwxrwx 0 0 0 Sep 26 10:27:27 2003 ./
-rw-rw-rw- 0 0 66 Sep 26 10:27:25 2003 ./corefile.timestamp
138 Event Management and Best Practices

-rw-rw-rw- 0 0 1126460 Sep 26 10:27:26 2003 ./errpt.out
-rw------- 0 0 15728896 Sep 26 10:27:24 2003 ./itsl2_snap.at
-rw-rw-rw- 0 0 3479 Sep 26 10:27:26 2003 ./no_a.out
-rw-rw-rw- 0 0 10442 Sep 26 10:27:25 2003 ./ps_efl.out
-rw-rw-rw- 0 0 3020 Sep 26 10:27:26 2003 ./sysenv
-rw-rw-rw- 0 0 18462 Sep 26 10:27:26 2003 ./netview_root.log
-rw-rw-rw- 0 0 22501 Sep 26 10:27:26 2003 ./netview_daemon.log
-rw-rw-rw- 0 0 125128 Sep 26 10:27:27 2003 ./nettl.LOG00
-r--r--r-- 0 0 3732 Sep 26 10:27:27 2003 ./ovsuf
-r--r--r-- 0 0 303 Sep 26 10:27:27 2003 ./version
-rw-rw-rw- 0 0 53660 Sep 26 10:27:27 2003 ./netmon.trace
-rw-rw-rw- 0 0 181 Sep 26 10:27:27 2003 ./cd_api.ini
-rw-rw-rw- 0 0 1233 Sep 26 10:27:27 2003 ./coordinator.ini
-rw-rw-rw- 0 0 1005 Sep 26 10:27:27 2003 ./correlator.ini
-rw-rw-rw- 0 0 383 Sep 26 10:27:27 2003 ./event_controller.ini
-rw-rw-rw- 0 0 388 Sep 26 10:27:27 2003 ./event_receiver.ini
-rw-rw-rw- 0 0 404 Sep 26 10:27:27 2003 ./ext_cmd_server.ini
-rw-rw-rw- 0 0 327 Sep 26 10:27:27 2003 ./ov_cmd_server.ini
-rw-rw-rw- 0 0 335 Sep 26 10:27:27 2003 ./ov_event_adapter.ini
-rw-rw-rw- 0 0 355 Sep 26 10:27:27 2003 ./poll_server.ini
-rw-rw-rw- 0 0 433 Sep 26 10:27:27 2003 ./topo_server.ini
Glasi:/usr/OV/PD/FFDC/2003.09.26 >

Integration of all other well behaved non-Java processes can be done in a similar
manner. As mentioned, if you want to include files in the archive, which require
some processing to produce it, you must specify the additional
process_name.specific file.
 Chapter 4. Overview of IBM Tivoli NetView 139

140 Event Management and Best Practices

Chapter 5. Overview of IBM Tivoli
Switch Analyzer

This chapter explains the seven layers of the Open Systems Interconnection
(OSI) model and the features and functions of IBM Tivoli Switch Analyzer that
provide network management capabilities at layer 2 of the model. It also
describes the integration of IBM Tivoli Switch Analyzer and IBM Tivoli NetView,
particularly in terms of their abilities to correlate layer 2 and layer 3 events to find
the root cause of network problems.

5

© Copyright IBM Corp. 2004. All rights reserved. 141

5.1 The need for layer 2 network management
The need for layer 2 network management cannot be understood without first
defining what is meant by the various network layers. This section describes the
model used to define the network layers. It also explains why layer 3
management is insufficient to determine the root cause of network errors.

5.1.1 Open Systems Interconnection model
In 1984, the International Organization for Standardization (ISO) published the
Open Systems Interconnection Basic Reference Model (ISO 7498) to provide an
open standard for the communication between devices across a network. The
OSI model, as it is usually called, defines seven sets of requirements called
layers that govern all aspects of communication from the wire across which the
signal travels (layer 1) to the application itself (layer 7). Figure 5-1 shows the
layers of the model.

Figure 5-1 OSI model

Each layer of the OSI reference model provides a set of functions to the layer
above it and, in turn, relies on the functions provided by the layer below it. The
seven layers are in order:

1. Physical layer: This layer is responsible for physically transmitting data bits
over the communication link. It provides the mechanical, electrical, functional,
and procedural standards to access the wire or physical medium.
142 Event Management and Best Practices

2. Data link layer: This layer provides the functions and protocols to transfer
data between network entities and to detect (and possibly correct) errors that
may occur in the physical layer. It transforms data between bit streams and
frames. Switches and intelligent hubs operate at layer 2.

3. Network layer: This layer provides the means to establish connections
between networks by determining the proper addressing and routing to use
for the transmission. It translates between the network names used at the
higher layers and Media Access Control (MAC) addresses used by the data
link layer. It also provides routing information. Routers, and sometimes
switches, operate at layer 3.

4. Transport layer: This layer provides transparent and reliable end-to-end data
transfer. It does this by breaking large transmissions into consistently sized
packets and providing flow control and error checking for those packets.

5. Session layer: This layer provides mechanisms to organize and structure
interaction between applications, devices, or both. It handles the identification
of the parties exchanging information and the rules they use for
communication such as who speaks first and for how long.

6. Presentation layer: This layer is concerned with the representation of user or
system data. This includes necessary formatting (for example, a printer
control character) and code translation (for example, ASCII to EBCDIC) to
present the data to the user interface.

7. Application layer: The user interface resides at the application layer. This
layer gives the user access to all the lower OSI functions. An example of an
application that provides a user interface is a Web browser.

Although messages can only pass vertically through the stack from layer to layer,
from a logical point of view, each layer communicates directly with its peer layer
on other nodes. For example, if the network layer adds routing information to a
transmission, the device that receives the transmission must be able to decode
the routing information. This holds true for every layer of the model.

An advantage of this layered approach is flexibility. Changes can be made to how
products implement a single layer without affecting the remaining layers. In
principle, as long as standard interfaces to the adjacent layers are adhered to, an
implementation can still work.

5.1.2 Why layer 3 network management is not always sufficient
As discussed in Chapter 4, “Overview of IBM Tivoli NetView” on page 101, the
NetView Integrated TCP/IP Services Component V7.1.4 product performs
management at the third layer of the OSI Model. Its topology is based upon the
routing information that is defined at that level and reported by the various
devices in the network. During the discovery process, devices report their IP
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 143

routing information. NetView uses the information to build a map showing the
layer 3 connectivity of devices. If a device has a direct route to a subnet through
one of its interfaces, it is attached to that subnet on the map.

This type of management is useful in determining whether information can be
routed between any two devices using IP. However, if IP routing is not possible,
layer 3 management may not provide sufficient information to determine the
cause of the failure. This is because the IP traffic is sent through the data link
layer before it is passed across the network link to another device. A layer 2
failure may be the actual cause of the inaccessibility of a layer 3 device.

Consider the example of a layer 3 router that is attached to a layer 2 switch. If the
switch experiences a failure of the port to which the router is attached, the router
is inaccessible using IP, even though it may be running. In this case, the root
cause problem is a broken switch port, not a failed router. However, sometimes
the router is not accessible using IP because it really failed. In this case, the
router failure is the real problem.

To determine root cause failures in these types of scenarios, it is necessary to
know the layer 2 connectivity of the devices being managed. Both layer 2 and
layer 3 failure conditions must be detected and correlated together to determine
which failures to address. The purpose of IBM Tivoli Switch Analyzer V1.2.1 is to
provide the layer 2 information necessary to make this determination.

5.2 Features of IBM Tivoli Switch Analyzer V1.2.1
The IBM Tivoli Switch Analyzer extends the ability of the IBM Tivoli NetView
product to perform root case analysis of layer 2 problems. Working with the IBM
Tivoli Switch Analyzer, NetView can isolate problems to non-IP ports on
managed layer 2 devices. Using IBM Tivoli Switch Analyzer, NetView users can
view the port-level discovery of switches and view the impact of taking down a
switch or port. Because the IBM Tivoli Switch Analyzer is tightly integrated with
NetView, it is easy to use and maintain, and NetView operators can learn how to
use it quickly.

5.2.1 Daemons and processes
The IBM Tivoli Switch Analyzer daemon, itsl2, is implemented as a well-behaved
NetView daemon. Because it is a well-behaved daemon, it is started and stopped
using the ovstart and ovstop commands.

When the daemon is started, seven other processes start. Table 5-1 lists the
processes and their functions.
144 Event Management and Best Practices

Table 5-1 itsl2 daemon processes and their functions

The status of these processes can be displayed by issuing this command from
the /usr/OV/ITSL2/etc directory:

./ITSL2 status

You should see output similar to what is shown in Example 5-1.

Example 5-1 Status of IBM Tivoli Switch Analyzer processes

root:/usr/OV/ITSL2/etc >ITSL2 status

coordinator... running
correlator... running
event_controller... running
event_receiver... running
ov_event_adapter... running
ov_cmd_server... running
ext_cmd_server... running

Each process has its own initialization (.ini) file in the /usr/OV/ITSL2/conf
directory that contains parameters that control the execution of the process.
These files define the name and size of the log file, to which the process writes

Process Function

coordinator � Starts and stops all IBM Tivoli Switch Analyzer components
� Routes messages between the components

correlator � Receives raw events
� Correlates raw events to identify the root cause of a problem
� Processes polling requests
� Processes topology requests for layer 2 discovery

event_controller Manages the event database

event_receiver � Forwards events from the NetView event adapter to IBM Tivoli
Switch Analyzer

� Starts and stops the OV and NV event adapters

ext_cmd_server Provides the interface to send events to the NetView product

ov_cmd_server Provides the interface to the NetView topology database

ov_event_adapter � Receives raw events from the NetView trapd daemon
� Filters events and forwards them to the NetView event

receiver
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 145

its messages, and ports used for communications with other processes. We
discuss the flow of information among these processes later.

5.2.2 Discovery
Before layer 2 devices can be managed, they need to be discovered. For the
purposes of this chapter, the term discovery is used in two different ways.
NetView discovers layer 3 IP devices. IBM Tivoli Switch Analyzer discovers the
port information for switches and how they interconnect with the rest of the
network topology. Both of these discoveries need to happen before IBM Tivoli
Switch Analyzer manages a layer 2 device.

After NetView discovers the switch from an IP layer 3 perspective, IBM Tivoli
Switch Analyzer attempts to discover the addresses of devices attached to the
switch’s ports. If the device meets the requirements defined in Table 5-2, the
discovery is successful, and the switch port information is used to complete IBM
Tivoli Switch Analyzer’s topology and correlate events from various network
devices.

Supported layer 2 devices
For a layer 2 device to be discovered using IBM Tivoli Switch Analyzer, the
requirements listed in Table 5-2 must be met.

Table 5-2 Requirements for a layer 2 device to be discovered

Requirement Explanation

NetView discovered itself using
Simple Network Management
Protocol (SNMP).

IBM Tivoli Switch Analyzer builds the layer 2 topology based on each
discovered port’s position (upstream or downstream) relative to the
NetView machine. Therefore, it needs to know about the NetView box.

NetView discovered the device
and is managing it.

IBM Tivoli Switch Analyzer only queries devices already discovered by
NetView. The ov_cmd_server obtains this information by querying
NetView’s topology database. All devices downstream from an
unmanaged device are ignored by IBM Tivoli Switch Analyzer.

The device’s object identifier
(OID) is defined in NetView and
flagged as a bridge or hub.

IBM Tivoli Switch Analyzer discovers devices with OIDs flagged as
bridges or hubs, but not routers in NetView. Use the following
command to determine which devices NetView identified as switches:

ovtopodump -X

Device supports RFC 1493
bridge Management Information
Bases (MIB).

IBM Tivoli Switch Analyzer queries the MIB for information about which
devices are attached to the various ports. This information is supplied
by the forwarding table that contains MAC addresses. Issue the
following command to see if the MIB is supported:

snmpwalk -c community string switch IP address dot1dBridge
146 Event Management and Best Practices

You can use the IBM Global Services ITSATool tool to determine IBM Tivoli
Switch Analyzer’s ability to discover ports for the various switches in an
organizations environment. Contact your IBM Global Services representative for
more information.

The discovery process
At the start of the discovery process, IBM Tivoli Switch Analyzer downloads the
complete NetView layer 3 network topology. Then it attempts to add the layer 2
information to it using the following procedure.

The IBM Tivoli Switch Analyzer installation process reads NetView’s
/usr/OV/conf/oid_to_type file. Then it extracts the object IDs for which the B, H, or
BH flags are set. Next, it puts these OIDs in IBM Tivoli Switch Analyzer’s
/usr/OV/ITSL2/conf/files/l2_oids.cfg file. It ignores those entries for which the G
flag is set. Table 5-3 lists the meanings of these flags in the oid_to_type file.

Table 5-3 Flag definitions for oid_to_type file

NetView has the correct
community name defined for the
device.

IBM Tivoli Switch Analyzer issues SNMP queries to the device using
the community string defined in NetView. If this is incorrect, discovery
will fail.

Non-Cisco device cannot
require community string
indexing (CSI) to access virtual
local area network (VLAN)
information.

IBM Tivoli Switch Analyzer 1.2.1 uses CSI to support Cisco switches
with multiple VLANs. Other vendor switches are currently limited to
discovery of VLAN1.

The network on which the switch
resides is fully connected back
to the NetView server.

Layer 3 connectivity is required from NetView to any managed switch.
All routers and switches in this path must be SNMP enabled and the
server must be configured with their community strings.

Requirement Explanation

Flag Description

B Treat the object as a bridge or simple repeater. A symbol for objects with this
OID appear in the Segment and Network views. The symbol can be used to
connect segments.

G Treat the device topologically as a gateway (router). A symbol for this object
appears in the Segment, Network, and Internet views. The symbol can be used
to connect networks.

H Treat the object as a multi-port repeater or hub. A symbol for objects with this
OID appear in the Segment and Network views. The symbol can be used to
connect segments. This symbol can also appear at the center (hub) of Star
segments.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 147

IBM Tivoli Switch Analyzer reads the l2_oids.cfg file created by the installation
process and attempts to discover the switch information from any devices
NetView already discovered that have these OIDs.

IBM Tivoli Switch Analyzer uses the SNMP community name defined in the
NetView SNMP Configuration panel to perform SNMP queries against the
interfaces. It uses dot1dBridge branches of the standard MIB-II tree for the
devices it is trying to discover. In particular, it sends a query using
oid.1.3.6.1.2.1.17.1.1 (dot1dBridge.dot1dBase.dot1dBaseBridgeAddress). The
result returned should be a hex address.

If the SNMP agent on the switch does not provide a response to this MIB object,
then discovery fails. Problems can be due to incorrect community names defined
in NetView, incompletely discovered layer 3 path to the device, or switch
configuration problems. See “Discovery problems” on page 158 for additional
information about the causes of discovery failures.

For Cisco switches with VLANs defined, IBM Tivoli Switch Analyzer uses the
community string index to query the device’s Cisco-specific MIBs for information
it can use to build its topology.

IBM Tivoli Switch Analyzer loads the switch topology it discovers into cache and
writes it to the /usr/OV/ITSL2/cache/topo_cache file. Cache is updated every 15
minutes by default, as defined in the topo_cache_freq parameter of the
/usr/OV/ITSL2/conf/correlator.ini file with information about new or successfully
rediscovered switches. See “Rediscovery” on page 154 for more information.

Discovery status
IBM Tivoli Switch Analyzer attempts to discover the switch information for all
NetView objects whose OIDs are defined as bridges or hubs, but not routers.
There are a few methods to determine the success of the discovery process.

Notes:

� If a new OID is added to NetView’s oid_to_type file after IBM Tivoli Switch
Analyzer is installed, the l2_oids.cfg file can be updated by executing the
/usr/OV/bin/importNvOids command. The itsl2 daemon must be recycled
for the changes to take effect.

� To see the devices NetView discovered as switches, run the following
command:

ovtopodump -X

See “NetView layer 2 topology report” on page 149 for more information
about this command.
148 Event Management and Best Practices

The topo_server log
Errors encountered during discovery are written to the
/usr/OV/ITSL2/log/topo_server.log file. You can check this file to see which
switches failed discovery and the reasons for the failure. Resolve these errors
and attempt rediscovery for the switches. You can find more information about
some of the errors that may appear in this file in “Discovery problems” on
page 158.

NetView layer 2 topology report
You can run the following command either before or after installing IBM Tivoli
Switch Analyzer. Its purposes is to show the devices that NetView believes are
switches and their layer 2 status. To run the report, type:

/usr/OV/bin/ovtopodump –X

This command displays the following information about each node as shown in
Figure 5-2:

� OVwDb object ID: A number assigned to the object in the NetView database

� Node name: The host name of the layer 2 device as discovered by NetView

� IP status: Indicates whether the IP address is reachable for the device

� SNMP address: The IP address to which SNMP commands are sent

� sysObjectID: The SNMP system object ID as reported to NetView during the
discovery process

� Layer2Status field value: Reports up, down, and marginal status for layer 2
devices

This field is set and maintained by the Tivoli Switch Analyzer program for layer
2. The value of the field is initially set to Unset. When a problem occurs, the
field is set to either Marginal or Down. While the problem is resolved, the
Layer2Status field is updated to Marginal or Up. If a switch does not ever
experience a problem, this field remains as Unset.

� Layer 2 OID?: Indicates whether the SNMP sysObjectId is missing from the
/usr/OV/ITSL2/conf/files/l2_oids.cfg file

Prior to installing IBM Tivoli Switch Analyzer, this field is No. After IBM Tivoli
Switch Analyzer is installed, if this field is set to No, run the importNvOids
command to synchronize the layer 2 object IDs between NetView and IBM
Tivoli Switch Analyzer.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 149

Figure 5-2 Sample output from the ovtopodump -X command

In addition to the information provided in the output, successful execution of this
command implies:

� The machine on which Tivoli NetView is installed has been discovered.

� The capability field isConnector is set to True and the isRouter field is set to
False for the devices listed.

Layer 2 discovery reports
Another way to determine discovery status is to run the IBM Tivoli Switch
Analyzer supplied discovery reports. Two reports are provided:

� Layer 2: Lists each discovered switch and the discovered devices that are
connected to each port on the switch. The report can be run for all discovered
devices or for a specific layer 2 device.

� Summary: Lists the total number of switches discovered and their names.

Table 5-4 shows the commands to execute on the UNIX and Windows platforms
to generate the reports.

Table 5-4 Commands to generate reports on UNIX and Windows

The reports are generated from the information in IBM Tivoli Switch Analyzer’s
cache. Each time the itsl2 daemon is restarted, IBM Tivoli Switch Analyzer
rebuilds cache. It first waits the amount of time indicated by the topo_cache_freq
period in the correlator.ini file (default is 15 minutes). Then it performs discovery

root:/ >ovtopodump -X
Node ID Object IP Status L2 Status IP Address SNMP OID Layer 2 OID?
OID?

541 rdusw03 Up Unset 9.24.106.163 1.3.6.1.4.1.9.5.18 Yes
543 rdusw04 Up Unset 9.24.106.164 1.3.6.1.4.1.9.5.31 Yes
549 rdusw05 Up Unset 9.24.106.179 1.3.6.1.4.1.9.5.18 Yes
551 rdusw06 Up Unset 9.24.106.180 1.3.6.1.4.1.9.5.18 Yes
555 rdusw07 Up Unset 9.24.106.181 1.3.6.1.4.1.9.5.31 Yes
568 rdusw01 Up Unset 9.24.106.131 1.3.6.1.4.1.9.5.18 Yes
605 rdusw02 Up Unset 9.24.106.147 1.3.6.1.4.1.9.5.31 Yes

Platform Layer 2 report command Summary report command

UNIX /usr/OV/ITSL2/bin/ITSL2_reports –r
layer2 [-s device_name]

/usr/OV/ITSL2/bin/ITSL2_reports
–r layer2

Windows \usr\ov\itsl2\bin\itsl2_reports.bat –r
layer2 [-s device_name]

\usr\ov\itsl2\bin\itsl2_reports.bat –r
summary
150 Event Management and Best Practices

and updates its cache. Since the itsl2 daemon is typically started when NetView
starts, this delay allows NetView to synchronize before IBM Tivoli Switch
Analyzer begins the layer 2 discovery.

Running these reports before the daemon can discover the switches results in
the message Layer 2 topology data is currently not available.

Summary report
The summary report (Figure 5-3) shows the switches that were discovered and
their IP addresses. It was generated using the following command:

/usr/OV/ITSL2/bin/ITSL2_reports -summary

Figure 5-3 Summary report

Layer 2 report
The layer 2 report provides totals of the number of switches in the various stages
of discovery: successful, in progress, and discovered with errors. It then shows
the machine names and IP addresses of every device attached to the discovered
switches.

In the following example, the layer 2 report was produced using the command:

/usr/OV/ITSL2/bin/ITSL2_reports -r layer2

The first switch listed is dtmsw01, which has IP address 9.24.106.80. Attached to
it are:

� dtnwas01 with IP address 9.24.106.185 on port 7
� dtmsw02 with IP address 9.24.106.180 on port 20
� phisw01 with IP address 9.24.106.179 on port 21

==
 Layer 2 Summary Report
==

--
Discovery has been completed for the following nodes:
--
dtmsw01/9.24.106.180
dtmsw02/9.24.106.181
mspsw01/9.24.106.163
phisw01/9.24.106.179
rdusw01/9.24.106.131
rdusw02/9.24.106.147
sapsw01/9.24.106.164

==
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 151

Similarly, the devices attached to other switches are listed, along with their ports
and IP addresses. Sometimes a port entry shows multiple addresses next to it.
The first address represents the address through which NetView discovered the
device. The second address is the one connected to a port.

In cases where a router is attached to a layer 2 device, these addresses may be
different. See port 7 under rdusw01 in the example in Figure 5-4 through
Figure 5-6 on page 154. The router, rdur01, was discovered in NetView through
port 9.24.106.145, but it has multiple ports. The router port with address
9.24.106.130 is attached to switch port 7.

Figure 5-4 IBM Tivoli Switch Analyzer layer 2 report (Part 1 of 3)

Note: You can generate the report for a single switch by using the command:

ITSL2_reports -r layer2 device-name

Or you can select the switch from the NetView topology map, and click
Monitor →Layer 2 →Discovery.

==
 Layer 2 Discovery Report
==

--
Number of layer 2 nodes discovered (no errors) : 7
Number of layer 2 nodes with discovery in progress: 0
Number of layer 2 nodes discovered (with errors) : 0

To view the summary report, run "ITSL2_reports -r summary"
--
dtmsw01/9.24.106.180
 [20/20/0.0.0.0] ===>
 [dtmsw02/9.24.106.181 - 12/12/0.0.0.0]
 [21/21/0.0.0.0] ===>
 [phisw01/9.24.106.179 - 12/12/0.0.0.0]

dtmsw02/9.24.106.181
 [12/12/0.0.0.0] ===>
 [dtmsw01/9.24.106.180 - 20/20/0.0.0.0]

mspsw01/9.24.106.163
 [2 /2/0.0.0.0] ===>
 [rdur02/9.24.106.146 - FastEthernet0/1/2/9.24.106.161]
 [5 /5/0.0.0.0] ===>

[phiwas01/9.24.106.167 - IBM 10/100 EtherJet PCI Adapter/0/9.24.106.167]
152 Event Management and Best Practices

Figure 5-5 IBM Tivoli Switch Analyzer layer 2 report (Part 2 of 3)

 [7 /7/0.0.0.0] ===>
 [sapsw01/9.24.106.164 - 7 /7/0.0.0.0]

phisw01/9.24.106.179
 [2 /2/0.0.0.0] ===>
 [mspwas01/9.24.106.184 - AMD PCNET Family Ethernet Adapter/0/9.24.106.184]
 [3 /3/0.0.0.0] ===>
 [phiwas02/9.24.106.183 - AMD PCNET Family Ethernet Adapter/0/9.24.106.183]
 [5 /5/0.0.0.0] ===>
 [dtmaas01/9.24.106.186 - en0; Product: PCI Ethernet Adapter (23100020)

Man/1/9.24.106.186] *
 [dtmwas01/9.24.106.185 - IBM 10/100 EtherJet PCI Adapter/0/9.24.106.185] *
 [rdur02/9.24.106.146 - FastEthernet1/0/3/9.24.106.177]
 [12/12/0.0.0.0] ===>
 [dtmsw01/9.24.106.180 - 21/21/0.0.0.0]

rdusw01/9.24.106.131
 [2 /2/0.0.0.0] ===>
 [rduarm01/9.24.106.136 - /0/9.24.106.136]
 [3 /3/0.0.0.0] ===>
 [rduatc02/9.24.106.135 - en0; Product: PCI Ethernet Adapter (23100020)

Ma/1/9.24.106.135]
 [7 /7/0.0.0.0] ===>
 [rdur01/9.24.106.145 - FastEthernet0/0/1/9.24.106.130]

rdusw02/9.24.106.147
 [2 /2/0.0.0.0] ===>
 [rdur01/9.24.106.145 - FastEthernet0/1/2/9.24.106.145]
 [3 /3/0.0.0.0] ===>
 [rduatc01/9.24.106.153 - en0; Product: PCI Ethernet Adapter (23100020)

Ma/1/9.24.106.153]
 [5 /5/0.0.0.0] ===>
 [rdur02/9.24.106.146 - FastEthernet0/0/1/9.24.106.146]
 [6 /6/0.0.0.0] ===>
 [rduanw01/9.24.106.154 - en0; Product: PCI Ethernet Adapter (23100020)

Ma/1/9.24.106.154]
 [9 /9/0.0.0.0] ===>
 [rduwws01/9.24.106.151 - AMD PCNET Family Ethernet Adapter/0/9.24.106.151]
 [10/10/0.0.0.0] ===>
 [rduatf01/9.24.106.152 - en0; Product: PCI Ethernet Adapter (23100020)

Ma/1/9.24.106.152]
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 153

Figure 5-6 IBM Tivoli Switch Analyzer layer 2 report (Part 3 of 3)

Rediscovery
There are several ways in which IBM Tivoli Switch Analyzer rediscovers switches.

Automatic rediscovery
The itsl2 daemon performs a periodic discovery poll by default every 24 hours.
The discovery poll forces a rediscovery of each switch it knows. This captures
spanning tree and port connectivity changes for the switch. The user can modify
the setting for the discovery interval value via the discovery_interval field
(measured in minutes) in the /usr/OV/ITSL2/conf/topo_server.ini file.

Retry attempts for failed discovery
IBM Tivoli Switch Analyzer attempts to rediscover the devices that have OIDs
listed in the l2_oids.cfg file and for which initial discovery failed. There are a
couple of parameters that govern this rediscovery. These are defined in the
/usr/OV/ITSL2/conf/topo_server.ini file. The parameters are:

� l2_retry_interval: The l2_retry_interval is the frequency at which failed layer
2 requests are retried. The default value is 900, which 15 minutes.

� l2_retry_cnt: The l2_retry_cnt is the maximum number of times a layer 2
request is retried. The default value is 5.

Using the default values, this means that IBM Tivoli Switch Analyzer attempts to
discover a switch upon startup of the itsl2 daemon. If the discovery of the switch
fails, IBM Tivoli Switch Analyzer waits 15 minutes and then tries to rediscover the
switch, repeating this process up to 5 times. After the sixth attempt at discovery, if
IBM Tivoli Switch Analyzer still has not discovered the switch, it stops trying to
discover that particular switch. The operator must then manually rediscover the
switch to reset the l2_retry_cnt to 0.

Operator-initiated rediscovery
To initiate a rediscovery, the user can restart the itsl2 daemon using the ovstop
itsl2 and ovstart itsl2 commands. The daemon should be restarted if several
switches must be rediscovered.

sapsw01/9.24.106.164
 [2 /2/0.0.0.0] ===>
 [sapwas02/9.24.106.168 - IBM 10/100 EtherJet PCI Adapter/0/9.24.106.168]
 [7 /7/0.0.0.0] ===>
 [mspsw01/9.24.106.163 - 7 /7/0.0.0.0]
==
154 Event Management and Best Practices

An operator can also initiate discovery at any time using the NetView Web
console or native console. Use this method if there is only a small number of
switches requiring rediscovery. Also use this method if the user has taken action
to resolve the discovery problems recorded for the switches in the
/usr/OV/ITSL2/log/topo_server.log file.

As shown in Figure 5-7, the user can select each switch that requires rediscovery
in the applicable NetView submaps and click Monitor →Layer 2 →Rediscovery.
This triggers a rediscovery of only the selected switch, eliminating the overhead
of performing a complete rediscovery. Note that only one switch can be selected
at a time when initiating rediscovery through the NetView console.

If the rediscovery request succeeds for a switch, whether through automatic or
operator-initiated discovery, its l2_retry_cnt is reset to 0 for that switch. Future
layer 2 requests that fail for the switch are again retried up to the limit specified
limit by the l2_retry_cnt parameter in /usr/OV/ITSL2/conf/topo_server.ini.

Figure 5-7 NetView console showing rediscovery menu option

New switch discovery
When NetView discovers a new device, it issues a Node added trap to indicate
that it added that node to its layer 3 topology. This trap is sent to IBM Tivoli
Switch Analyzer.

If the new device’s OID is contained in the /usr/OV/ITSL2/conf/files/l2_oids.cfg
file, IBM Tivoli Switch Analyzer identifies it as a switch and performs the
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 155

necessary SNMP queries to discover it. The newly discovered switch is added to
IBM Tivoli Switch Analyzer’s cache during the next cache refresh, as identified by
the topo_cache_freq parameter of the correlator.ini file.

5.2.3 Layer 2 status
IBM Tivoli Switch Analyzer provides the ability to check the layer 2 status of
devices. This section describes what is involved with determining the layer 2
status and how to view the layer 2 status.

Determining status
IBM Tivoli Switch Analyzer is responsible for determining the status of layer 2
devices and passing this information to NetView for reflection in the topology
map. It does this by processing Interface Down traps that it receives from
NetView.

When IBM Tivoli Switch Analyzer receives a down trap, it first checks the device
to verify that it is still down. This prevents IBM Tivoli Switch Analyzer from
performing its analysis for down traps that are merely the result of missed
responses to status queries.

Next, IBM Tivoli Switch Analyzer looks in its topology cache to determine the
layer 2 device upstream (closer to the NetView machine) from the failing device.
It polls it as well as peer devices for status. It continues in this manner until it
finds the farthest upstream down device or interface.

After determining the farthest upstream failing device, IBM Tivoli Switch Analyzer
uses correlation logic to determine the root cause of the original problem. It
sends a root cause trap to NetView, and, if applicable, updates the Layer2Status
field in NetView’s topology database for the appropriate switch or switches.

Layer2Status field
NetView comes with a topology database field called Layer2Status for tracking
the layer 2 status of switches. This field is set and maintained by the Tivoli Switch
Analyzer program for the layer 2 devices it recognizes.

The value of the field is initially set to Unset. When a problem occurs, the field is
set to either Marginal or Down. When the problem is resolved, the Layer2Status
field is updated to Marginal or Up. If a switch has not experienced a problem, its
Layer2Status is Unset.

Displaying status
The Tivoli NetView program provides several methods to display this field:

� Tivoli NetView Web console
156 Event Management and Best Practices

From within the Tivoli NetView Web console, select the device on the map,
and select Object Properties →Other to display fields that provide the IP
Status, Layer2Status, and status for each interface.

� Command line utilities

These two commands display the Layer2Status field for layer 2 devices:

/usr/OV/bin/ovobjprint -s selectionname
/usr/OV/bin/ovtopodump -l selectionname

selectionname is either the fully qualified IP name or the IP address if it
cannot be resolved.

� Submap Explorer

You can use the System Configuration view to display the Layer2Status field
and the IP Status field. If the status changes, this view is not dynamic and
must be refreshed to show the change.

5.2.4 Integration into NetView’s topology map
In addition to trap notification for layer 2 problems, the map symbol status for
layer 2 devices is updated. Layer 2 connector devices are displayed in the
Network and Segment submaps. Without Tivoli Switch Analyzer installed, the
status of NetView devices is determined from the status of their interfaces. This
means that the status of layer 2 device symbols depends on the status of a single
management IP interface.

Tivoli NetView Web console
You can use the Tivoli NetView Web console to display the status of a layer 2
device. Select the device on the map, and select Object Properties. Then on the
Object Properties window (Figure 5-8), select Other in the left pane to display
fields that provide the IP Status, Layer2Status, and status for each interface. On
Windows platforms, it also displays all of the service objects.

Note: On Windows, the status of services also contributes to the status of the
layer 2 device symbol. When the Tivoli Switch Analyzer program is installed,
the status of only the layer 2 device symbols is determined by either their IP
status or layer 2 status, whichever is more severe. For example, if the
management interface is Up, but the layer 2 status indicates that one or more
ports have failed, then the status of the layer 2 device symbol is Marginal.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 157

Figure 5-8 The Layer2 Status Dialog of the Web Console

Discovery problems
IBM Tivoli Switch Analyzer does send an SNMP query to the switch that it is
trying to discover. For this reason, it must have the correct community name. IBM
Tivoli Switch Analyzer uses the community names as defined in netmon. If this
community is wrong or not defined for a switch, you see the series of messages
in the /usr/OV/ITSL2/log/topo_server.log file (Example 5-2).

Example 5-2 Messages in the /user/OV/ITSL2/topo_server.log file

"... start discovery process for node [10.20.30.40|<community name>]
... L2 ERROR for node [10.20.30.40]: SNMP request timed out
[.1.3.6.1.2.1.17.1.1.0]
... end discovery process for node [10.20.30.40]: 1
... L2 ERROR for request [n]: unable to discover layer 2 interfaces"
158 Event Management and Best Practices

5.2.5 Traps
The Tivoli Switch Analyzer program issues ITSL2 Enterprise traps to notify the
user of the correlated root cause and subsequent update events. These traps are
displayed and handled by NetView.

When a trap is received, NetView issues IBM Tivoli NetView Enterprise layer 2
Status traps if it determines that the status of the device has changed as a result
of this trap. These traps are used to update the status of the device on the
NetView topology map.

There are three traps: Up, Marginal, and Down. You can use the NetView trap
customization utility to define a notification method such as e-mail, pagers, and
so on.

Event browser
Traps can be displayed using native event display and the Web console event
browser. The traps identify the root cause device in the hostname field.

The type of event and the failing ports are identified in the description field. The
Source field for these traps contains the letter V for vendor.

Forwarding traps to the IBM Tivoli Event Console
If the Tivoli NetView program is configured to forward traps to the IBM Tivoli
Event Console, all IBM Tivoli Switch Analyzer traps and the NetView layer 2
Status traps are forwarded as TEC_ITS events by default.

NetView layer 2 Status traps are mapped to TEC_ITS_L2_STATUS events with a
value of Up, Down, or Marginal. IBM Tivoli Switch Analyzer traps are mapped to
TEC_ITS_SA_STATUS events. The status is defined in the sastatus slot. See the
“Synchronization and Correlation with Tivoli NetView” chapter in the IBM Tivoli
Event Console Rule Builder’s Guide, Version 3.9 for more information about the
NetView rules.

Figure 5-9 shows the traps added during the installation of IBM Tivoli Switch
Analyzer. This information is placed into /usr/OV/tmp/itsl2/Install_stdout.log on
UNIX and in \usr\OV\tmp\itsl2\Install_stdout.log on Windows.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 159

Figure 5-9 Traps added during the installation of IBM Tivoli Switch Analyzer

5.2.6 Root cause analysis using IBM Tivoli Switch Analyzer and
NetView

This section describes the layer 3 and layer 2 root cause analysis provided when
using IBM Tivoli Switch Analyzer and NetView.

NetView layer 3 router fault isolation
The NetView Router Fault Isolation (RFI) function identifies a network outage
problem at the IP layer. If the problem is with a router, NetView issues a Router
Status trap and calculates the impact.

Subnets and routers in the impacted partition are set to the Unreachable status.
However, if the problem is with a layer 2 device, such as a switch, NetView
identifies the nearest impacted router as the root cause. It cannot detect port
problems in the layer 2 switch. This problem is solved by the IBM Tivoli Switch
Analyzer product.

IBM Tivoli Switch Analyzer layer 2 root cause analysis
IBM Tivoli Switch Analyzer program extends the ability of NetView to identify
problems at the port level of layer 2 devices. It reports the root cause whether it is

Successful Completion
Done.

Adding Switch Analyzer traps...
Trap ITSL2_IF_DOWN has been added.
Trap ITSL2_NODE_DOWN has been added.
Trap ITSL2_NODE_MARGINAL has been added.
Trap ITSL2_UPD_IF_UP has been added.
Trap ITSL2_UPD_IF_UNMAN has been added.
Trap ITSL2_UPD_IF_DEL has been added.
Trap ITSL2_UPD_NODE_UP has been added.
Trap ITSL2_UPD_NODE_UNMAN has been added
Trap ITSL2_UPD_NODE_RESOLVED has been ad
Trap ITSL2_UPD_NODE_DEL has been added.
Trap ITSL2_UPD_IF_DOWN has been added.
Trap ITSL2_UPD_NODE_DOWN has been added.
Trap ITSL2_UPD_NODE_MARGINAL has been ad
Done.

Switch Analyzer Installation Complete.
160 Event Management and Best Practices

at the layer 2 or the layer 3 level, either confirming the RFI result or identifying the
failing layer 2 device.

The IBM Tivoli Switch Analyzer program is triggered by an Interface Down trap
from NetView. It then determines the root cause of the problem and performs the
following actions:

1. Issues a trap that identifies the root cause device whether it is a router, switch,
or end node.

2. Updates the object database Layer2Status field if it is a switch or router. The
IBM Tivoli Switch Analyzer program continues to monitor and update the root
cause device and associated devices until the problem is resolved.

If the situation changes, the IBM Tivoli Switch Analyzer program performs these
actions:

� Issues an update trap for the root cause device.
� Updates the object database Layer2Status field.
� Identifies any new downstream problems as they become known.

5.2.7 Real-life example
To demonstrate the ITSL2 capabilities, we used the lab environment shown in
Figure 7-1 on page 360. We produced a few controlled interruptions to show the
work of NetView and IBM Tivoli Switch Analyzer. The focus was to see how
NetView and, to a lesser degree, IBM Tivoli Enterprise Console act on various
forms of outages. Where applicable, we show the resulting IBM Tivoli Enterprise
Console events with the supplied TEC_ITS.rs NetView rules in effect.

Actually, we couldn’t produce real problems by manipulating the hardware itself.
However, pulling a connection had the same effect of triggering a root cause
analysis.

Two of the three tests are tests were conducted in segment 9.24.106.176 of our
lab environment. This segment contains three Cisco 1900 switch devices
connected together in a daisy chain. Each switch has one or two of our lab
resources connected to an arbitrary port as shown in Figure 5-10.

To collect the results in a reasonable time, we changed the default polling time of
NetView (under Options →SNMP Configuration) to one minute and the
interface_timeout in /usr/OV/ITSL2/conf/correlator.ini to the value 20 meaning 20
seconds as shown in Example 5-3.

The interface_timeout value specifies the time between when an interface down
event is received and the time where IBM Tivoli Switch Analyzer starts searching
for a root cause. A timeout of 20 seconds is appropriate for our small lab network
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 161

with sufficient bandwith. For more complex environment, increase this value to a
value up to the default of 300 seconds or five minutes, depending on the average
propagation time in your network.

Example 5-3 Changed interface_timeout in /usr/OV/ITSL2/conf/correlator.ini

[Correlation]
topo_cache=../cache/topo_cache
topo_cache_freq=900
corr_cache=../cache/corr_cache
corr_cache_freq=120
#interface_timeout=300
interface_timeout=20
corr_timeout=10
interface_bounce_count=3
interface_bounce_interval=3600
down_event_severity=5
up_event_severity=4

Case 1: Removing a node
The first test is simple. We disconnected the node DTMWAS01 from its switch
port. This simulated a broken cable as marked in Figure 5-10. Since the node is
no longer available, this causes a port down condition at the switch.
162 Event Management and Best Practices

Figure 5-10 The first interruption

Removing an object managed by NetView and displayed in any submap causes
at least a Node down event being created by NetView because the next status
poll is unanswered. As a result, the node should be set to critical (red) in the
submap. Figure 5-11 shows the results of the action.

As expected, NetView marks the node itself critical. If you look at the upper part
of the event console, where all incoming events are displayed, you can see the
related events. The second and third event from the top are the events that
caused NetView to mark the node as critical. The first event is actually a trap
issued by the switch itself, which in this case can be the indication of the root
cause. The Cisco_Link_down trap shown as the first event passes the failing port
as the only argument.

9.24.106.181

CISCOSYSTEMS

Cisco 3600 Router

9.24.106.177

CISCOSYSTEMS CISCOSYSTEMS CISCOSYSTEMS

9.24.106.179 9.24.106.180

Endpoint w/
ITM
ACF
300pl

Windows 2000
m23caaxp

DTMWAS01

Endpoint w/
ITM
ACF

NetFinity 5100
Linux

m23x2636
PHIWAS02

Endpoint w/
ITM
ACF

rs6000
AIX

Venus
DTMAAS01

9.24.106.185
9.24.106.1869.24.106.183

Endpoint w/
ITM
ACF

NetFinity 5100
Linux

m23x3078
MSPWAS01

9.24.106.184
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 163

Figure 5-11 Results of a broken cable

Back to the topology window. You can see the switch dtmsw02 being marked as
marginal. Normally, this is impossible. NetView allows only nodes that have
multiple Layer3 interfaces being marked as marginal. A switch appears in
NetView as an object represented only by a its management interface.

If you look at the event console again, you can see a new event (fourth from top)
issued by ITSL2. It clearly states the port where the node was connected and is
now failing. This event causes event 5 to be generated by NetView again giving
the information of a Layer 2 device marginal, which matches with the topology.

The last event that you can see is a nice side effect. That is NetView’s new
servmon, in our lab environment, monitors the File Transfer Protocol (FTP)
164 Event Management and Best Practices

service provided by several nodes in the lab. Because the node is no longer
available, it correctly signals an FTP service as critical.

Now let’s look at the second event console, the lower part of Figure 5-11. The
second console shows the events after the event stream passed the TEC_ITS
rule on NetView, which normally provides a filter for the network events
forwarded to IBM Tivoli Enterprise Console. In this console, only three events are
displayed. The filter removed redundant events leaving the relevant information.

Last, IBM Tivoli Enterprise Console works on the events sent to the enterprise
console (Figure 5-12). It correlates the interface down and node down event
detected for node dtmaas01 leaving the information about the failing server, and
in the second event (the root cause of that problem), the failing switch port.

Figure 5-12 Incident as it appears in the IBM Tivoli Enterprise Console

Finally, we reconnected the node to the switch (Figure 5-13). As expected, the
clearing events relevant to the problem were issued by NetView and IBM Tivoli
Switch Analyzer. IBM Tivoli Enterprise Console correctly shows only the clearing
events for the two violation events caused by the removal of the node. You can
now use the clearing events inside IBM Tivoli Enterprise Console to perform the
necessary cleanup.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 165

Figure 5-13 Connection re-established
166 Event Management and Best Practices

Case 2: Removing a downstream switch
The second test that we ran involved a problem in a switch hierarchy. As shown in
Figure 5-14, you see three switches that are daisy-chained together, emulating a
typical hardware switch hierarchy. A layer 3 manager would see the three
switches as individual objects, represented by their management interface.

NetView places switches into the segment submap, but is unable to identify
switch-related outages. Without IBM Tivoli Switch Analyzer, NetView again would
report a single node down, the root cause. A broken link between two switches
would not appear.

Figure 5-14 Disconnecting a downstream switch

Figure 5-15 shows the results of the combined layer 3 and layer 2 analysis:

� The NetView topology correctly marked nodes dtmaas01 and switch dtmsw01
as critical. These are the two downstream objects that NetView cannot reach
anymore through its status poll.

� The topology shows switch dtmsw01as marginal. Without IBM Tivoli Switch
Analyzer, this switch appears as up. NetView can still reach the management

9.24.106.181

CISCOSYSTEMS

Cisco 3600 Router

9.24.106.177

CISCOSYSTEMS CISCOSYSTEMS CISCOSYSTEMS

9.24.106.179 9.24.106.180

Endpoint w/
ITM
ACF
300pl

Windows 2000
m23caaxp

DTMWAS01

Endpoint w/
ITM
ACF

NetFinity 5100
Linux

m23x2636
PHIWAS02

Endpoint w/
ITM
ACF

rs6000
AIX

Venus
DTMAAS01

9.24.106.185
9.24.106.1869.24.106.183

Endpoint w/
ITM
ACF

NetFinity 5100
Linux

m23x3078
MSPWAS01

9.24.106.184
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 167

interface of the switch. Through IBM Tivoli Switch Analyzer’s root cause
analysis, the switch is clearly marked as marginal.

� The event console shows the same. It shows node down events for the two
downstream devices and an ITSL2 event clearly pointing to the root cause,
the failing interface of switch dtmsw01.

Figure 5-15 A broken downstream link

Case 3: Defective router link
In our last test, we simulated a more complex issue in an IP network:
unreachable networks due to a failing router connected via a switch. Normally,
NetView reports the router as either marginal or down and marks the affected IP
segments as unreachable. By default, NetView does not poll any object in an
unreachable segment. Therefore, the status of those devices is unknown as long
as the segment is unreachable.
168 Event Management and Best Practices

Figure 5-16 shows the position in our lab network where we disconnected the IP
segment.

Figure 5-16 A broken router link

Tier 2

LAB ENVIRONMENT

Remedy
DB2

rs6000
AIX

m1097502
RDUARM01

TEC
TMR

UI_Server
RIM host

DB2
rs6000

AIX
m10df58f

RDUATC01

CISCOSYSTEMS Cisco 3600 Router

9.24.106.136 9.24.106.135

9.24.106.161

9.24.106.1779.24.106.146

9.24.104.191

Tier 1
Entry Tier

Event Sources

CISCOSYSTEMS

Risk Manager Network

CISCOSYSTEMS

 Cisco 2600 Router

 WebSphere
 State Correlation

GW
xSeries 230

Windows 2000
m23vnx64

RDUWWS01

TMR
ITM
DB2

rs6000
AIX

m106244
RDUATF01

 TEC
 UI_Server
 RIM host
 rs6000

 AIX
 m10df5bf

 RDUATC01

Endpoint w/
ITM
ACF

 NetFinity 5100
Linux

m23x3078
MSPWAS01

Endpoint w/
ITM
ACF
300pl

 Windows 2000
m23caaxp

DTMWAS01

Endpoint w/
ITM
ACF
300pl

 Windows 2000
m23caaxy

SAPWAS02

Endpoint w/
ITM
ACF

 NetFinity 5100
Linux

m23x2636
PHIWAS02

Endpoint w/
ITM
ACF

rs6000
AIX

Venus
 DTMAAS01

Endpoint w/
ITM
ACF
300pl

 Windows 2000
 m23caaac
 PHIWAS01

ITSC/NetView
ITSA

rs6000
AIX

m1083a6f
RDUANW01

9.24.106.151
9.24.106.152

9.24.106.153 9.24.106.154

9.24.106.167
9.24.106.183

9.24.106.184

9.24.106.185

9.24.106.186

9.24.106.145

9.24.106.130

9.24.106.163 CISCOSYSTEMS

CISCOSYSTEMS CISCOSYSTEMS
CISCOS YSTEMS

CISCOSYSTEMS

CISCOSYSTEMS

9.24.106.164

9.24.106.168

9.24.106.179 9.24.106.180 9.24.106.181

9.24.106.147

9.24.106.131

9.24.106.145
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 169

Shortly after we pulled the cable, which connected the router to the switch,
NetView displayed the results of its findings (Figure 5-17). The results show the
NetView IP Internet submap. You can see a critical route rdur01 as unreachable
segment 9.24.106 and a marginal segment 9.24.106.144. As shown in
Figure 5-17, it appears that the router itself is down.

Figure 5-17 A failing router link

If we drill down to the next lower level as shown in Figure 5-18, you see more
information:

� The segment itself is marked marginal, because it contains at least two
objects where NetView cannot status poll all interfaces.

� The router, as expected, is marked critical, because no interface can be
reached by NetView.

� The switch rdusw02 is marked as marginal as a result of an IBM Tivoli Switch
Analyzer analysis. If you look at the interface submap of that router, you
notice a running management interface for that switch.
170 Event Management and Best Practices

Figure 5-18 Failing router on the segment submap

This information gives us a hint. The router is down and a related switch is
marginal. It’s likely that the switch has something to do with this situation.

You can finally find the root cause in the event console shown in Figure 5-17. The
fifth segment from the top, issued by ITSL2 clearly marks a port as critical.
 Chapter 5. Overview of IBM Tivoli Switch Analyzer 171

172 Event Management and Best Practices

Chapter 6. Event management products
and best practices

This chapter describes the features of IBM Tivoli Enterprise Console with its
NetView Integrated TCP/IP Services Component V7.1.4 and IBM Tivoli Switch
Analyzer V1.2.1. It also examines how you can use them to implement the event
correlation and automation best practices discussed in Chapter 2, “Event
management categories and best practices” on page 25.

Only those product features that perform event management functions are
described here. For more in-depth discussion about the general capabilities and
features of IBM Tivoli Enterprise Console, NetView, and Switch Analyzer, see the
following chapters respectively or the product documentation:

� Chapter 3, “Overview of IBM Tivoli Enterprise Console” on page 85
� Chapter 4, “Overview of IBM Tivoli NetView” on page 101
� Chapter 5, “Overview of IBM Tivoli Switch Analyzer” on page 141

6

© Copyright IBM Corp. 2004. All rights reserved. 173

6.1 Filtering and forwarding events
Best practices dictate filtering as close to the source as possible to minimize
bandwidth usage and save event processor cycles (see 2.3.3, “Where to filter” on
page 41). In some cases, this implies filtering at the source, and in others at the
closest event processor.

IBM Tivoli NetView, Switch Analyzer, and Enterprise Console can all serve as
both event sources and event processors. In their roles as event sources, the
products are capable of generating events. As event processors, they can
receive events and perform actions, such as filtering, upon them.

We discuss the filtering and event suppression capabilities of the products when
functioning both as event sources and processors.

6.1.1 Filtering and forwarding with NetView
This section covers the event filtering and forwarding capabilities of the NetView
network manager, . Its purpose is to introduce the product features that perform
these functions and provide some examples. Consult the product documentation
for a complete discussion of possible configuration options.

NetView is an Simple Network Management Protocol (SNMP)-based network
manager, and as such, functions as a trap receiver. Depending upon the systems
management infrastructure, NetView may act as an intermediate manager,
passing relevant events to a higher level event processor, or as the management
focal point, displaying them on its console and taking actions for them.

More often, NetView is positioned to feed status and events to another event
processor such as a business systems manager or enterprise console.
Therefore, we concentrate on its forwarding capabilities.

When functioning as an event processor, NetView can forward traps to the IBM
Tivoli Enterprise Console as events or to another SNMP manager as SNMP
traps. Configuring NetView forwarding really defines filtering, since anything that
is not chosen for forwarding is automatically filtered.

There are many methods for filtering and forwarding traps or events using
NetView. Some are available to all versions of NetView, and some are operating
system specific. The differences are noted as appropriate. Since NetView
processes IBM Tivoli Switch Analyzer events, all the forwarding methods
discussed here apply to both IBM Tivoli NetView and Switch Analyzer traps.
174 Event Management and Best Practices

Using trapd.conf
This file is used in both NetView for UNIX and NetView for Windows to configure
traps. The UNIX version of the file is /usr/OV/conf/C/trapd.conf. The Windows
one is \usr\OV\conf\C\trapd.conf. If a trap is not defined in this file, NetView does
not recognize or process it.

This seems to imply that trapd.conf should contain entries for only the traps of
interest. This is not the case. When SNMP devices are configured to send traps
to a trap receiver, they are often capable of sending all or none, or a subset of
traps based upon a general category such as security or configuration. Rarely, if
ever, is the administrator allowed to select, by trap, which are desired.

Therefore, inevitably, NetView receives unnecessary traps. If trapd.conf does not
contain a definition for them, NetView generates a trap stating that it received a
trap of unknown format. This adds processing overhead to NetView and clutters
both the trapd.log file and the operator consoles. The cost of determining that a
trap is undefined is substantially higher than the identification of a known trap.

Therefore, the best practice that we offer here is to ensure that trapd.conf
contains definitions for any expected traps, not just those of interest.

Operators usually do not understand that the unknown format message was
generated by NetView in response to a trap it received and could not process.
They often erroneously believe that the message indicates an error with the
device that sent the original trap, and dispatch someone to resolve it. The
dispatched person checks the SNMP device, cannot find the “unknown format”
problem in any of its logs, and does not know how to eliminate the message.

Also, large numbers of these traps can obscure real traps requiring action. This is
especially a problem in environments where NetView consoles are used as the
primary means of problem notification. Configure NetView for all expected traps
to minimize these problems.

Traps of an unknown format, like all traps, contain an enterprise ID. A little
research can reveal the vendor associated with that enterprise and possibly
identify the equipment that generated the unexpected traps. Check with the
vendor to obtain a script or Management Information Base (MIB) containing the
appropriate traps.

Important: Never edit the trapd.conf file directly. Use one of the methods
discussed here to add entries to the file.
 Chapter 6. Event management products and best practices 175

Adding entries to trapd.conf
The trapd.conf file contains information about each enterprise from which traps
can be received, the format of the trap, and actions to take upon receipt.

Example 6-1 shows entries for the enterprise used by NetView, netView6000,
and a node down trap, IBM_NVNDWN_EV. The enterprise is represented as a
dotted decimal number. Traps that are generated for this enterprise refer to the
same number in braces {}. A trap is uniquely identified by enterprise ID and
generic and specific trap numbers. The node down event has enterprise
1.3.6.1.4.1.2.6.3 (netView6000), generic trap number 6, which indicates it is an
enterprise-specific trap, and specific trap number 58916865. We refer to this
example later to explain other fields within the trap definition.

Example 6-1 Excerpt from trapd.conf

text omitted

netView6000 {1.3.6.1.4.1.2.6.3}

text omitted

IBM_NVNDWN_EV {1.3.6.1.4.1.2.6.3} 6 58916865 N 4 0 "Status Events"
$3
EVENT_CLASS TEC_ITS_NODE_STATUS
BEGIN_SLOT_MAPPING
 msg $V3
 nodestatus DOWN
 iflist $V8
END_SLOT_MAPPING
SDESC
This event is generated by IBM Tivoli NetView when
it detects a node is down

The data passed with the event are:
 1) ID of application sending the event
 2) Name or IP address
 3) Formatted description of the event
 4) Timestamp of the event and objid of the node object
 5) Database name
 6) Selection Name
 7) (not used)
 8) Interface list
EDESC

text omitted
176 Event Management and Best Practices

There are four ways to add traps to trapd.conf. The best method to use depends
upon several factors. Here, we discuss the methods, their pros and cons, and
suggestions for when to use each:

� NetView trap configuration window

Figure 6-1 shows an example of adding a trap to NetView for UNIX from the
trap configuration window. To access this window, in NetView for UNIX, select
Options →Event Configuration →Trap Customization: SNMP. Or from a
UNIX command prompt, type:

/usr/OV/bin/xnmtrap

On Windows, either the NetView main menu or Event Browser windows, you
select Options →Trap Settings, or run \usr\OV\bin\trap.exe.

Figure 6-1 NetView trap configuration window
 Chapter 6. Event management products and best practices 177

If the enterprise, to which the trap should be added, exists, select it from the
top of the window. Otherwise, click the Add button and complete the fields as
shown in the Add New Enterprise window (Figure 6-2) to add it.

Figure 6-2 Adding an enterprise to trapd.conf

To add the new trap to the highlighted enterprise, click Add in the middle
section of the Modify Event window (Figure 6-3). Complete the values, and
click OK.

Use this method when you add a few traps. It becomes cumbersome to use
when adding a several of them. It also is difficult to know which values to
place in some fields without knowing the source and meaning of the trap.
178 Event Management and Best Practices

Figure 6-3 Adding a trap to trapd.conf

� The addtrap command

You run this command from a UNIX or Windows command prompt to add new
traps and enterprises to the trapd.conf file and to update existing traps. If the
addtrap command references an enterprise that does not yet exist, NetView
defines it.
 Chapter 6. Event management products and best practices 179

NetView uses the enterprise ID, generic-trap, and specific-trap values to
uniquely identify traps. If a trap already exists in the file with the same
identifying values as specified in the addtrap command, NetView updates it
rather than adding another. After updating the trapd.conf file, NetView sends
an event to the trapd daemon informing it of the update.

Example 6-2 shows using the addtrap command to update the trapd.conf file.
For a detailed explanation about the syntax, see Tivoli NetView for UNIX
Administrator’s Reference, Version 7.1, SC31-8893, or Tivoli NetView for
Windows NT Programmer’s Reference, Version 7.1, SC31-8890.

Example 6-2 The addtrap command to define an IBM 6611 trap

addtrap -n ibm6611
-l mytrap
-i .1.3.6.1.4.1.2.6.2
-g 6 -s 16 -o A -t 3
-c "Status Events"
-f !
-F '$E $G $S $T'
-S 4
-C xecho
-A 'Status Event received from 6611 agent EG $S'
-e nodeDown
-E msg
-V 'PRINTF ("Node %s down",$V2)'

This command specifies the following information:

-n The enterprise name is ibm6611.

-i The enterprise ID is 1.3.6.1.4.1.2.6.2.

-g The generic trap number is 6.

-s The specific trap number is 16.

-o The trap is sent from an agent, in this case, the 6611 router agent.

-t The object that generates the trap is to be assigned a status of Critical on
the map.

-c This is a status event.

-f A specified action (see -C and -A) is performed by the management
system when this trap is received.

-F The enterprise name ($E), generic ($G) and specific ($S) event numbers,
and the time-stamp ($T) are displayed in the event cards or list.

-S The trap is a Severity 4 (Critical) trap.
180 Event Management and Best Practices

-C The xecho command is activated when this event is received.

-A The following arguments are passed to NetView with this event:

v This is the event text (Threshold Event received from 6611 agent).

v This is the enterprise name ($E).

v This is the generic trap number ($G).

v This is the specific trap number ($S).

-e This event is forwarded to the IBM Tivoli Enterprise Console with an
event class of nodeDown.

-E This event is forwarded to the IBM Tivoli Enterprise Console containing
the event text specified by the -V flag.

-V Trap variable 2, the host name, is substituted in the event text for the
%s format specifier when this event is forwarded to the IBM Tivoli
Enterprise Console.

For more information about the addtrap command, refer to the man page.

� Vendor-supplied script

Some vendors provide scripts that can be executed from a UNIX or Windows
command prompt to add traps to trapd.conf for their products. The script
contains an addtrap command for each trap definition required.

This is generally the preferred way to add traps to trapd.conf. A vendor knows
the purpose of the trap, when it is generated, and which variables are passed
with it. Therefore, the vendor is most capable of setting the values in the
addtrap command.

� Management Information Blocks

Traps may be packaged in MIBs. When a vendor supplies traps in the MIB
format, use the mib2trap command to create a script that contains the
appropriate addtrap commands. This utility checks the MIB file for entries
designated as TRAP-TYPE, extracts the appropriate fields from it, and builds
a script containing addtrap commands. Then you run the script to add the
traps to trapd.conf.

Sometimes the mib2trap command cannot properly process an MIB file. This
may occur if it encounters unexpected syntax or cannot resolve a variable.
The mib2trap output indicates the line or lines in error. Edit the file to remove
any unexpected syntax. To resolve variables, concatenate several MIBs into a
single file and re-execute the mib2trap command using the combined file as
input. Place the MIB file containing the definition of the unresolved variable
before the one containing the traps to ensure proper variable resolution.

This method is available for both NetView for UNIX and NetView for Windows.
 Chapter 6. Event management products and best practices 181

Filtering in trapd.conf
Traps defined in trapd.conf are assigned a category that determines how the
events are grouped in the NetView event window. The categories indicate
whether a trap is generated by a status change, application, threshold crossing,
node configuration, error, or NetView map or topology change. In Example 6-1 on
page 176, the NetView Node Down trap has the category Status Events.

In this case, we suggest that you consider this best practice. Filter events using
LOGONLY to eliminate traps that you never want to see. LOGONLY is a special
category used to prevent messages from being displayed or forwarded. The traps
are logged in trapd.log, but are not forwarded to the applications registered to
receive traps. The traps are not forwarded to other SNMP managers or
enterprise console servers.

Set this filter using the -c LOGONLY parameter of the addtrap command or
through the Modify Event window shown in Figure 6-4.

Logging the events in /usr/OV/log/trapd.log for UNIX or \usr\OV\log\trapd.log for
Windows ensures that they are available when required for debugging purposes.

Use LOGONLY instead of “Don’t log or display” (-c IGNORE). This is essential for
troubleshooting flooding conditions. For example, suppose that the NetView
server begins to experience performance problems due to an event flood. If the
offending event is one that has been suppressed from trapd.log and from the
console, it is difficult to target the cause of the performance problem. Even if the
administrator suspects the event storm as the cause, there is no easy way to
identify the culprit event, short of tracing the appropriate daemon.

While NetView for UNIX automatically logs events to trapd.log, NetView for
Windows does not. Configure the latter by running nvsetup.exe. Then click the
Daemons tab and choose Trap Daemon. Select the Log Events and Traps
check box.
182 Event Management and Best Practices

Figure 6-4 Setting category through trap customization window

Forwarding SNMP traps using trapd.conf
NetView can forward traps to another SNMP-based manager such as the IBM
Tivoli Enterprise Console SNMP adapter or another NetView. This function is
typically used to consolidate events from regional NetView servers to a central
NetView server, or to take advantage of the more granular IBM Tivoli Enterprise
 Chapter 6. Event management products and best practices 183

Console class assignment capabilities of the SNMP adapter (see “Using the
NetView adapter” on page 191).

For NetView for UNIX, trap forwarding is set in the trapd.conf file. Figure 6-5
shows how to flag traps for forwarding in NetView’s trap customization window.

Figure 6-5 Setting trap forwarding in trapd.conf
184 Event Management and Best Practices

Traps that are flagged for forwarding contain the keyword FORWARD in
trapd.conf.

In addition to knowing which events to forward, NetView needs to know the
destination to which traps should be forwarded. This is set when configuring
trapd.

Figure 6-6 Configuring trapd to forward traps

NetView forwards all traps that are flagged in trapd.conf to the hosts specified in
the trapd daemon configuration.

Using trapfrwd daemon
The trapfrwd daemon is the NetView for Windows method of forwarding traps to
other management stations. Again, it is used in environments where there is
higher level SNMP manager that consolidates traps.

The trapfrwd daemon uses the \usr\OV\conf\trapfrwd.conf file to determine where
to send traps and what traps to send. This daemon is not started by default. To
 Chapter 6. Event management products and best practices 185

configure the trapfrwd daemon, modify the trapfrwd.conf file and then start the
trapfrwd daemon.

We explain the trapfwrd.conf file format here. The first section contains the host
name and trap port number pairs of the management stations to send traps.
These pairs must be enclosed between the [Hosts] and [End Hosts] tags, as
shown in Example 6-3.

Example 6-3 trapfwrd.conf Hosts sample

[Hosts]
mgtsys1 1662
mgtsys2 0
[End Hosts]

The second section, as shown in Example 6-4, contains the enterprise object
identifier (OID) and trap number pairs (the trap numbers are from the trapd.conf
file). These pairs must be enclosed between the [Traps] and [End Traps] tags.

Example 6-4 trapfwrd.conf Traps sample

[Traps]
1.3.6.1.4.1.2.6.3 591790
1.3.6.1.4.1.2.6.3 589824
[End Traps]

To add a comment, precede the line with a pound sign (#).

After you configure hosts and traps in the trapfrwd.conf file, start the trapfrwd
daemon by entering the following commands on the command line:

ovaddobj \usr\ov\lrf\trapfrwd.lrf
ovstart trapfrwd

Maintaining trapd.log
Another configuration option for the trapd daemon is the size of the trapd.log file.
This parameter is set to 4096 KB by default. When trapd.log reaches its
maximum size, it is moved to trapd.log.old in the same directory, and a new
trapd.log is written.

In environments with many, often unwanted, events, it is possible that
trapd.log.old is replaced several times a day. This means there is not even
24-hours worth of trap data online for debugging purposes.
186 Event Management and Best Practices

Therefore, we offer this best practice: Save old trapd.log data.

The trapd daemon can be configured to automatically archive the trapd.log data
to a file or database. Configure trapd to run a custom script or the supplied
trapd.log_Maint script when trapd.log reaches maximum size. Root permissions
are required to perform this task on NetView for UNIX.

The trapd.log_Maint script does the following processing of the data in the
trapd.log.old file, depending on the parameters you set for the trapd.log_Maint
script:

� Transfers the data to a relational database
� Archives the data in the specified directory

The data is archived in a file that includes a Julian date and time stamp in the file
name to indicate when the data was archived. For example, the file name
trapd.log.94215153001 indicates that this file was archived on 3 August 1994 at
3:30:01 p.m.

Discard archived data that is older than the specified maximum age. Verify that
the maximum amount of disk space used to store archived trapd.log data has not
been exceeded. When the specified limit is reached, the oldest trapd.log data is
discarded.

To maintain the trapd.log file by configuring the trapd daemon, follow these steps:

1. Enter serversetup on the command line to access the Server Setup
application.

2. Select Configure →Set options for daemons →Set options for event and
trap processing daemons →Set options for trapd daemon.

3. The Set options for trapd daemon panel (Figure 6-6) opens. Make the
necessary changes to the entry fields:

a. Specify the maximum size of the trapd.log file.

b. Enter the full name of the trapd log maintenance script.

c. Enter the full path name of any script you want to use, or click the Select
button and select the trapd.log_Maint script from the list of choices.

d. Click OK.

If you did not select the trapd.log_Maint script, the trapd daemon is configured
as specified. Skip to step 5. If you selected the trapd.log_Maint script, make
the necessary changes to the trapd.log_Maint parameters that are displayed:

Note: The archive maintenance actions do not affect trapd.log data stored in a
relational database.
 Chapter 6. Event management products and best practices 187

– Directory for storage of archived trapd.log files
– Maximum age of any archived trapd.log file
– Maximum total size of all archived trapd.log files
– Migrate data to SQL database

Refer to the online help for additional information about the entry fields.

4. Click OK.

5. Click Close.

Figure 6-7 Configuring trapd to save old data

Storing old trapd.log data ensures that there is sufficient data for debugging
purposes. The file can be referenced to determine whether an event is received
at NetView and to display other events that were received around the time of a
failure.

You need to have trapd save old data when trapd fills up. The trapd daemon can
be set up to automatically save data to files or a database. In either case, you
188 Event Management and Best Practices

must purge the old data. Sometimes when doing problem determination, it is
useful to see if NetView receives an event.

Events are stored in the SQL database by default. To prevent the SQL database
from growing too large, the trapd daemon periodically removes the oldest events
from the database. You can control how many events are preserved and
scheduled when, or if purging should occur. To do this, select Options →Server
Setup and use the trapd daemon page. Optionally, you can specify that events
are written to the log file \usr\ov\log\oldevents.log before they are purged from the
database. Because this file grows over time, you need a policy on how to archive
this file. This option is available only on a NetView server.

Using nvserverd
The nvserverd daemon can be used on NetView for UNIX systems to forward
events to the IBM Tivoli Enterprise Console event server. It is the easiest method
of forwarding events from a NetView for UNIX system to an IBM Tivoli Enterprise
Console event server.

The format of the IBM Tivoli Enterprise Console events formed are defined in the
trapd.conf file. Configure the IBM Tivoli Enterprise Console class and slots
associated with a trap through the NetView trap configuration screen. You open
this window by selecting Options →Event Configuration →Trap
Customization: SNMP in NetView for UNIX or by running the following
command from a UNIX command prompt:

/usr/OV/bin/xnmtrap

Set the class to assign to the IBM Tivoli Enterprise Console server in the field
marked T/EC Event Class. In Figure 6-26 on page 266, the IBM Tivoli Enterprise
Console class is set to TEC_ITS_ROUTER_STATUS.

Click T/EC Slot Map in the NetView trap configuration window to change slot
variables. See the procedure outlined in “Setting event severity in NetView for
UNIX” on page 270 for more details about setting slot variables. NetView for
UNIX comes with several events already defined with IBM Tivoli Enterprise
Console classes and slots that are used with the IBM Tivoli Enterprise Console
rules supplied with the NetView product. Be sure to activate the NetView BAROC
and RLS files supplied with the product in the IBM Tivoli Enterprise Console
server or servers, which are to receive events from NetView.

To set up event forwarding using nvserverd, run serversetup and choose
Configure →Configure event forwarding to T/EC. The Configure event

Note: NetView for Windows uses a different method to send events. See
“Using the NetView adapter” on page 191.
 Chapter 6. Event management products and best practices 189

forwarding to IBM Tivoli Enterprise Console panel (Figure 6-8) opens. Change
Forward events to Tivoli event server? to Yes, and enter the host name of the
T/EC server. Also, supply the name of a NetView rule. Only traps that pass
through the NetView rule are forwarded.

Figure 6-8 Configuring event forwarding to T/EC

Note: The configuration information is stored in the /usr/OV/conf/tecint.conf
file. If you prefer, you can edit this file directly instead of using the Server
Setup application.
190 Event Management and Best Practices

NetView supplies four rules out of the box as listed in Table 6-1.

Table 6-1 NetView supplied rules

We offer this best practice: Develop a NetView rule that forwards only events of
interest. Using forwardall.rs forwards every event that NetView receives. Many
are not of interest on an enterprise level. Suppress these to eliminate clutter on
the operator’s console and reduce IBM Tivoli Enterprise Console processing
cycles.

Sometimes you may want more control over an event. For example, Cisco or
Cabletron traps are sometimes generated with a variable indicating the real
problem. Defining IBM Tivoli Enterprise Console event classes and slot variables
in trapd.conf requires all traps of the same enterprise and specific and generic
trap numbers to be mapped to the same IBM Tivoli Enterprise Console class.

If you want to assign these to their own IBM Tivoli Enterprise Console classes to
make correlation or automation easier at the IBM Tivoli Enterprise Console event
server, it is cumbersome using nvserverd. For example, sometimes a script is
executed upon receipt of an event to generate a second event using snmptrap or
an event using wpostemsg or postemsg to populate additional slots of interest, or
map the problem to a different IBM Tivoli Enterprise Console class.

Using the NetView adapter
The NetView adapter can be used to forward events to IBM Tivoli Enterprise
Console from either NetView for UNIX or NetView for Windows. It is the only
method supplied with NetView for Windows to forward events directly to the IBM
Tivoli Enterprise Console event server. NetView for Windows can forward the
events to another SNMP manager, such as the IBM Tivoli Enterprise Console
SNMP adapter or NetView for UNIX, which in turn can forward to IBM Tivoli
Enterprise Console.

NetView for Windows and NetView for UNIX can also run a script upon receipt of
an event to issue a postemsg or wpostemsg to forward the event to the IBM Tivoli
Enterprise Console event server.

Rule Description

Default.rs No events are forwarded.

Forwardall.rs All events are forwarded.

sampcorrIuId.rs Forwards an interface down trap if a node up trap is not received
for the same device within 10 minutes.

sampcorrNdNu.rs Forwards a node down trap if a node up trap is not received for
the same device within 10 minutes.
 Chapter 6. Event management products and best practices 191

There are some advantages of using the NetView adapter, even in a NetView for
UNIX environment. When assigning IBM Tivoli Enterprise Console classes using
nvserverd, every event associated with a trap number is given the same class.
Sometimes this is not granular enough. Also, you may want to populate an IBM
Tivoli Enterprise Console slot with a value, but that value is not contained within a
separate trap variable. Using nvserverd, there is not an easy way to assign that
value to its own IBM Tivoli Enterprise Console slot.

For example, NetView generates trap 58720263 to report thresholds exceeded
for any MIB variable that it is checking. It uses trap 58720264 to report threshold
re-arm. You may want to report the errors in a separate IBM Tivoli Enterprise
Console classes based on the MIB variable. For example, one IBM Tivoli
Enterprise Console class can be used for thresholds on Cisco’s avgBusy5 MIB
variable, another IBM Tivoli Enterprise Console class used for Cisco’s bufferFail
variable, etc. This makes it easier for those viewing the events in the IBM Tivoli
Enterprise Console. In some cases, it may simplify the creation of event
correlation sequences at the IBM Tivoli Enterprise Console event server.

Using nvserverd, this requires NetView to run a script upon receipt of the trap.
The script parses the event, and, based on the value of blap2, generates either a
second trap with a user-defined trap number. Or you can run wpostemsg or
postemsg to forward an event to IBM Tivoli Enterprise Console.

Installing the NetView adapter
Adapters can send events to the event server using a TME interface or a
non-TME interface. Both types of interfaces send events using an ordinary
TCP/IP channel. The difference between the two interfaces is the method used to
establish the connection.

A TME interface establishes a connection using services provided by the TME 10
Framework. Therefore, adapters that use this interface are referred to as TME
adapters. A non-TME interface establishes connections using standard
interprocess communication mechanisms (for example, opening an IP socket).
Therefore, adapters that use this interface are called non-TME adapters.

NetView adapters can run as TME or non-TME adapters. Choose the type that
you want to run based on whether you are running Tivoli Framework on your
NetView server. To use the adapter, perform the following steps:

1. Install the adapter.

– On a NetView for UNIX system, run the tecad_nv6k.cfg file that comes
with the IBM Tivoli Enterprise Console adapter.

– For NetView for Windows, copy the appropriate executable. Enter either of
the following statements in \usr\OV\bin, depending upon whether you are
using the TME or non-TME version of the adapter
192 Event Management and Best Practices

copy tecad_nv6k_tme.exe tecad_nv6k.exe
copy tecad_nv6k_non_tme.exe tecad_nv6k.exe

2. Register the adapter to NetView by entering the following command in a
command window:

ovaddobj \usr\ov\lrf\tecad_nv6k.lrf

This is performed automatically in NetView for UNIX by executing the
installation script tecad_nv6k.cfg.

3. Identify the event server to be used by editing \usr\ov\conf\tecad_nv6k.conf
(Windows) or /usr/OV/conf/tecad_nv6k.conf (UNIX).

– For the TME version of the adapter, specify:

ServerLocation@Event Server

– For the non-TME version, specify:

ServerLocation=hostname

Here hostname is the name of the host running the Tivoli Enterprise
Console (non-TME adapter).

ServerPort=number

Here number is the port number used by the Tivoli Enterprise Console
event server to listen for events. Specify 0 (zero) if the event server is
using portmapper, which is typically the case.

4. Customize IBM Tivoli Enterprise Console to understand the events from
NetView. This is done by importing the BAROC file into IBM Tivoli Enterprise
Console, along with any rules that may have been provided with the adapter.
See the NetView or IBM Tivoli Enterprise Console documentation for more
details.

Configuring the NetView adapter
Several files, listed in Table 6-2, are used by the NetView adapter.

Table 6-2 NetView adapter files and their purpose

File Purpose

tecad_nv6k (UNIX) or
tecad_nv6k.exe (Windows)

NetView adapter executable

tecad_nv6k.baroc IBM Tivoli Enterprise Console class definitions for the
default set of events generated by the adapter

tecad_nv6k.cds Mapping of raw trap information to IBM Tivoli Enterprise
Console event classes and attributes

tecad_nv6k.conf Global configuration options for the adapter
 Chapter 6. Event management products and best practices 193

We focus our discussion on configuring the NetView adapter to filter events. For
additional information about other configuration options, see the product
documentation.

Filtering by smartset
When using NetView for Windows, traps may be filtered based upon smartset
membership for individual traps using the tecSmartSetFilter.conf file. This file can
be initially configured for NetView traps from the TecConfigurator, and then
modified manually to include additional traps from any enterprise.

Smartset filtering is based on nodes. Use only smartsets that have nodes as
members. The node name is extracted from the second varbind for NetView
enterprise traps and from the agent_addr field for all others.

Each trap is grouped by enterprise. The first line of a group must begin with the
token ENTERPRISE followed by the enterprise ID in a dotted decimal format.
The enterprise line can be followed by any number of traps, one per line. Any
number of smartsets can be listed following a trap specified by a Generic Id and
a Specific Id. If a trap has no smartsets following it, that trap passes for all nodes.

The IBM Tivoli Enterprise Console adapter only processes these traps if they are
also associated with a node in one of the listed smartsets, or if no smartset is
listed. All traps that are not entered in this file automatically pass through to the
regular IBM Tivoli Enterprise Console adapter filtering.

In Example 6-5, the Router Down trap from enterprise 1.3.6.1.4.1.2.6.3
(NetView) is sent only for the devices included in smartset routers. The Node Up
trap is sent for devices in either the CriticalNodes or the DNSServers smartsets.

tecad_nv6k.err Tracing configuration options

tecad_nv6k.lrf Daemon registration file. As with all NetView daemons,
the NetView adapter must be registered.

tecad_nv6k.oid Mapping of SNMP object identifiers to names

tecSmartSetFilter.Conf
(Windows only)

Smartsets for which associated traps are forwarded

Note: The traps listed here must also pass the filtering defined in
tecad_nv6k.conf.

File Purpose
194 Event Management and Best Practices

Example 6-5 Smartset filtering entries

ENTERPRISE 1.3.6.1.4.1.2.6.3 # NetView enterprise
6 58916971 Routers # Router Down
6 58916864 CriticalNodes DNSServers # Node Up

ENTERPRISE 1.3.6.1.2
2 0 ImportantNodes # Link down traps
6 1 WebServers

Filtering in tecad_nv6k.cds
Traps that pass the pre-filter in NetView for Windows, and all traps from NetView
for UNIX, are mapped to IBM Tivoli Enterprise Console events using the
definitions in the tecad_nv6k.cds Class Definition Statement file.

Unlike some of the other IBM Tivoli Enterprise Console adapters, the NetView
adapter does not provide a method of generating a class definition statement
(CDS) file from a format file. Any changes to the mapping of traps to IBM Tivoli
Enterprise Console classes and slots must be coded using the somewhat cryptic
syntax of this file.

If you intend to customize events, it is useful to know that the following keywords
may be used in class definition statements:

� $COMMUNITY: Specifies the trap community string.

� $ENTERPRISE: Specifies the enterprise object identifier of the object
generating the trap.

� $SOURCE_TIME: Specifies the value of sysUpTime of the object generating
the trap.

� $TYPE: Specifies the generic trap type number (0 through 6).

� $SPECIFIC: Specifies the enterprise-specific trap type number.

� $AGENT_ADDR: Specifies the address of the object generating the trap.

� $VARBIND: Specifies a list of all non-fixed attributes.

Look at Example 6-6. The first entry applies to enterprise 1.3.6.1.4.1.2.6.3
(NetView). The specific trap number 58916864 is used to designate Node Up
traps. The trap is mapped to class TEC_ITS_NODE_STATUS. Plus, several IBM
Tivoli Enterprise Console slots are set based on the NetView variables. For

Note: If you change the CDS file, you must verify the BAROC file entry for the
event is still valid. Adding IBM Tivoli Enterprise Console classes, slots, or both
to the CDS necessitates adding them to the BAROC file as well.
 Chapter 6. Event management products and best practices 195

example, the IBM Tivoli Enterprise Console slot msg is set to the fourth variable
as defined in the SELECT section, or nvEventDescr.

It is interesting to note the differences between the two entries. The nodestatus
and specific trap numbers are the only differences. This means that both Node
Up and Node Down are mapped to the same IBM Tivoli Enterprise Console class
(TEC_ITS_NODE_STATUS), and the nodestatus IBM Tivoli Enterprise Console
slot must be consulted when correlating the events.

Example 6-6 Excerpt from the tecad_nv6k.cds file

text omitted

CLASS TEC_ITS_NODE_STATUS
 SELECT
 1: ATTR(=,$ENTERPRISE) , VALUE(PREFIX, "1.3.6.1.4.1.2.6.3") ;
 2: $SPECIFIC = 58916864 ;
 3: ATTR(=, "nvObject") ;
 4: ATTR(=, "nvEventDescr") ;
 5: ATTR(=, "nvApplNbr") ;
 6: ATTR(=, "VB_8") ;
 FETCH
 1: IPADDR($V3);
 2: IPNAME($AGENT_ADDR) ;
 MAP
 adapter_host = $F2 ;
 origin = $F1 ;
 hostname = $V3 ;
 msg = $V4 ;
 category = $V5 ;
 nodestatus = 1 ; # UP
 iflist = $V6 ;
END

CLASS TEC_ITS_NODE_STATUS
 SELECT
 1: ATTR(=,$ENTERPRISE) , VALUE(PREFIX, "1.3.6.1.4.1.2.6.3") ;
 2: $SPECIFIC = 58916865 ;
 3: ATTR(=, "nvObject") ;
 4: ATTR(=, "nvEventDescr") ;
 5: ATTR(=, "nvApplNbr") ;
 6: ATTR(=, "VB_8");
 FETCH
 1: IPADDR($V3);

2: IPNAME($AGENT_ADDR) ;
 MAP
 adapter_host = $F2 ;
196 Event Management and Best Practices

 origin = $F1 ;
 hostname = $V3 ;
 msg = $V4 ;
 category = $V5 ;
 nodestatus = 2 ; # DOWN
 iflist = $V6 ;
END

text omitted

If desired, you may change the IBM Tivoli Enterprise Console classes to be
unique or use printf statements to format variables differently. VALUE clauses
may be used on the ATTR keywords within the SELECT section of an entry as
shown in Example 6-7. In this example, the trap is checked to ensure the ifDescr
starts with Serial. The ifDescr is a name given to represent a MIB variable with
SNMP object ID 1.3.6.1.2.1.2.2.1.2.

Example 6-7 Using VALUE and comparative operators in the CDS

SELECT
1: ATTR(=,"ifDescr"), KEY(!=,1),
VALUE(PREFIX,"Serial");

There is a corresponding definition in the tecad_nv6k.oid file to define this
mapping, as shown in Example 6-8.

Example 6-8 Mapping of MIB variable to name in tecad_nv6k.oid file

STANDARD MIB
#"mib-2" "1.3.6.1.2.1
"sysUpTime" "1.3.6.1.2.1.1.3"
"ifIndex" "1.3.6.1.2.1.2.2.1.1"
"ifDescr" "1.3.6.1.2.1.2.2.1.2"
text omitted

See the IBM Tivoli Enterprise Console Adapters Guide, Version 3.9, SC32-1242,
for more information about coding the CDS file.

Note: If a trap does not match any entry in the CDS file, it is not forwarded to
IBM Tivoli Enterprise Console. The default class, TEC_ITS_BASE, should
catch any NetView traps that are not mapped to a more specific IBM Tivoli
Enterprise Console class.
 Chapter 6. Event management products and best practices 197

Filtering in tecad_nv6k.conf
The event formed using the mapping defined in the CDS file is sent to the next
filtering point, the tecad_nv6k.conf file. If a trap has passed through the filters
defined in the tecSmartSetFilter.conf file and has been successfully assigned an
IBM Tivoli Enterprise Console class in the CDS file, it is subjected to the filters
defined in this file.

The tecad_nv6k.conf file has most of the same keywords as other IBM Tivoli
Enterprise Console adapter .conf files. Specify FilterMode=IN to send only
events matching filter, or FilterMode=OUT to excluding the listed events. Use
filter statements to specify IBM Tivoli Enterprise Console classes and slots for
the events that should be filtered in or out.

In Example 6-9, FilterMode=IN is specified. This means only the events which
match one of the filter statements in the file are forwarded to IBM Tivoli
Enterprise Console. All Link_Down events are forwarded to IBM Tivoli Enterprise
Console, but only TEC_ITS_INTERFACE_MANAGE events with slot variable
manage=2 (unmanaged) are forwarded.

Example 6-9 Excerpt from tecad_nv6k.conf showing filtering options

(text omitted)
EventMaxSize=4096
WellBehavedDaemon=TRUE
AdapterErrorFile=/usr/ov/conf/tecad_nv6k.err
BufEvtPath=%SystemRoot%/system32/drivers/etc/Tivoli/tec/nv6k.cache
BufferFlushRate=5

The following events are the only ones that are forwarded

ServerLocation=tmeserver
ServerPort=0
FilterMode=IN
Filter:Class=Cold_Start
Filter:Class=Link_Down
Filter:Class=Link_Up
Filter:Class=Warm_Start
Filter:Class=TEC_ITS_L2_NODE_STATUS
Filter:Class=TEC_ITS_INTERFACE_ADDED;action=2
Filter:Class=TEC_ITS_INTERFACE_MANAGE;manage=2
Filter:Class=TEC_ITS_SA_STATUS
Filter:Class=TEC_ITS_INTERFACE_STATUS;ifstatus=1
Filter:Class=TEC_ITS_SERVICE_STATUS
(text omitted)
198 Event Management and Best Practices

The FilterCache keyword can help to prevent traps from being cached in the
event that IBM Tivoli Enterprise Console is unreachable. Use this keyword for
traps that are time dependent, those for which action cannot be taken after a
certain interval has passed. The syntax of the Class statement is the same for
FilterCache as for Filter, FilterCache:Class= class_name; attribute= value;...;
attribute= value.

Best practices for using the NetView adapter
Recommendations for using the NetView adapter depend heavily on an
organization’s processing environment. Here are some general guidelines:

� For NetView for UNIX, use the NetView adapter if additional granularity of IBM
Tivoli Enterprise Console classes and slots is necessary.

The reasons for additional granularity are covered in “Using the NetView
adapter” on page 191. Use the SELECT section of the CDS entry to set the
conditions for which the entry applies. Set the VALUE keyword on the ATTR
statements to appropriate values. The value can be set to a constant if
selecting based on the value of a trap variable. To parse a trap variable for
strings, use CONTAINS, PREFIX, SUFFIX, and other comparative operators
(=, !=, <, <=, >, >=) within the VALUE keyword.

� Filter the TEC_ITS_BASE class.

Since this IBM Tivoli Enterprise Console class is used as a catch-all for traps
that are not mapped to specific classes, many undesired messages are
assigned to the TEC_ITS_BASE class. Forwarding them to IBM Tivoli
Enterprise Console clutters the console with unnecessary events.

Periodically review the trapd.log file in NetView to see if you are receiving
traps that should be forwarded. Then ensure that they are properly mapped in
the CDS file and forwarded with appropriate smartset pre-filters and
tecad_nv6k.conf filters.

� Consider using the adapter for communicating through a firewall.

IBM Tivoli Enterprise Console can be configured to listen for events on a
specific port. Specifying this same port in the ServerPort parameter the
tecad_nv6k.conf file ensures that NetView uses it when forwarding events.

Using rule sets
NetView comes with a rules engine that can take actions on events. We discuss
the options for rules in more detail later in this chapter. In this section, we discuss
only those pieces of rules that apply to filtering.

The NetView rules are configured on NetView for UNIX only, using the ruleset
editor. The rules provide actions to take upon events. A default is set for the
 Chapter 6. Event management products and best practices 199

event stream (pass or block). The action blocks within the rule further define
event processing.

The rules can be created on a NetView for UNIX system and then used on a
NetView for Windows machine. However, there are some limitations. Since
NetView for Windows does not support some of the actions (namely, Action,
Block, Override Status and Severity, Pager, Resolve, and Set State Nodes), do
not use these in any rule sets that you will move to your NetView for Windows
machine. In addition some functions, while supported on NetView for Windows,
do not work the same way. For example, while In-Line Action nodes are
supported on Windows, you cannot use them to launch a Windows console
application (one which displays a graphical user interface (GUI) to the operator),
since background processes, such as the correlation daemon, do not have
console access in Windows.

The rules are used in several ways that relate to event management such as for
console display and event forwarding. In the “Using nvserverd” on page 189, the
daemon is configured by supplying a ruleset name. All events that are not initially
dropped are subject to these rules to determine if they will be forwarded to IBM
Tivoli Enterprise Console using nvserverd.

A second use of rules is for console display. Operators using the NetView display,
either for problem determination or as their primary means of notification for
networking events, can filter what is displayed based on the rules.

A third use is in ESE.automation. Any events received by NetView are subject to
processing by the rules defined in this file. The rules can contain selection criteria
to prevent processing from occurring for particular devices. This concept is
discussed further in 6.9.1, “Using NetView for automation” on page 338.

The rules can be used effectively to filter out traps from certain devices. This can
be accomplished by verifying membership in a smartset or checking the value of
a trap variable. Consider using rules to filter based on business impact, filtering in
the traps from certain devices, and excluding traps from others.

Additional best practices for NetView filtering
We have presented ways in which traps can be filtered in NetView. Each
organization should decide which traps to eliminate based on infrastructure,
systems management tool usage, and best practices, as outlined in 2.3,
“Filtering” on page 39.

However, there are certain traps that warrant special discussion. These traps are
encountered in many environments that can cause NetView performance issues.
Filtering recommendations are presented for these traps.
200 Event Management and Best Practices

� Filter authentication traps from NetView’s consoles.

An authentication trap is a message generated by a device to inform that it
received a message with improper credentials. A typical cause of
authentication traps is SNMP requests that specify an incorrect community
name.

Often, the authentication trap does not contain the name or address of the
device that made the invalid request or the community string that it was
attempting to use and thus has little value. Also, support personnel
dispatched to investigate an authentication trap sometimes err in believing the
device reporting the problem is the one configured incorrectly, and do not
determine why it is occurring.

The cause of an authentication trap is often an application configured to
query a device using the wrong community string. The application (such as an
SNMP manager like NetView or a custom script) may poll a device at regular
intervals for performance data, resulting in a flood of authentication traps.
These can clutter NetView’s console and cause trapd.log to reach its
maximum size frequently.

Ideally, these traps should be filtered at the source by configuring SNMP
devices to suppress them. Inevitably, though, a networking device is deployed
and configured to send authentication traps. If no one tries to access the
device with the incorrect community name, there is no issue. However, if a
program, such as an SNMP manager, attempts access, this can result in a
flood of authentication traps.

Filtering the trap from NetView’s console prevents these messages from
obscuring meaningful traps. Logging it in trapd.log allows it to be available for
debugging purposes, should NetView experiences performance degradation.

It may be argued that authentication traps represent security breaches, and
as such, should be reported. However, an intrusion detection system is better
equipped to assess security threats and is the preferred choice to report
them.

� Filter Telnet session data.

Again, there may be large volumes of Telnet session data, depending upon
the environment. These traps can flood NetView, obscuring real events and
cluttering consoles. Since session data is needed primarily for security or
auditing, it is best reported using a tool designed for those purposes.

� When using NetView as an intermediary event processor, pass events
requiring action (including notification and trouble ticketing) to the IBM Tivoli
Enterprise Console server and perform those functions there. Only perform
the functions in NetView when it acts as the focal point in an event
management hierarchy.
 Chapter 6. Event management products and best practices 201

IBM Tivoli Enterprise Console generally has greater event processing
functionality and capability than NetView while using fewer cycles for
comparable function. Moreover, the cost of trap transmissions to the IBM
Tivoli Enterprise Console server is minimal.

� Do not send Cisco syslog events sent to NetView as traps.

Cisco devices have the ability to send their syslog events as traps to an
SNMP manager. This may seem like a good idea until the sheer volume of
events chokes the NetView server.

It is better to use remote logging servers to which multiple Cisco devices log
their messages. The IBM Tivoli Enterprise Console logfile adapters or event
adapters running on the logging servers may then be configured to filter large
numbers of unnecessary messages. This reduces the number of events
received at NetView and minimizes bandwidth and cycles used, as well as
adhering to the old adage, filter closest to the source.

Keep in mind that when using logging servers for syslog events, you may
need extra logging servers across firewalls, depending on your environments
security policies.

Filtering by limiting monitoring scope
In its role as an event source, NetView monitors IP devices for status and
performance and generates traps to report the errors it detects. Specifically,
NetView periodically tests the interfaces on every monitored device to see if each
one is reachable and issues a trap when one changes status. Likewise, if
configured to do so, it checks performance-related MIB variables and sends a
trap when thresholds are exceeded or re-arm. The traps are sent to the event
processing code within NetView that performs the filtering and forwarding actions
described previously.

By default, NetView discovers and monitors all the IP devices on the subnets it
manages. This includes network equipment such as routers and switches, well
as IP-addressable servers, printers, and workstations. Most organizations want
to see events for only a subset of these devices. For example, user workstations
may be rebooted many times during the day and powered off every evening. It is
not practical to send events to the help desk or network operations center or
open a trouble ticket to report every time a user workstation shuts down.

NetView can eliminate these unwanted traps by either preventing a device from
being discovered and monitored or by unmanaging it.

Therefore, we recommend this best practice: When possible, prevent discovery
of devices for which events are not desired.
202 Event Management and Best Practices

While unmanaging devices prevents NetView from generating traps for them,
there are reasons why it is better to prevent the devices from being discovered.
NetView maintains information about each object it discovers within its
databases. IP address, host name, subnet mask, number of interfaces, and
vendor are a few of the many characteristics NetView records for each device.
Discovering unwanted objects increases the size of the database, using storage
and adversely affecting performance.

It is also difficult to ensure devices do not accidentally become managed. A
NetView user may unmanage and remanage a network segment or object that
contains the unmanaged device, inadvertently causing it to become managed.
Therefore, unmanage discovered devices to prevent NetView from generating
traps for them only if you cannot prevent their discovery.

Limiting device discovery
During initial discovery, the scope of discovery can be limited. NetView allows
limiting the discovery of network objects to those residing on:

� Its own subnet only
� The local backbone
� All networks within reach

This controls the number of objects that NetView discovers and manages. In
most cases, the initial discovery options are global. This means that they do not
limit any object type from being discovered.

A more granular way to control device discovery is through the netmon seed file.
Originally introduced to support the automatic discovery of particular devices and
network segments, it has been enhanced to provide a means of including or
excluding network objects by SNMP object ID, IP address range, or individual
device.

Code entries in the seed file according to Table 6-3. To pass complete discovery
control to the netmon seed file, enter @limit_discovery anywhere in the seed
file. Use an exclamation mark (!) to exclude devices and address ranges.

Note: Limiting discovery prevents NetView from generating traps for devices.
It does not affect NetView’s ability to receive traps from those devices. If a
device is configured to send its unsolicited traps to NetView, the traps are sent
regardless of whether NetView discovers the device.

If you truly do not want any events for a device, ensure it is not configured to
send its SNMP traps to NetView.
 Chapter 6. Event management products and best practices 203

Note that the seed file is read and interpreted only when netmon starts. If you
make changes to the file, recycle the netmon daemon so they take effect. Keep in
mind that this file defines the set of objects that you want to discover. If a node
meets the criteria for discovery, it becomes part of your network topology. After it
is discovered, you need to unmanage it or use other filtering methods to control
the events for the node.

Table 6-3 Seedfile entries to control discovery

See the NetView product manuals for details about these and other functions of
the seed file.

In this case, we suggest the following best practice: Use the seed file to control
discovery.

The seed file increases the likelihood that devices of interest are discovered and
prevents unimportant ones from being found. Include routers, switches, key
servers, and other network infrastructure devices in the seed file to encourage
their discovery. Depending upon your IP addressing scheme, either include
address ranges for important devices you want discovered, or exclude the ranges
of addresses that apply to devices that you do not want to see.

Unmanaging devices
NetView objects can be unmanaged either through the NetView console or
through several other ways. The most popular method involves using the
NetView console. To do this, select the object or objects to unmanage multiple
objects on the native NetView console. Then select Options →Unmanage
Objects. This unmanages all selected objects and any accociated child
submaps.

Example Comment Explanation

9.24.104.111 Single entry To discover a single node,
enter its name or IP address.
These entries are single
entries; no wildcards are
allowed. If a name cannot be
resolved via DNS or
/etc/hosts, it is ignored.

9.*.104.1-100 Range using wildcards * and
?, where * resolves 0 to n
characters and ? resolves a
single character

The range of addresses is
discovered.

@ oid 1.3.6.1.4.1.9..* SNMP object ID prevents all
Cisco devices from being
discovered.
204 Event Management and Best Practices

To suppress events from IP nodes that are unmanaged in the open map, in the
Event Display window, select Options →Unmanaged Nodes →Suppress
Traps. This menu option is a toggle button. To resume seeing the traps, select
this menu option again.

6.1.2 Filtering and forwarding using IBM Tivoli Enterprise Console
This section explains the reasons and ways to filter and forward events using IBM
Tivoli Enterprise Console.

Logfile adapters
Usually, an adapter sends all events to the event server. You can optionally
specify events that can or cannot be sent to the event server. You can do this by
specifying the event class and such information as the origin, severity, or any
other attribute=value pair that is defined for the event class. The class name
specified for an event filter entry must match a defined class name; an adapter
does not necessarily have knowledge of the class hierarchy.

You can try to filter events in the adapter to save processing and correlation time.
Depending on how you specify the Filter and FilterMode keywords, filtered events
are either sent to the event server or discarded.

To send specific events to the event server, set FilterMode to IN. To discard
specific events, set FilterMode to OUT (the default value). Create Filter
statements to match the specific events that you want discarded or sent,
depending on your FilterMode keyword.

You can also use Tcl regular expressions in filtering statements. The format of a
regular expression is re:’value_fragment’.

For more information about how to use these functions, see the IBM Tivoli
Enterprise Console Adapters Guide, Version 3.9, SC32-1242.

Event buffer filtering
When an adapter is unable to connect to the event server or Tivoli Enterprise
Console gateway, it sends the events to a file if the BufferEvents keyword is set to
YES. You can filter events sent to a cache file, similar to filtering events for the
event server by using the FilterCache keyword.

There are no default event cache filters in the configuration files shipped with
adapters.

Format files
A format file serves as the lookup file for matching messages to event classes.
When the format file is used for this purpose, all format specifications in the file
 Chapter 6. Event management products and best practices 205

are compared from top to bottom. In situations where there are multiple matching
classes for a message, the last matching format specification is used. If no match
is found, the event is discarded.

A format file also serves as the source from which a CDS file is generated.

Class definition statement file
CDS files are used by an adapter to map incoming raw events to a particular
class and to define event attributes before forwarding the event to the event
server. No alterations to this file are necessary to use an adapter unless you alter
the corresponding .fmt file (if any). If any event definition is changed in a CDS file,
the corresponding event class definition in the BAROC file may also need
changing.

IBM Tivoli Enterprise Console gateways
IBM Tivoli Enterprise Console gateways should be placed as close to their
corresponding event sources as possible. Depending on the amount of
processing required for each gateway, including the new features of state
correlation, if enabled, you may need to investigate the performance of each
gateway to ensure that it is capable of managing the number of events and their
respective correlation that it receives from it various event sources.

During our laboratory examples, we did not find or investigate any performance
issues caused by the enablement of state correlation on an IBM Tivoli Enterprise
Console gateway. Of course, our environment does not map exactly to your
existing environment, and we did not run performance tests or scalability tests
during our exercises. You made need to investigate this feature of the IBM Tivoli
Enterprise Console gateways to ensure that you do not experience problems in a
production environment.

Match rules
Matching rules are stateless. This means that they perform passive filtering on
the attribute values of an incoming event. A matching rule consists of a single
predicate. If the predicate evaluates to true, the trigger actions, which are
specified in the rule, are executed.

For example, a good practice is to create a state correlation rule, with a match
predicate, to filter events from default root event classes such as EVENT or
NT_BASE.

Note: IBM Tivoli Enterprise Console Gateway state correlation can apply to all
NetView, TME, and non-TME events received by the IBM Tivoli Enterprise
Console gateway.
206 Event Management and Best Practices

If you choose to implement a rule such as the one shown in Example 6-10, you
must install it on every IBM Tivoli Enterprise Console gateway to prevent
unwanted events from being forwarded to your IBM Tivoli Enterprise Console
servers.

Example 6-10 State correlation rule

<rule id="rootClasses.matchAndExclude">
<eventType>EVENT</eventType>
<eventType>NT_Base</eventType>

<match>
<predicate>

<![CDATA[
true
]]>

</predicate>
</match>

<triggerActions>
<action function="Discard" singleInstance="true"/>

</triggerActions>
</rule>

You can find more information about writing state correlation rules in the IBM
Tivoli Enterprise Console Rule Developer's Guide, Version 3.9, SC32-1234.

IBM Tivoli Enterprise Console rules
It is possible to perform event filtering at the IBM Tivoli Enterprise Console event
server, using the traditional IBM Tivoli Enterprise Console rules and rule sets in
prolog at each event server. However, it is a best practice to filter as near to the
source as possible. Use filtering at the event server only for events that cannot be
filtered elsewhere, for internally generated events and for security purposes.

Events that cannot be filtered nearer to the source
Sometimes it is impossible or requires too much work to filter an unwanted event
before it arrives in the event server. For these cases, you can easily us the
out-of-the-box event filtering rule set. It gives fast results, without overwhelming
the server processing.

Note: State correlation rules are created using Extensible Markup Language
(XML) syntax version 1.0. Follow the document type definition (DTD) provided
in the $BINDIR/TME/TEC/default_SM/tecse.dtd file.
 Chapter 6. Event management products and best practices 207

Internally generated events
Sometimes IBM Tivoli Enterprise Console generates internal events, and you
may not want to receive some of them. For example, if a rule sends TEC_Notice
events within different severities and you use severities greater or equal to
WARNING for your correlations, you may want to filter events with severity equal
to HARMLESS. In this case, create an entry in the event filtering
event_filtering.rls file to drop that events of class TEC_Notice and severity
HARMLESS, as shown in Example 6-11.

Example 6-11 Drop event of class TEC_Notice and severity HARMLESS

create_event_criteria(harmless_tec_notice,%event criteria name
'TEC_Notice', %class to filter on
yes, % fire on non-leaf only (yes/no)
[['severity', within, ['HARMLESS']] % criteria based on slots
]
),

% record all criteria elements into the even_filter_criteria record
record(event_filter_criteria, [harmless_maintenance,

harmless_heartbeat,
harmless_tec_notice])

Avoiding unwanted unsecure events
Another type of event to filter is events from unknown sources that can may use
breaches in the IBM Tivoli Enterprise Console system to possibly cause over
processing or even worst effects. You can use two different approaches to filter
these events:

� Writing rules that filter events from unknown sources
� Changing the default IBM Tivoli Enterprise Console configuration to try to

close breaches

An example for the first approach is to create an entry, in the event filtering rule
set, to accept events only from known sources or known hosts.

For the second approach, there are some ideas that can be used to try to close
or at least make it more difficult to find breaches:

� Change the default reception port on the server (5529) and gateway (5539).
� Disable non-TME events in the gateway.
� Enable Tivoli Management Framework Security, since IBM Tivoli Enterprise

Console uses it for its communications.
208 Event Management and Best Practices

You can use these recommendations separately or in conjunction to filter events.
Depending on your environment, you may have more or less security issues.

Event filtering using event_filtering.rls
The event filtering rule set contains rules that filter out unwanted events based on
customizable criteria. Filtered events do not appear at any console and are not
stored in the event cache. The most recommended cases to use this rule set are
the preceding sections. Here are some tips for using this filtering option:

� The event_filtering.rls rule set is inactive by default. You must activate it on the
event server.

� Import this rule set to the target event server before all other rule sets, since
this prevents unnecessary processing of unwanted events on the event
server.

To activate the rule set in your rule base, follow these steps:

1. Using a text editor, modify the corresponding statements in the rule_sets file.
Specify the active or inactive keyword as appropriate.

2. Use the wrb –imptgtrule command to import the event filtering rule set into
the event server target as shown in this example:

wrb -imptgtrule event_filtering -before maintenance_mode EventServer testRb

3. Recompile the rule base using the wrb –comprules command.

4. Reload the rule base using the wrb –loadrb command.

Console filtering
Another way to construct filters in an IBM Tivoli Enterprise Console environment
is through consoles. With this option, filters can be created for viewing events, so
each operator or group of operators has a view with its related events. This helps
operators while working with events by preventing them from viewing
unnecessary events. Inside the console events can be filtered and separated into
groups, called event groups. The event viewer provides one last level of filters
online.

Console
Best practice says that each person should see only the events that requires an
intervention from them. Therefore, event consoles should be created for each
operator or group of operators with those events for which they are responsible.

Using event groups
Use event groups to filter events in different groups. This offers a quick view of
the event activity of all event groups for an event console, making it easier to view
the status of different applications, networks, or systems.
 Chapter 6. Event management products and best practices 209

Using console filters
Use console filters to filter the events in the working queue based on severity,
status, and operator ownership, to help you focus on important events. When you
filter events inside one event group, other event groups are not affected.

6.1.3 Filtering and forwarding using IBM Tivoli Monitoring
IBM Tivoli Monitoring is an agent used to monitor systems for certain conditions,
and as such, an event source. There are a few ways to configure it to filter
unwanted events from occurring.

Only deploy resource models of interest
If you are using NetView, for example, to do network performance monitoring,
you may not want duplicate information from IBM Tivoli Monitoring. Therefore,
you do not use the network interface resource model.

Forward events of interest and suppressing others
IBM Tivoli Monitoring has the means of filtering before an event is even sent to
IBM Tivoli Enterprise Console. When you configure your IBM Tivoli Monitoring
Resource Models, set them to send an event only after all of your requirements
for defining that problem are met. You can set up your resource models to only
send an event after a problem occurs based on an algorithm which you specify
using holes and occurrences, or only forwarding an event when a certain
threshold is met.

When you set this up, consider that, when you send an event, you only want to
send events for problems that require action.

You can either configure this in the default Resource Models that are supplied
with IBM Tivoli Monitoring or by modifying the profiles through the Tivoli
Framework desktop as shown in Figure 6-9.
210 Event Management and Best Practices

Figure 6-9 IBM Tivoli Monitoring resource model profile

Optionally, you can modify the definition of the resource model via the Resource
Model Builder (RMB) utility provided with IBM Tivoli Monitoring. Using this option
only changes the default actions of the resource model. The Tivoli Administrator
can still change those attributes via the Tivoli Desktop within the IBM Tivoli
Monitoring resource model profile.

Separate profiles to limit which machines send which
messages
If you are interested in seeing a certain event type from only a subset of
machines, create a separate IBM Tivoli Monitoring profile for distribution to those
machines. Configure the appropriate resource model to send the event in the
profile distributed to those machines and to not send an event when defined in
other profiles distributed to other machines.
 Chapter 6. Event management products and best practices 211

6.2 Duplicate detection and throttling
Always perform duplicate detection and throttling as close to the source as
possible.

6.2.1 IBM Tivoli NetView and Switch Analyzer for duplicate detection
and throttling

IBM Tivoli NetView and Switch Analyzer have certain ways to assist in preventing
duplicate events and helping with throttling via the following methods:

� NetView does state changes, which prevents duplicates.

� SNMP devices usually send state changes as well.

� May still receive two messages from different SNMP sources (for example,
NetView and the router itself) for the same problem. This can be handled by
suppressing one all the time, or handling through correlation.

� Mid Level Managers (MLMs) can throttle.

� NetView can throttle through rules, if necessary (pass on match).

6.2.2 IBM Tivoli Enterprise Console duplicate detection and throttling
This section discusses duplicate detection and throttling for each level of IBM
Tivoli Enterprise Console event management, from the source (logfile adapter) to
the event server.

Logfile adapter
The logfile adapter cannot detect duplicate events end should not be used to try
to do this. Duplicate detection at this level depends on the source and if it detects
and throttles duplicate events. For example, some versions of UNIX syslog detect
consecutive duplicate events and show only the first. The logfile adapter sends
the events in the way that they are in the source. In this case, it just sends the
first event in the sequence.

Gateway
Use IBM Tivoli Enterprise Console gateway to throttle events before they go to
the event server. This best practice prevents the event server from receiving
bursts of events, through event summarization and primary correlation near the
source. A situation where you should use IBM Tivoli Enterprise Console gateway
for throttling events is for peak events. See 6.2, “Duplicate detection and
throttling” on page 212.
212 Event Management and Best Practices

In the following example, the fictitious company XYZ has a monitor on a Windows
2000 box that triggers every time that the processor percent utilization is over
95%. There are two problems with these events. First, one single event is not
meaningful, since it’s normal to have CPU over utilization in peak moments. The
second problem is that in certain periodic times all the servers are stressed in
their use, because of end of month processing, for example. These generate
bursts of events and sometimes overload the event server.

The first problem was addressed in previous versions of IBM Tivoli Enterprise
Console with the event_thresholds.rls rule set. The second problem can still
cause problems, which is why event throttling in the gateway, with state
correlation, is better.

To solve these problems, the state correlation rule shown in Example 6-12 was
created using the threshold predicate.

Example 6-12 State correlation rule using the threshold predicate

<rule id="nt.threshold_utilization">

<eventType>NT_Processor_Util_Perc</eventType>

<!-- I ’m only interested when at least 20 NT_Processor_Util_Perc events
happen for the same host within 10 minutes. -->

<threshold thresholdCount="20" timeInterval="600000"
triggerMode="firstEvent">

<cloneable attributeSet="hostname"/>
<predicate>

<![CDATA[
always succeeds.
true

]]>
</predicate>

</threshold>
<triggerActions>

<action function="TECSummary" singleInstance="false"/>
</triggerActions>

</rule>

Note: The event_thresholds.rls rule set can and must still be used, but just for
the events that cannot be correlated with state correlation in the gateway, or
for further correlation.
 Chapter 6. Event management products and best practices 213

In Figure 6-10, you can see events that arrived after state correlation. The events
with the class NT_Processor_Util_Perc are summarized. Instead of having one
event every five seconds (frequency that the Windows NT® monitor triggers) in
the worst moments, you have one event every 100 seconds. Note that after the
configured number of occurrences is reached and the action is triggered, the
counter resets and can trigger again if the error condition persists.

Figure 6-10 IBM Tivoli Enterprise Console Event Viewer

This example describes the state correlation threshold predicate, with the
parameters triggerMode="firstEvent" and timeIntervalMode=fixedWindow
(default). Changing these parameters changes the way it works. The sending
modes specified by the triggerMode attribute are described in the following
sections.

firstEvent
This mode sends the first event received during the time window.

lastEvent
This mode sends the last (nth) event received during the time window.

allEvents
This mode sends all events 1 through n, This is the default mode.
214 Event Management and Best Practices

forwardEvents
This mode sends all events after the nth event until it resets.

Use the allEvents and forwardEvents with care. In some cases, using these
sending modes is almost the same or even the same as not correlating.
Figure 6-11 shows the same example that we described earlier, but with the
forwardEvents send mode. It demonstrates a bad use of this parameter. As you
can see in the figure, after the threshold is triggered, all events are sent. A burst
of events can generate problems in higher levels of event management.

Figure 6-11 forwardEvents send mode

The time interval mode parameter indicates whether the time interval is fixed or
sliding:

� fixedWindow: The timer starts when the first matching event arrives and
closes after the time interval expires. In order for the threshold to be triggered,
n matching events must be received within that time window. If the threshold
is not reached within the specified time window, the rule resets, and the next
subsequent matching event starts a new time window.

With a fixed window, the threshold is triggered if n events arrive within t
seconds of the first event.
 Chapter 6. Event management products and best practices 215

� slideWindow: A separate timer is effectively started when each matching
event arrives, resulting in overlapping virtual time windows. In this case, the
threshold is triggered if n matching events arrive within any time window.

With a sliding window, the threshold is triggered if n events arrive within t
seconds of each other.

The duplicate and collector rules are used for duplicate detection. You should
also use them to reduce the amount or summarize the events that go to the
events server. Both are powerful options, but work in a slightly different way. With
duplicate rules, the first event is sent to the event server and the events that
follow are suppressed. In collector rules, all events are buffered and then, after a
determinate amount of time, are sent summarized to the event server.

You can find examples of these functions in the IBM Tivoli Enterprise Console
Rule Developer's Guide, Version 3.9, SC32-1234.

Event server
In the event server, duplicate events are considered the event instances of the
same class that have the following characteristics:

� The same values for all attributes are defined with the dup_detect facet set to
YES.

� If there are no attributes defined with the dup_detect facet set to YES, all
events of that class are duplicates.

Generally, duplicate events are not kept in the event database, but are instead
used to increase the severity of the event or to count the number of times the
event has been received. Duplicate events are managed with the first_duplicate
and all_duplicates predicates.

dup_detect
This facet defines the criteria to determine whether two events are the same,
indicating duplicates of each other.

Two events are considered duplicates if they have the same values for all
attributes defined with the dup_detect facet set to yes and if they are of the same
event class. For example, assume the following event class definition:

TEC_CLASS:
Person ISA EVENT

Note: Setting the dup_detect facet only provides a definition. You must create
rules to test for duplicate events and specify the actions to take when they’re
detected by rule processing.
216 Event Management and Best Practices

DEFINES {
name:STRING,dup_detect=yes;
city:STRING,dup_detect=yes;
employer:STRING;
hobbies:STRING;
};

The following events are considered duplicates because the attribute values of
their respective name and address attributes are the same (assuming both
events are of the same event class):

<"Joe","Lafayette","ABC Widgets","Computers">
<"Joe","Lafayette","XYZ Widgets","Ham Radio">

By default, dup_detect is no.

6.2.3 IBM Tivoli Monitoring for duplicate detection and throttling
An event is a change in the status of a resource. Within IBM Tivoli Monitoring
Version 5.1.1, an event notifies you that a specified resource state is abnormal or
problematic. In the workbench, a distinction is made between an indication and
an event.

An indication is generated when the state of a given resource meets specific
criteria you have defined. However, an indication does not trigger any action.
Only when indications are aggregated do they become an event. The cycles
during which the indication is generated are called occurrences. The cycles
during which no indication is generated are called holes.

Only events can trigger some actions, notify that there is a problem in your
resource state and, if enabled, send notification to the IBM Tivoli Enterprise
Console server and IBM Tivoli Business Systems Manager.

Assume that there is a resource property that changes its value rapidly. The
decision tree is visited every cycle. As a part of this, the value of the resource
property is retrieved. In Figure 6-12, the vertical dashed lines represent the
moments of the queries. The point at which the dotted lines meet the graph are
values that are the results of the inquiries. The one horizontal dashed line
represents the threshold. Values above that line are considered potential
problems and trigger an indication.

Every time the values of the resource properties exceed the thresholds, the
Resource Model generates an indication. If the value of the resource property
drops below the threshold for a particular cycle, then no indication is generated,
and the event aggregator counts the non-occurrence of an indication as a hole.
 Chapter 6. Event management products and best practices 217

If we define an event as four occurrences and one hole when we configure our
profile, the event is generated when the fourth indication occurs. If we have two
consecutive holes, then the occurrence count is reset to zero and a clearing
event is sent if it is configured to send a clearing event.

Figure 6-12 IBM Tivoli Monitoring holes versus occurrences chart

6.3 Correlation
This section focuses on performing correlation with IBM Tivoli NetView, IBM
Tivoli Switch Analyzer, IBM Tivoli Enterprise Console, and IBM Tivoli Monitoring.

6.3.1 Correlation with NetView and IBM Tivoli Switch Analyzer
We now focus on the available methods of correlation with NetView and IBM
Tivoli Switch Analyzer.

Router Fault Isolation (RFI)
NetView performs status polling for the machines it is managing using either
Internet Control Message Protocol (ICMP) pings or SNMP queries. The intervals
at which it polls is set for individual or groups of devices or by default in the
/usr/OV/conf/ovsnmp.conf file. Traditionally, if NetView did not receive a response
to its status poll, it marked the node or router down and issued a down trap.

Threshold

M
et

ric
 V

al
ue

s Indication #1

2 Consecutive Holes

Clearing Event

TimeCycle Time
Max number of holes
is 1 and they are not
consecutive

Indication #2 Indication #3 Indication #4
218 Event Management and Best Practices

Often during a network failure, the path from the NetView server to portions of
the network is broken. Prior to router fault isolation, NetView attempted to poll the
devices in the unreachable part of the network and generated down traps when
they did not answer. This resulted in many segment, node, and interface down
traps, particularly in networks with a large number of nodes on the far sides of
routers. When the failure was corrected, NetView generated numerous up traps
for each device it could again successfully reach.

This plethora of events had several drawbacks:

� Increased the difficulty of determining the original cause of the network failure

� Slowed network traffic considerably with the large number of status polls to
the occluded area

� Created performance problems and unreliable status reports if the events
were forwarded to the IBM Tivoli Enterprise Console and IBM Tivoli
Enterprise Data Warehouse

RFI overview
The RFI function rectifies these problems. When NetView detects a node or
interface is down, RFI first checks the status and accessibility of the router
interfaces connected to the subnet on which the node or interface resides. During
the router check, each interface and its subnet are analyzed. An unresponsive
interface triggers checks of the interface and any connecting routers.

RFI generates appropriate Router Down or Router Marginal traps for conditions
detected. It also simplifies the notification action by issuing one summary alert
identifying the router nearest the fault.

When active, the Router Fault Isolation feature generates the events shown in
Table 6-4 to alert users to important status changes.

Table 6-4 Router fault isolation events

Event Network status

Router Marginal At least one router interface is down. At least one other
interface on that router is up.

Router Down All interfaces are not responding, but at least one connected
subnet is reachable. (The router is not in an occluded region.)

Router Unreachable The network management workstation cannot query the
router because it is an occluded region.

Router Up All the interfaces have responded successfully. This event is
issued on initial discovery and following a recovery from one
or more interfaces being down.
 Chapter 6. Event management products and best practices 219

The NetView maps display unreachable networks and router nodes or interfaces
as white symbols. Note that non-router nodes and interfaces in unreachable
subnets are not changed to Unreachable (white).

When NetView is used to manage a network with a high proportion of nodes to
routers, Router Fault Isolation can significantly reduce the number of Node Down
events that are false alarms. Router Fault Isolation detects which nodes are
actually down and which nodes are simply unreachable because the router fault
occludes them from the management station. Router Fault Isolation relies on
connectivity tests and responds instantly to dynamic routing changes.

Router Fault Isolation also suppresses polls and status events for all non-router
nodes and interfaces in unreachable subnets. After a partition is repaired, the
first successful status poll from inside an unreachable subnet triggers a recovery.
To speed the initiation of recovery, you can also manually ping any node in an
unreachable region.

To reduce the false signals from a Node Down event for a device in an area with
Unreachable status, NetView does not generate Node Down or Interface Down
events for any node in the area with Unreachable status. The first Interface Down
event that triggers an evaluation that results in declaring that the status of the
subnet is Unreachable is also suppressed. Status polling to end nodes in
subnets with Unreachable status is suppressed by default.

If NetView is not managing any routers in a particular subnet, then NetView can
determine when that subnet is unreachable. It does this using a probabilistic
algorithm, which determines when it is highly likely that the subnet is
unreachable. NetView automatically uses this algorithm for subnets where there
are no managed routers. However, this algorithm only determines the
reachability of the subnet. If it is unreachable, Node Down and Interface Down
events, including the first event, are not generated.

Router Fault Isolation and Mid-Level Manager can function together and object
status should remain accurate. However, in some cases, both could poll the
same nodes. This causes extra processing because routers are polled by both.
In some situations, this causes extra network traffic.

Network Unreachable All router interfaces in the subnet have stopped responding.

Network Reachable After one interface is successfully polled, the network is once
again reachable.

Event Network status
220 Event Management and Best Practices

RFI configuration
To configure the RFI mode, use the Server Setup application. Select
Configure →Set options for daemons →Set options for topology, discovery
and database daemons →Set options for netmon daemon and set the
Router Fault Isolation Mode.

There are three modes that you can configure for RFI:

� Disabled mode: No attempt is made to determine the reachability or root
cause. Routers generate node status events, instead of the root cause router
status events.

� Router Fault Isolation mode: By dynamically evaluating the status of
routers, NetView determines the reachability of subnets and the root cause of
the partition or problem.

� Probabilistic mode: By dynamically evaluating the status of members of a
subnet, NetView determines whether it is more likely that the subnet itself is
unreachable or whether the devices are down. This mode is disabled if the
subnet contains less than a configured number of managed devices. This
mode is automatically used for subnets with no managed routers if the RFI
mode is active. You can fine-tune this algorithm using the properties defined
in the netmon.conf configuration file. See the /usr/OV/conf/netmon.conf file for
more information.

The Server Setup application provides the ability to treat ambiguous router
interfaces that are not responding in unmanaged subnets as though their status
is either Unreachable or Down. In the Set options for netmon daemon window of
Server Setup, set the Router Fault Isolation: Treat ambiguous nonresponding
router interfaces in unmanaged subnets as field to either Unreachable or Down.
See the /usr/OV/doc/RouterFaultIsolation.htm file for information about using this
option.

Stopping the RFI feature
The Router Fault Isolation feature is active by default in NetView. To disable this
feature, use the -K 0 option for netmon. To control the suppression of polling
traffic to routers (including unreachable routers), use the -k option for netmon.
Refer to the netmon man page for more information. For a detailed explanation of
Router Fault Isolation, see the description in the
/usr/OV/doc/RouterFaultIsolation.htm file.

NetView RFI
This document provides a detailed description about the NetView Router Fault
Isolation feature, an explanation of how Router Fault Isolation works, what events
are generated to isolate root cause, and how to understand switch and
ambiguous cases. It ends with a section on netmon configuration for RFI.
 Chapter 6. Event management products and best practices 221

This feature addresses two problems:

� The identification of the root cause
� Suppression of unnecessary events and network polling after a partition

Understanding the problem
When a network failure occurs and the NetView management workstation cannot
reach devices or device interfaces in the failed portion of the network, that portion
of the partitioned network is considered to be unreachable. For example, when
one or more router interfaces fail, they can occlude a portion of the network, such
as other subnets. This makes these subnets invisible, inaccessible, or
unreachable due to breakdown or blockage in the connectivity at a point between
the network management workstations and the devices themselves.

When a router or router interface fails and occludes part of a network from
NetView, NetView reports many Interface Down and Node Down events for all
interfaces and devices that it can no longer reach. It also reports Segment Down
and Network Down events for the segments and subnets that it can no longer
reach. After the failure is corrected, NetView reports another set of events to
indicate that the interfaces and devices are back up again and that the segments
and networks are accessible. The NetView events display can then display these
events. NetView can also forward these events to IBM Tivoli Enterprise Console,
if you configure NetView for this.

Not only does this proliferation of events make it difficult to determine the root
cause, the large number of status polls to the occluded area can slow network
traffic considerably. If NetView also forwards these events to IBM Tivoli
Enterprise Console, the events can cause performance problems and unreliable
status reports.

You can use RFI to detect occluded portions of the network, namely one or more
subnets. RFI marks these on the NetView map and identifies the root cause by
reporting a Router Down or Router Marginal event. It suppresses polls and
events for all non-router nodes and interfaces that are occluded. It also
suppresses events from the polling of router interfaces.

RFI works well at suppressing events when NetView manages a high proportion
of nodes to routers. This significantly reduces the proportion of Node Down
events that represent false alarms.

In addition, RFI generates an event for each Router Down and Router Marginal
event. It also relies on connectivity tests, so it responds instantly to dynamic
routing changes.
222 Event Management and Best Practices

How a partition is identified
When NetView detects that a node or an interface is down, RFI checks the status
of router interfaces. It starts with those that are connected to the subnet where
NetView detected the Down status.

If all the router interfaces of that subnet are non-responding, RFI concludes that
the subnet is Unreachable. It then dynamically analyzes the routers that reported
a non-responding interface. The router analysis, for each interface, checks both
the status of the interface and the reachability of the subnet to which it is
connected. During this check any non-responding interface triggers a check on
its subnet, which in turn trigger checks of other routers showing a
non-responding interface. In this way, the analysis rapidly spreads determining
the extent of the partition or partitions.

How a router is analyzed
During the router check mentioned in the previous section, each interface and its
subnet is analyzed. If all the subnets to which it is connected are Unreachable,
the router is also considered Unreachable. If at least one subnet is found to be
reachable, then the router is considered Up, Marginal, or Down depending on the
status of the interfaces. If at least one interface is Up and at least one is Down,
then it is Marginal. If no interface is Up, then the router is considered Down.

Therefore, if a router is marked as Marginal or Down, then because it is
reachable, the problem has now been isolated to the area of this router.

How the partition appears on the map
With the new status, NetView displays in white those unreachable networks,
router nodes, and router interfaces. All other symbols in the occluded submaps
are unaffected, and their map and object status remain unchanged.

To see the extent of the partition or partitions, look at the top-level maps showing
the router and network symbols. Symbols in the occluded regions appear in
white. Due to performance considerations, only network, router, and router
interface symbols turn white. At the segment level, only router symbols appear
white to indicate that the subnet is unreachable and all nodes are occluded.

How a recovery is triggered
After a partition is repaired, the first successful status poll from inside an
Unreachable subnet triggers a recovery. The algorithm follows a similar
subnet-router-subnet proliferation approach used to discover the partition. In this
way, the recovery rapidly and proactively spreads resetting the status of the
network to again reflect the propagation of the network’s member interfaces.
 Chapter 6. Event management products and best practices 223

Suppressed polling in a partition
During a partition, all polling, ICMP and SNMP, is suppressed to non-router
nodes in Unreachable subnets. For Unreachable routers, configuration polling is
suppressed, but by default, status polling is not.

In V6.0, RFI does not suppress poll traffic for Unreachable routers. In V6.0.1, you
can use a switch in netmon to suppress poll traffic to occluded routers. See
“Netmon configuration” on page 225.

When all status polling to Unreachable regions is suppressed, automatic
recovery depends on a successful status poll to a root cause router. To speed the
recovery initiation, you can also manually ping any node in an Unreachable
region.

Understanding switch and ambiguous exceptions
This section helps understand the effects of switches, bridges and other layer 2
connectivity devices and unmanaged subnets.

� Layer 2 connectivity devices

RFI can determine only that a subnet is occluded. As a result, if a switch goes
down and causes a segment within a subnet to become unreachable, RFI
cannot determine whether any nodes are actually occluded that are shown as
being down within that subnet.

However, RFI isolates the problem to a subnet and can determine when to
look further inside the subnet. RFI identifies a root cause router. If this router
is Marginal (at least one Up interface), then we know we can get to it.
Therefore, the interfaces that are marked as Down must signal real problems
and we need look no further.

If the router is Down, then it is possible that either the router is offline and is
the real problem, or it is occluded due to a failure in connectivity in a layer 2
connection device.

� Unmanaged subnets

If a router with one or more non-responding interfaces is connected to at least
one reachable subnet, then we can conclude it is a root cause. That is, it is
reachable, but it is also reporting a problem. However, if all the subnets a
router is connected to are unreachable, we conclude the router is
unreachable. Ambiguity arises when a router is connected to at least one
unmanaged subnet and all the other connected subnets are marked as
Unreachable. If an unmanaged subnet were really reachable, that would
signal the router as the root cause.

By default, RFI treats unmanaged subnets as unreachable in ambiguous
cases. This allows the router to be marked as Unreachable if all the other
managed subnets are Unreachable. If NetView is connected to this router via
224 Event Management and Best Practices

one of the managed Unreachable subnets, it makes sense that this router is
also Unreachable.

However, consider the case where NetView is connected to this same router
solely via one of the unmanaged subnets and that interface was actually the
problem and caused the occlusion of the router. All the interfaces are
non-responsive and all the managed subnets are Unreachable, resulting in
this router being declared Unreachable. Note that if NetView has an
alternative connection to this router, the other subnets are not Unreachable
and the root cause can be identified. To ensure cases like this are identified
as a root cause, you can choose from two courses of action:

– For each router, ensure that any unmanaged subnet is not the only path to
the network management station.

– Set the RFI option for netmon (-n) to treat unmanaged subnets in the
ambiguous case as Reachable. See “Netmon configuration” on page 225.

Netmon configuration
The following netmon switches control aspects of RFI. These switches are not
available in the Server Setup GUI. To change the default behavior, you must add
the desired switch to the netmon.lrf file and then enter the following commands:

/usr/OV/bin/ovstop netmon
/usr/OV/bin/ovdelobj /usr/OV/lrf/netmon.lrf
/usr/OV/bin/ovaddobj /usr/OV/lrf/netmon.lrf
/usr/OV/bin/ovstart netmon

This is similar for Windows NT, except that you just change the directory slashes

Enabling and disabling RFI
The RFI feature is active by default in NetView V6.0.1. If you run V6.0, contact
your Tivoli Representative for a free script that enables this feature. If this feature
is not desired, you may disable it by using the -K 0 option for netmon as shown
here (note to use an uppercase “K”):

-K 0 | 1

Note the following explanation:

0 Turn Event Suppression OFF

1 Turn Event Suppression ON. This is the default.

Reduced polling to routers
As a part of RFI, the new option -k 2 has been added to netmon for V6.0.1 which
prevents status polling to any router whose current status is Unreachable. If you
use this option, you may need to manually ping a node in an occluded area to
start recovery for some isolated routers.
 Chapter 6. Event management products and best practices 225

This option has following syntax (note to use a lowercase “k”):

-k 0 | 1 | 2

Note the following explanation:

0 Don't suppress any pings or SNMP requests.

1 Suppress pings and all SNMP requests to non-routers in Unreachable
subnets. This is the default.

2 Suppress pings and all SNMP requests to Unreachable routers.

Handling the ambiguous case
By default, if all the other subnets to which a router is connected are
Unreachable, RFI considers unmanaged subnets as Unreachable. To change
this default behavior so that unmanaged subnets in ambiguous situations are
treated as reachable, set the -n option for netmon.

If the -n switch is present, unmanaged subnets are treated as reachable in
ambiguous cases. The default behavior, when the -n switch is not present, is to
treat unmanaged subnets as unreachable in ambiguous cases.

Correlation using NetView rules
NetView provides the capability of creating rule sets to correlate events or take
action on them. The ruleset editor enables you to graphically create a rule set
comprised of event-processing decisions and actions that are represented by
icons (nodes).

There are two types of nodes. Decision nodes are used to test conditions, and
pass or block the event based on the results of the test. Action nodes perform
such functions as forwarding the event to the Event Display application, resolving
it, executing a script or command, and issuing a call to a pager. Table 6-5 lists the
available nodes.

Table 6-5 Available nodes for NetView event correlation

Node Description

Action Specifies the action to be performed when an event is forwarded to this node. Fields
from the trap being processed are available as environment variables. The specified
action can be any operating system command, the full path name of any shell script
or executable, or any NetView command.

Block event
display

Prevents events from being forwarded to the Event Display application. Use this node
if you changed the default processing action to pass (forward) events to the Event
Display application and you do not want to forward events that meet specific
conditions. A trap that is processed through this node is marked so that it is not
handled by the default processing action specified for the rule set.
226 Event Management and Best Practices

Check route Checks for communication between two network nodes and forwards the event
based on the availability of this communication. For example, you can use this node
to check the path from the manager to a device before forwarding a node down trap.

Note: The check route node does not check the status of the node. It checks only the
availability of the path to the node.

Compare MIB
variable

Compares the current value of a MIB variable against a specified value. When a trap
is processed by this node, the ruleset processor issues an SNMP GET request for
the specified MIB variable.

Event attributes Compares any attribute of the incoming event to a literal value. You can use this node
to check for events generated by a particular device.

Forward Forwards the event to applications that have registered to receive the output of the
rule set. A trap that is processed through this node is marked so that it is not handled
by the default processing action specified for this rule.

Inline action Specifies the action to be performed when an event is forwarded to this node. Unlike
a command specified in an Action node, a command specified in an Inline Action
node is not sent to the actionsvr daemon. Instead, the command is executed
immediately, and processing continues to the next node if the return code of the
action matches the return code you specify within the specified time period.

Override Overrides the object status or severity assigned to a specific event and updates
applications that have registered to receive the output of the rule set. The Event
Display application is registered to receive the output.

For example, you can use this node to change to Major when a node down event is
received for a router. Use this node with the Query database field node to override
status or severity for specific device types.

Pager Issues a call to a pager that is defined in a NetView user profile. You should have
already configured the paging utility.

Pass on match Compares some attribute of the event being processed with an attribute of all traps
received in a specified period of time.

Query database
smartset

Tests whether the node is a member of the specified smartset and takes the specified
action (forward or block) if it is.

Query database
field

Compares a value from the NetView object database to a literal value or to a value
contained in the incoming event. You can use this node to check if the originating
device is a router.

Reset on match Compares some attribute of the event being processed with an attribute of all traps
received in a specified period of time. This node is similar to the Pass on match node.
The exception is that, if a match is found, the event is not passed on to the next node
in the rule set and processing stops.

Node Description
 Chapter 6. Event management products and best practices 227

The rule sets are created using the ruleset editor. You can invoke the editor by
entering the nvrsEdit command on the command line, or by selecting
Tools →Ruleset Editor from the NetView console. A template of available
nodes and a work area for creating the rule is displayed (Figure 6-13).

Set database field Sets the value of any NetView non-Boolean object database field. Fields that have
TRUE or FALSE values cannot be changed.

Query global
variable

Queries the value of the global variable that has been previously set using the Set
global variable node.

Resolve Forwards a message to all registered applications indicating that a previous event is
resolved. By default, the Event Display application is registered to receive the output
from rule sets. The receiving application determines how to handle a trap that has
been forwarded from this node. This node is frequently used in conjunction with the
Pass on Match node. You can use the Resolve node to delete an interface or node
down event from the Event Display application when an interface or node up event is
received. A trap that is processed through this node is marked so that it is not handled
by the default processing action specified for the rule set.

Set global
variable

Sets a variable for use within the rule set. For example, use this node to set a flag
whose value is checked later in the rule set using the Query global variable node.
When the rule set is finished processing, the global variable is no longer in effect.

Set MIB variable Issues an SNMP SET command to set the value of a variable in the MIB representing
any network resource. For example, you can use this node to change the system
contact for a particular device.

Set state Sets the correlation state of an object in the NetView object database. The current
state is updated in the corrstat1 field in the object database. The previous value in
the corrstat1 field is moved to the corrstat2 field. This process continues until the
current state and as many as four previous states are stored in the object database.
You can view the correlation state by selecting the object and then selecting the
Display Correlation Status option from the context menu.

Thresholds Checks for repeated occurrences of the same trap or of traps with one or more
attributes in common. You can use this node to forward an event after receiving the
specific number of the same event received within a specific time period. Use this
node with the Trap settings node to identify a specific trap number.

Trap settings Specifies a specific trap to be processed and is identified by a pair of generic and
specific trap numbers. The window displays a list of enterprise names and IDs. When
you select an enterprise ID, a list of generic and specific trap numbers for that
enterprise is displayed in the Event name and Specific fields. Select one or more
traps from this list.

Node Description
228 Event Management and Best Practices

Figure 6-13 NetView ruleset editor

Drag and drop the appropriate nodes into the workarea and connect them
logically using Edit →Connect Two Nodes. For more information about this
process, see Chapter 5, “Correlating Events”, in Tivoli NetView for UNIX
Administrator’s Guide, Version 7.1, SC31-8892.

After you create a rule set, you can use it in several ways:

� To limit the events displayed in a workspace (see 6.1.1, “Filtering and
forwarding with NetView” on page 174)

� To perform automated actions not related to displaying the events (see 6.9.1,
“Using NetView for automation” on page 338)

� To control forwarding of events to the Tivoli Enterprise Console (see 6.1.1,
“Filtering and forwarding with NetView” on page 174)

All nodes are useful. In this chapter, we focus on those that are most relevant to
event correlation and automation best practices. Other decision nodes are
discussed only in the context of the examples provided.
 Chapter 6. Event management products and best practices 229

IBM Tivoli Monitoring Query command
The purpose of the itmquery command is to query IBM Tivoli Monitoring servers
for endpoint information and display the results. Two configuration files are
associated with this command line utility:

� /usr/OV/conf/itm_servers.conf

This file contains IBM Tivoli Monitoring server account information. Use the
--add-server, --remove-server, and --verify-server-info options to
configure this file. The server account information in this file is used by both
the itmquery utility and by the servmon IBM Tivoli Monitoring attribute
discovery tests.

� /usr/OV/conf/itm_attributes.conf

This file is used to configure the IBM Tivoli Monitoring Resource Model
product matching used by both the itmquery utility and the servmon IBM Tivoli
Monitoring attribute discovery tests.

In addition to enabling configuration of the IBM Tivoli Monitoring server account
information used by the servmon IBM Tivoli Monitoring attribute discovery tests,
this command line utility also enables obtaining useful IP addresses for netmon
seed file creation. For example, this utility can enable you to create a netmon
seed file containing the IP addresses of all the endpoints that are actively
monitored by one or more IBM Tivoli Monitoring servers. Or, instead of
endpoints, you may want to be more restrictive and create a netmon seed file
that contains only the IBM Tivoli Monitoring monitored IBM WebSphere®
endpoints for all monitored IBM Tivoli Monitoring servers.

Usage
To further explain how to use this command, Example 6-13 displays the
command’s man page.

Example 6-13 itmquery man page

Usage: itmquery
 [-h | --help]
 [--add-server server_name [--port port_number]]
 [--remove-server server_name]
 [--verify-server-info]
 [--dump-endpoints]
 [--dump-products-for-endpoints <true_or_false>]
 [--server server_name]
 [--logconfig log4j_config_file]

Where:
 -h, --help display this help and exit
230 Event Management and Best Practices

 --add-server the server to add to the itm_servers.conf
 file
 --port when using the '--add-server' option, this
 option can also be passed to specify a
 non-default value for the oserv port on
 the server machine
 --remove-server the server to remove from the
 itm_servers.conf file
 --verify-server-info attempts to query every server configured
 in the itm_servers.conf file and informs
 you of whether the account information is
 valid
 --dump-endpoints dump the IP addresses of all endpoints
 being monitored by the ITM servers listed
 in the itm_servers.conf file
 --dump-products-for-endpoints if set to 'true' the endpoint information
 listed with the '--dump-endpoints' switch
 will display with the recognized products
 for each endpoint
 --server when using the '--dump-endpoints' switch,
 you can use this option to specify the
 single server to use when performing the
 query
 --logconfig log4j configuration filename

itmquery examples
Here, we outline some examples of using the itmquery command and a
description of those examples:

� itmquery --add-server nodeA

Prompts for the user name and password and adds a new entry to the
/usr/OV/conf/itm_servers.conf file.

� itmquery --add-server nodeA --port 8999

Similar to the last example, but the entry to be added to the itm_servers.conf
file contains non-default port information. In this case, we explicitly specify
that port 8999 is to be used when attempting to connect to the oserv port on
nodeA. The oserv port on nodeA is rebounded to use port 8999, and this is
not the default value for this port.

� itmquery --remove-server nodeA

Removes the nodeA server entry from the itm_servers.conf file.

� itmquery --verify-server-info

Verifies that all configured entries in the /usr/OV/conf/itm_servers.conf file
contain accurate IBM Tivoli Monitoring login information.
 Chapter 6. Event management products and best practices 231

� itmquery --server nodeA --dump-endpoints
--dump-products-for-endpoints false

Lists the endpoints for IBM Tivoli Monitoring server nodeA.

� itmquery --dump-endpoints

Lists the endpoints for all IBM Tivoli Monitoring servers configured in the
/usr/OV/conf/itm_servers.conf file. For each endpoint, the recognized
products are also listed. You can configure which products are recognized by
changing the /usr/OV/conf/itm_attributes.conf file.

� itmquery --dump-endpoints --dump-products-for-endpoints false

Lists the endpoints for all IBM Tivoli Monitoring servers configured in the
/usr/OV/conf/itm_servers.conf file.

6.3.2 IBM Tivoli Enterprise Console correlation
IBM Tivoli Enterprise Console has many ways to perform correlation. In this
section, our goal is to list those methods, along with reasons behind them.

State correlation engine
The newest form of correlation available within IBM Tivoli Enterprise Console 3.9
is the state correlation engine, available on IBM Tivoli Enterprise Console
gateways. This feature is not enabled by default, and must be configured for use.
The rules for this engine are developed via XML and not the common Prolog
format used with the normal IBM Tivoli Enterprise Console event server rule
bases. You can develop these rules from a central location (Tivoli Management
Region (TMR) server) and distribute them to the appropriate gateways via
MDIST.

For information about configuring an IBM Tivoli Enterprise Console gateway to
enable state correlation, follow the steps outlined in the IBM Tivoli Enterprise
Console User’s Guide, Version 3.9, SC32-1235.

For correlation purposes, we discuss two of the six rule types available with the
state correlation engine: pass-through and reset on match.

Pass-through rules
The pass-through rule forwards the trigger event only if a specific set of events
arrives within a specified time interval. If the required events arrive before the
timer expires (optionally is a specific sequence), the trigger event is forwarded. If
they do not arrive, the timer resets and the trigger event is not forwarded.
232 Event Management and Best Practices

Reset on match rules
The reset on match rule forwards the trigger event only if a specific set of events
does not arrive within a specified time interval. If the required events arrive before
the timer expires (optionally a specific sequence), the trigger event is not
forwarded. If they don’t arrive, the timer resets and the trigger event is forwarded.

A situation that can be used as an example of this predicate is for NetView event
Node Down. This is not a trusted event since it can be generated by a problem
with the NetView polling to the node and it can still be alive. To be more sure that
IBM Tivoli Enterprise Console receives only an event if the node is really down, a
state correlation rule using the predicate reset on match can be used.

In Example 6-14, a rule was created to identify Node Down events and wait six
minutes (this time was defined because the default polling interval for NetView is
five minutes) after it arrives. If no Node Up event arrives in this time, the Node
Down event is sent. If it was a polling error or time out and the next polling
succeeds, no event is generated.

Example 6-14 Code for reset on match rule

<rule id="nodeDown.resetOnMatchOfUp">
<eventType>TEC_ITS_NODE_STATUS</eventType>

 <resetOnMatch timeInterval="360000" randomOrder="false">
 <cloneable ignoreMissingAttributes="false" attributeSet="hostname"/>

 <predicate>
<![CDATA[
&source == "nvserverd" &&
&nodestatus == "DOWN"
]]>

</predicate>
<predicate>

<![CDATA[
&source == "nvserverd" &&
&nodestatus == "UP"
]]>

</predicate>
</resetOnMatch>

</rule>

Note: The best practice to address this situation is to create a rule directly on
NetView. However, if you can’t or it requires too much work, the IBM Tivoli
Enterprise Console gateway is the next step.
 Chapter 6. Event management products and best practices 233

The first test made with this rule was to unplug the network cable for node
PHIWAS01, in our lab environment, for more than six minutes. Figure 6-14
shows that the Node Down event was received six minutes after the Interface
Down event for that node. Then, the reset on match predicate for state correlation
creates a time window that matches the first criteria. In the defined time window,
if no event is received in matching the second criteria, then the event is sent. The
interface down event for that node was not filtered to easily present the case.

Figure 6-14 IBM Tivoli Enterprise Console Event Viewer Node Down

When the Node Up event arrives after the time window expires, it goes to the
event server that correlates it and closes the Node Down event (Figure 6-15).

Figure 6-15 IBM Tivoli Enterprise Console Event Viewer Node Up
234 Event Management and Best Practices

If the Node Up event arrives before the time window expires, neither this event
nor the Node Down event are sent to IBM Tivoli Enterprise Console. In an other
test, the network cable was unplugged from node PHIWAS02. As the Node Up
event arrives in the IBM Tivoli Enterprise Console gateway, a time window is
created by state correlation. The node is turned on again (simulating a polling
problem). Before the time window expires, a Node Up arrives. The time window is
closed and no events are sent to the IBM Tivoli Enterprise Console event server.

Figure 6-16 illustrates this test. The Interface Down event at 6:30 shows that the
node PHIWAS02 was down at that moment. As the Interface Up event arrives
before the six-minute time window, no Node Down or Node Up event is created.

Figure 6-16 IBM Tivoli Enterprise Console Event View Interface Down

Rule bases
The most popular and well-known form for correlation within IBM Tivoli
Enterprise Console is via the IBM Tivoli Enterprise Console event server’s rule
base. Let’s first start by discussing rulebase design approaches.

Rule writing best practices
This is not an exhaustive list of best practices, but a key set to consider when you
must create prolog rules for IBM Tivoli Enterprise Console event servers.

� Use the commit_action, commit_rule, and commit_set rule language
predicates frequently.

� Set severity using bo_set_slot_val, not by calling a task.

� Use create_event_sequence to define event sequences.

� Send events of the same class to clear problem events. Use slot values to
indicate up or down. Be consistent with NetView’s out-of-box approach. This
 Chapter 6. Event management products and best practices 235

can be done easily using format files. All of these steps from the event source
assist greatly in correlating events within a rule.

� Write rules to drop unnecessary events immediately (as one of the first rules
encountered so that events do not have to process all rules in the rule base).

� Monitor the number of rule timers used. You can cause yourself many
problems when this is not managed appropriately.

� When writing rules, limit the use of the following predicates:

– all_instances
– all_duplicates
– generate_event predicates

These cause expensive processing when overused and cause damaging
effects to the IBM Tivoli Enterprise Console event server.

� Use INT32 for fast comparisons.

� Avoid executing scripts from within a rule whenever possible. This is also very
expensive processing and should be limited.

Design approaches for rule bases
There are several ways to structure an IBM Tivoli Enterprise Console rule base.
Here are three of the most common ways, along with their pros and cons, and
suggestions for when to use them:

� Use rule sets for specific event sources.

One method of structuring a rule base is to use separate rule sets that contain
rules that are applicable to events from a specific source or monitoring tool.
Using this approach, all the rules required to handle products, such as IBM
Tivoli Monitoring and NetView, are grouped together in their own rule sets.

This implementation method is relatively easy to deploy for products that
supply IBM Tivoli Enterprise Console rule sets, such as NetView. It is also
convenient to use when consolidating the output of tools that may generate
rules. An example of this is the IBM Event Management and Monitoring
Design (EMMD) proprietary tool. This generates rules for events from event
sources. All the rules that apply to an event source can be grouped together
in a single rule set.

Another advantage of this approach is maintainability. Knowing that all the
rules that apply to an event source reside in a single rule set means that the
administrator knows exactly where to look to modify rules or add new ones.

However, the rule base can become cumbersome. Grouping all the actions
associated with the events from a single source usually means that there are
more rules. For example, the trouble ticketing rules for each event source may
reside in the rule set for that source. Similarly, event correlation, escalation,
and notification rules may exist in the rule sets for each source. This means
236 Event Management and Best Practices

that there are multiple places within the rule base where the same function is
performed.

� Use rule sets for business applications.

Grouping rules together based on business function may be used in
environments that implement monitoring of one application at a time. To
handle the event processing required for events from each application, new
rule sets are created and added to the rule base.

This has some of the same advantages and disadvantages as grouping by
product. Administrators know where to find rules for an application and can
easily implement rules for new applications. The rule base can grow
potentially larger than in the product approach. This is because the same
events may be required to monitor different applications. Not only are such
functions as trouble ticketing duplicated, but correlation sequences for events
may be as well.

� Use rule sets for event processing functions.

When you structure the rule base in a modular fashion by function, you can
implement separate rule sets for functions. Such functions include event
sequence creation, event correlation and escalation, synchronization, trouble
ticketing, and notification.

Performance is perhaps the best reason to implement this type of rule base.
There are most likely the fewest rules with this approach. Not only are
functions performed one time, but the code required to perform correlation
and escalation can handle events from multiple sources as well.

When implemented properly, this type of rule base is easy to maintain. When
integrating new event sources, ensure that they follow the conventions that
are already coded. This allows the existing rules to handle the new events
with little or no changes.

The drawback of structured rule bases is that it requires more planning to
implement and more skill to maintain. The administrator must now know what
each rule does and how to format new events to fit the rules.

Lab approach
In our case study, we chose a hybrid structure for the rule base. The phrase best
practices dictates to use the modular rule base for efficiency. However, it also
suggests to use as much out-of-the-box functionality as possible to maximize the
amount of support provided by vendors whose rule sets are implemented. And it
recommends that you minimize the effect of product upgrades and changes on
the rule base.
 Chapter 6. Event management products and best practices 237

Separate rule sets were implemented for functions such as trouble ticketing and
notification. Correlation sequences were used as supplied in rule sets for the
various products tested.

Rule set sequencing and dependencies
Within the TEC_RULES subdirectory of a rulebase directory, there is a file called
rule_sets that indicates which rule sets are active and in which order they should
be processed. The sequencing of rule sets is important. Suppose a rule set
drops an event and then commits the rule base. Rules that follow are never
executed. If another rule set correlates the event with a primary event, and adds
information to the primary based upon the fields in the event, that rule set needs
to precede the rule set that drops the event.

Also, some rule sets depend upon supporting functions supplied by other rule
sets. A trouble ticketing rule set may determine the severity of the ticket it is
opening based upon event severity. Therefore, any rules that escalate event
severity need to be placed before the trouble ticketing rule.

When IBM Tivoli Enterprise Console is initially installed, the supplied rule sets
are implemented in the proper order. If an organization decides to change the
ruleset order, keep in mind the following guidelines:

� The event filtering rule set (event_filtering.rls) should be near the beginning of
the sequence, preferably first. This avoids unnecessary processing of events
that are to be filtered out by this rule set.

� The maintenance mode rule set (maintenance_mode.rls) should be near the
beginning of the sequence, preferably immediately after event_filtering.rls.
This avoids unnecessary processing of events sent from systems in
maintenance mode.

� The correlation rule set (correlation.rls) should be near the end of the
sequence. This ensures that any event-specific correlation rules run before
the general-purpose correlation rules.

� The escalation rule set (escalate.rls) should be near the end of the sequence
and should come after correlation.rls. This ensures that event severities can
be appropriately adjusted after other processing takes place.

� The e-business rule set (ebusiness.rls) should be near the end of the
sequence and should come after the NetView rule set (netview.rls) and any
other rule sets that process events from e-business services monitored by
IBM Tivoli Monitoring products.

� The notification rule set (notify.rls) should be near the end of the sequence,
preferably last. This ensures that notification is based on the most current
event information.
238 Event Management and Best Practices

� The escalation rule set (escalate.rls) depends upon the notification rule set
(notify.rls) to provide e-mail notification of escalated events. If you want to use
this function, both rule sets must be activated.

� The e-business rule set (ebusiness.rls) depends upon the dependency rule
set (dependency.rls), which supports definition of dependency relationships. If
you want to use the e-business rules, both rule sets must be activated.

� The e-business rule set (ebusiness.rls) generates missed heartbeat events in
response to certain network events. If you want to handle these events
properly, the heartbeat rule set (heartbeat.rls) must also be activated.

� The NetView rule set (netview.rls) correlates heartbeat events with other
network events. If you want this correlation to take place, the heartbeat rule
set (heartbeat.rls) must also be activated.

See Chapter 7, “A case study” on page 357, for information about the rule base
implemented in our testing.

Out-of-the-box rules
For more information about how the out-of-the-box rule sets work, see IBM Tivoli
Enterprise Console Rule Set Reference, Version 3.9, SC32-1282.

cleanup.rls
This rule set is responsible for purging old events from the event cache. In
general, events that remain open for a long time without being addressed should
be closed, on the assumption that they are resolved or are otherwise inactive.

The rule set is based on three parameters that can be adjusted to meet specific
company needs. The _default_span parameter defines the time-out value that
controls how old open events must be before they are closed automatically. The
default value is 48 hours. The _cleanup_interval parameter defines the
frequency that old events are cleaned. The default is 30 minutes. The
_cleanup_list parameter defines the list of severities to be cleaned. The default is
HARMLESS and UNKNOWN. A fourth parameter, _cleanup_admin, is used to
set the administrator to automatically close the events.

The default value for the _default_span parameter can be too big since you may
not want to have all these events in your rule cache, during all this time. Events
with severity of HARMLESS or UNKNOWN are commonly used for correlation in
the time that they arrive and next to it. If they stay a long time in the cache, it
generates unnecessary over processing. We recommend that you change this
parameter to a smaller value if it does not affect your correlations.

The rule can be used to clean more severe events. However, in this case, a good
practice is to clone the rule and create one for each event.
 Chapter 6. Event management products and best practices 239

correlation.rls
You can customize the correlation rule set by modifying statements in the
correlation_parameters action of the correlation_configure rule. The latency
option is configurable.

You can specify the time range, or latency, to be used when searching the event
cache for events to correlate. By default, searches are limited to 10 minutes (600
seconds) backward in the event cache. To change the latency, modify the
statement that sets the _correlation_time_window parameter:

_correlation_time_window =seconds

Seconds is the number of seconds that represents how far backward you want to
search the cache for events.

dependency.rls
The dependency rule set contains rules that support the definition of dependency
relationships used by the e-business rule set (ebusiness.rls). Before you use the
e-business rule set, you must define the dependency relationships that apply to
the e-business services and network resources in your environment.

To define these relationships, create a text file that contains a series of
dependency statements, each of which is converted into a dependency fact in
the knowledge base. Each dependency statement is on a separate line and
consists of three parts, separated by white space:

host_a dependency_type host_b

host_a is the fully qualified name of the host that has a dependency on another
host. dependency_type is the nature of the dependency. host_b is the fully
qualified name of the host upon which host_a depends. The following example
shows three dependency statements:

phiwas01 WMQ_DEPENDS_ON_WMQ phiwas02
phiwas02 WMQ_DEPENDS_ON_WMQ phiwas01

These statements define the following dependency relationships:

� The first statement indicates that WebSphere MQ services on phiwas01
depend upon WebSphere MQ services on phiwas02.

� The second statement indicates that WebSphere MQ services on phiwas02
depend upon WebSphere MQ services on phiwas01.

To see if the dependency is really running, and which dependencies are on the
knowledge base, open the $DBDIR/dependencies.pro file. The contents should
resemble those in Example 6-15.
240 Event Management and Best Practices

Example 6-15 The dependencies.pro file contents

cat $DBDIR/dependencies.pro
dependency(WMQ_DEPENDS_ON_WMQ,phiwas01,phiwas02) .
dependency(WMQ_DEPENDS_ON_WMQ,phiwas02,phiwas01) .
#

After you finish defining dependency relationships in the text file, use the wrb
–imptdp command to load these relationships into the knowledge base as
dependency facts:

wrb -imptdp filename

filename is the name of the text file that contains the dependency statements.

To remove dependency relationships, use the wrb –deldp command:

wrb -deldp filename

ebusiness.rls
This rule does not use events from the IBM Tivoli Enterprise Console MQ
adapter. It only uses events from IBM Tivoli Monitoring profiles created by the
following three IBM Tivoli Monitoring applications:

� IBM Tivoli Monitoring for Business Integration: WebSphere MQ
� IBM Tivoli Monitoring for Web Infrastructure: WebSphere Application Server
� IBM Tivoli Monitoring for Databases: DB2®

To use the rule, set the fqhostname slot value. To set this slot, you need IBM
Tivoli Monitoring Fix Pack 5.

During our lab testing, our lab environment was not configured with Fix Pack 5,
as this fix pack was released shortly after our lab work was completed. To work
around this problem, we create a rule named set_fqhostname. This rule filled the
slot fqhostname with information from the hostname slot, as shown in
Example 6-16.

Note: Each dependency fact represents a single, unidirectional dependency
relationship. Therefore, if two interconnected hosts have mutual dependencies
on one another, you must define a separate dependency fact for each
direction of the relationship.
 Chapter 6. Event management products and best practices 241

Example 6-16 set_fqhostname rule

rule: set_fqhostname:
(
 event: _event of_class within ['WebSphere_MQ_ChannelThroughputProblem',
 'WebSphere_MQ_QueueManagerUnavailable',
 'WebSphere_MQ_ChannelNotTransmitting',
 'WebSphere_MQ_ChannelStartupError',
 'WebSphere_MQ_QueueFilling',
 'WebSphere_MQ_ChannelNotActivated',
 'WebSphereAS_high_DBPool_faults',
 'WebSphereAS_high_DBPool_avgWaitTime',

'WebSphereAS_high_Transaction_avg_response_time',
 'WebSphereAS_high_Transaction_timeout_ratio',
 'WebSphereAS_high_DBPool_percentUsed',
 'DB2_Down_Status',
 'DB2_High_ConnectionErrors',
 'DB2_High_ConnWaitingForHost',
 'DB2_High_MostRecentConnectResponse',
 'DB2_High_DB2ApplicationAgent_TotUserCpuTime',
 'DB2_High_ApplicationAgent_TotSystemCpuTime',
 'DB2_High_PctConnectionsUsed',
 'DB2_High_CurrentConnections',
 'DB2_High_HostTimePerStatement',
 'DB2_High_NetworkTimePerStatement',
 'DB2_High_TimePerStatement',
 'DB2_High_InstanceAgents_PctAgentsWaiting',
 'DB2_High_ApplicationAgents_Workload',
 'DB2_High_InstanceAgents_AgentCreationRatio']
 where[
 hostname: _hostname
],
 reception_action: set_fqhost_host:
 (
 bo_set_slotval(_event, fqhostname, _hostname),
 re_mark_as_modified(_event, _),
 commit_action
)
).

To show how IBM Tivoli Enterprise Console e-business out-of-the-box rules
work, two queue managers were created on two different servers, and a channel
between them was established. The queues in one manager are accessed by the
other, so, a dependency is created. This dependency is reproduced for the
e-business rules through the dependency rules.
242 Event Management and Best Practices

When IBM Tivoli Enterprise Console receives an MQ event, e-business
correlation looks for a matching cause event from the dependent queue
manager. It it’s found, it correlates the event with its cause.

Figure 6-17 shows the reception of a Queue Manager Unavailable event from
PHIWAS02, followed by a Channel Not Transmitting event from PHIWAS01.
Since both servers are dependent and the Channel Not Transmitting event was
originated because the queue manager on the other server was not available, the
rule uses the link_effect_to_cause predicate and correlates the effect with its
cause.

Figure 6-17 IBM Tivoli Enterprise Console Event Viewer with WebSphere MQ Event

The link_effect_to_cause predicate updates the cause_date_reception and
cause_event_handle attributes of the effect event so that these attributes contain
a reference to the cause event. The value of the date_reception attribute of the
cause event is placed in the cause_date_reception attribute. The value of the
event_handle attribute of the cause event is placed in the cause_event_handle
attribute.

In Figure 6-18, you can see the WebSphere_MQ_ChannelNotTransmitting event
pointing to the Websphere_MQ_QueueManagerUnavailable event as its cause.
The Causing event ID and Causing event received from the cause event are in
the effect event. You can compare it with the time in Figure 6-17.
 Chapter 6. Event management products and best practices 243

Figure 6-18 Event details for WebSphere MQ causing event

6.3.3 IBM Tivoli Monitoring correlation
IBM Tivoli Monitoring performs correlation within resource models. Many of the
Windows resource models include automatic correlation by default. If you want to
perform more extensive correlation, you must edit the definition of a resource
model or create a new resource model via the Resource Model Builder.

It is never a good idea to modify the definition of an existing resource model.
Instead, copy the definition of a source resource model into a new resource
model and perform your customizations there. This prevents corruption of
existing resource models and gives you the ability to back out of a possible
mistake without massive ramifications.

6.4 Notification
Notification is the means by which appropriate personnel are informed about
conditions requiring action. While best practices dictate using the
trouble-ticketing system to notify, sometimes this is not practical. For example,
there may not be a trouble-ticketing system within the event management
hierarchy. Or the organization may be decentralized and use different systems
management tools for different IT resources.
244 Event Management and Best Practices

In these cases, you may want to use a means other than the trouble-ticketing
system for notification. The following sections outline the capabilities of IBM Tivoli
products to provide notification.

6.4.1 NetView
When used as a primary rather than intermediary management tool, NetView
needs to notify for conditions that require action. NetView can perform most of
the notification methods discussed earlier. This section summarizes NetView’s
capabilities in reporting problems.

Consoles
The NetView consoles are one means of informing someone of conditions that
require intervention. Consoles typically contain two major sections that perform
this function: the topology view and the event summary.

Several different types of consoles are available with NetView. While the
capabilities and look of each console type differs, the status and event
information portrayed in them is similar.

Since the focus of this section is event notification, only those features of the
topology and event views used for this purpose are covered. NetView’s
diagnostic capabilities are outside the scope of this discussion.

Topology view
The topology view shows the hierarchy and status of the resources managed by
NetView. Objects that represent resources, such as routers, switches, hubs, and
servers, are color-coded to delineate their status. Red typically indicates that the
resource is down. Yellow means that some interfaces on the resource are down.
Green indicates fully operational.

These colors usually indicate the layer 3 connectivity status of the device.
However, they can also indicate layer 2 problems and user-defined conditions.

Event view
While useful for indicating something is wrong, topology views do not show
details about the specific condition requiring action. The purpose of the event
display is to provide this additional information.

Pop-up windows
NetView has the capability to open warning windows upon receipt of a trap. This
function is typically used in environments where operators need to watch several
consoles or to perform activities in addition to console monitoring. The flashing
pop-up window with its optional sound indicator draws the operator’s attention to
 Chapter 6. Event management products and best practices 245

the console on which a critical event is displayed. Second and third shift
operators in particular find this function useful.

NetView for UNIX provides two executables to open pop-up windows: ovxbeep
and ovxecho. To display a pop-up window, specify a shell script when a specific
event occurs that executes the ovxbeep or ovxecho command when a specific
event occurs. If you execute the ovxbeep command in the shell script, an error
message window is displayed with an audible alarm. If you execute the ovxecho
command in the shell script, an error message window is displayed without an
audible alarm. The shell script must export the display to the appropriate
workstations before executing the ovxecho or ovxbeep commands. Also the xhost
command must have been run on the workstations where the pop-up window is
to be displayed.

You specify the name of the shell script in the Optional Command and Argument
format section of the Event Configuration window. For example, you want to
display a pop-up window when NodeA or NodeB fail. For NodeA, you want to
include an alarm. You also want to send an electronic-mail notice of the failure.
Here are the steps:

1. In the Options pull-down menu, click Event Configuration →Trap
Customization: SNMP.

2. In the Event Configuration window, select or enter:

– Enterprise name: netview6000
– Event: Specific 58916865

3. Click Modify.

4. The Modify Event window opens. Enter the following in the Command for
Automatic Action field:

< ShellScriptPath > $2

5. Click OK to close the Modify Event window.

6. Click OK to close the Event Configuration window.

In Example 6-17, the $2 parameter passes the name of the device that
generated the alert to the script. The shell script checks the $2 flag to see
whether it is NodeA or NodeB that generated the alert. If it is NodeA, the shell
script calls a program, /usr/OV/bin/ovxbeep, that displays a window and an
audible alarm. If it is NodeB, the shell script calls the program,

Note: If you filter an event for which you configured a command for automatic
action, the actions specified in the shell script are still executed. If the shell
script executes the ovxbeep or ovxecho command, for example, an error
message window is displayed even though the event was filtered.
246 Event Management and Best Practices

/usr/OV/bin/ovxecho, that displays a window without a sound. For either node, an
electronic-mail notice is sent to the addresses specified in the shell script.

Example 6-17 Shell script for node down trap

#!/bin/ksh
example.sh
Shell script for node down trap from the netview6000 enterprise
(specific = 58916865). Displays warning messages and sends e-mail.
export DISPLAY=NodeA.austin.tivoli.com:0
export DISPLAY=NodeB.austin.tivoli.com:0
if [$1 = NodeA.austin.tivoli.com]; then
/usr/OV/bin/ovxbeep $1" is down"

echo $1" is down" | mail oper1@manager.austin.tivoli.com
fi
if [$1 = NodeB.austin.tivoli.com];then
/usr/OV/bin/ovxecho $1" is down"
echo $1" is down" | mail oper2@manager.austin.tivoli.com
fi

See the /usr/OV/prg_samples/nnm_examples/beeper/beep_951x sample shell
script for more examples.

NetView console best practice
In general, use the NetView console for diagnostics, and not for watching events,
in regard to notification.

Rules
This section describes some of the NetView rules used for notification.

Paging
A pager is responsible for issuing a call to a pager that has been defined in a
NetView user profile. You should have already configured the paging utility. The
paging utility uses the pager number and carrier information defined in the user
profile. The window contains the following relevant fields:

� User ID: Specifies the NetView user ID of the person to be paged. If pager
information is not found in the NetView user profile or there is no NetView ID
for the user, a window opens in which you can enter the user ID and pager
information. Then a user profile is created or updated.

� Message Text: Specifies message text to be delivered with the page. The
message can include trap data passed in environment variables.
 Chapter 6. Event management products and best practices 247

To use the NetView paging utility through an event correlation rule (using the
Pager node) or from the command line (using the nvpage command) with an
analog line for modem communications, perform the following steps for the
modem that is attached to your system:

1. Add and configure a TTY device for modem communications using the UNIX
mkdev command.

2. Test the modem communication through the TTY device using a
communications program, such as ate, provided with your operating system.

3. Customize the paging utility configuration files, which are located in the
/usr/OV/conf directory:

– nv.carriers: Lists the defined carriers. Add the appropriate entries for all
paging carriers used at your site. The numeric IDs are accepted on the
Modem line. The Y/N field indicates the pager type. If numeric IDs are
accepted, the pager type is numeric. If numeric IDs are not accepted, the
pager type is alpha.

See the nv.carriers man page for more information.

– *.modem: Contains the default information for the modem. The asterisk (*)
represents the name of the modem file. The following modem files are
provided:

• ibm5853.modem: For the 2400 baud IBM Model 5853 modem

• ibm7855.modem: For the IBM Model 7855

• newhayes.modem: For most Hayes compatible modems

• oldhayes.modem: For Hayes compatible modems that do not
understand the extended AT command set

• qblazer.modem: For Hayes compatible modems

• blank.modem: For you to copy and customize

Usually, you do not need to change the values in the modem file. If a
modem file is not provided for the modem you are using, use the
blank.modem file as a template.

See the modem man page for more information.

– nvpager.config: Lists the defaults that are the physical characteristics of
the modem.

Specify the TTY device that you already configured and tested. Change
the modem characteristics to reflect the values configured on the TTY
device. Add the name of the modem file that corresponds to the modem
dedicated to paging. See the nvpager.config man page for more
information.
248 Event Management and Best Practices

– nvpaging.protocols: Defines the characteristics of the paging protocols:
TAP, IXO, PET, and PAKNET. The Protocol field in the nv.carriers file
specifies the paging protocol being used and points to the
nvpaging.protocols file for configuration information. If you are using a
paging protocol similar to TAP, IXO, PET, and PAKNET, copy the
information provided for one of these protocols and modify it with the
appropriate information for the protocol you are using.

See the nvpaging.protocols man page for more information.

After you update the configuration files, stop and restart the nvpagerd
daemon to make the changes available to the paging utility.

4. Create NetView security user profiles for those individuals who you want to
page automatically through an event correlation rule set.

When you use the Pager node in an event correlation rule set, you specify the
user ID of the person you want to page. The NetView security user profile defines
the user ID and the paging information. It is not necessary to activate security to
access the paging information in a user’s profile.

You can also send a page from the command line using the nvpage command.
See the man page for more information.

6.4.2 IBM Tivoli Enterprise Console
IBM Tivoli Enterprise Console has various methods of notification. This section
describes those methods.

Consoles
The IBM Tivoli Enterprise Console Version 3.9 now has two ways to view events
on a console:

� Java-based console
� Web-based console

The Java-based console is usually installed locally on an administrator’s desktop.
In IBM Tivoli Enterprise Console Version 3.9, it is mainly used for the console
configuration. Tivoli administrators responsible for that configuration should have
access to this console. Figure 6-19 shows an example of the configuration
window of the Java-based console.
 Chapter 6. Event management products and best practices 249

Figure 6-19 Example of an administrator’s configuration window

Also with this console, you have the functionality to view, close, acknowledge,
and run automated tasks for events. Operators can use this version of the
console to view all the events for which they are responsible. Figure 6-20 shows
an example of the event viewing section of the Java-based console. The main
disadvantage is that you have to install it on a workstation before you can view it.

Figure 6-20 Example of the Event Viewer window on the Java console
250 Event Management and Best Practices

The other option now available with IBM Tivoli Enterprise Console 3.9 is the
Web-based console. This console runs on a WebSphere Application Server that
can be installed via the installation wizard for IBM Tivoli Enterprise Console 3.9.
You can then log in to that WebSphere Application Server via a Web page that
directs you to the IBM Tivoli Management Region where IBM Tivoli Enterprise
Console is located.

This console is only used for viewing events. No configuration can be done from
the Web console. However, operators can acknowledge, close, and run
automated tasks from the events. The Web console has its advantages in that no
software needs to be installed on a workstation before you view it. Figure 6-21
shows an example of the new IBM Tivoli Enterprise Console Web-based
console.

Figure 6-21 Example of Web console event viewer

6.4.3 Rules
You can also use rules for notification within IBM Tivoli Enterprise Console. The
most popular are described here.
 Chapter 6. Event management products and best practices 251

E-mailing and paging
E-mailing and paging can be handled directly from the IBM Tivoli Enterprise
Console event servers rule base. There is an out-of-the box rule set supplied for
these actions called notify.rls. This rule notifies, as defined in the rule, on the
severity of the event and the event class. You must define within this rule the
method in which you want to notify (page or e-mail) the person or group and their
addresses.

Customizing notify.rls for which events to send notifications
In the notify.rls rule, find the section shown in Example 6-18 located within the
notify_configure rule.

Example 6-18 notify_configure within the notify.rls rule set

rerecord(notify_list, 'EVENT',
 ['MAIL', % type of notification
- MAIL/PAGE
 'Administrator', % user to notify
 'Administrator@EventServer']), % user email/page
address

 % Set class-specific notification information
 rerecord(notify_list, 'TEC_Error',
 ['MAIL', % type of notification
- MAIL/PAGE
 'Administrator', % user to notify
 'Administrator@EventServer']) % user email/page
address
),

This section is where you set the type of notification to send the user to send it to
and their address. The top section starting with rerecord(notify_list, 'EVENT',
sets the notification method for all events which are separated later based on
severity in the following rules. For example, if we want to send all events by
e-mail to administrator Bob at bob@company.com, we can modify this section as
shown in Example 6-19.

Note: You must activate and modify the out-of-the box rules supplied with IBM
Tivoli Enterprise Console 3.9 according to your environment so they can work
properly.
252 Event Management and Best Practices

Example 6-19 Sending an e-mail within the notify.rls rule set

rerecord(notify_list, 'EVENT',
 ['MAIL', % type of notification
- MAIL/PAGE
 'Bob', % user to notify
 'bob@company.com']), % user email/page address

The bottom section is where you can configure notifications based on the IBM
Tivoli Enterprise Console class. In Example 6-18, the rule is configured for the
TEC_Error class to send the administrator an e-mail. If you want to send
notifications on different classes, you add them here. For example, if we want to
send an e-mail to Bob when an event comes in with the class TEC_Start, we add
an entry to this rule as shown in Example 6-20.

Example 6-20 Sending TEC_Start events via e-mail via the notify.rls rule set

rerecord(notify_list, 'TEC_Error',
 ['MAIL', % type of notification
- MAIL/PAGE
 'Administrator', % user to notify
 'Administrator@EventServer']) % user email/page
address
),
rerecord(notify_list, 'TEC_Start',
 ['MAIL', % type of notification
- MAIL/PAGE
 'Bob', % user to notify
 'bob@company.com']) % user email/page address
),

The rest of the rule deals with sending the notifications based on each type of
severity. The rules send a notification on any event if the event severity is
changed to Fatal or Escalated. The rules also send a notification if an event is
re-opened. Table 6-6 lists the types of notification sent on each severity if the
default parameters of the rule remain unchanged.

Table 6-6 Notification types and their severities

Severity Notification Escalation

Fatal Notify via e-mail Notify via e-mail

Critical Notify via e-mail Notify via e-mail

Minor Notify via e-mail Notify via e-mail
 Chapter 6. Event management products and best practices 253

It is a good idea to notify only on events that are problems or require actions. You
may want to modify the remaining rules in this set to only notify for those events.
If you want to send pages through this rule, follow these steps:

1. Create a script called TEC_Notify.sh to carry out your paging based on the
paging software that you are using.

2. Place the script in the $BINDIR/TME/TEC/scripts directory.

3. Uncomment the following line in the TEC_TEMPLATES/notify.pro file:

%exec_program(_event,'scripts/TEC_Notify.sh',_fmt_str,[],'YES')

4. Add that template to the Tec_Templates.

5. After you are done modifying these rules, compile, load and restart the event
server.

This notification rule must be placed at the every end of the order in your rule
base. This is so that an event goes through all of the correlation before making it
to this rule to be notified. Therefore, you know that you are notifying for a valid
problem.

Scripts
Another way to notify from the rule base is to run custom scripts from events
meeting certain criteria from the rule base using the exec_program predicate
from the notify.rls rules. Doing this is completely custom. However, modifying the
scripts to keep the notification information is a little easier because you do not
have to compile and restart the event server every time you have to make a
change. Keep in mind that executing scripts from a rule is a highly taxing
operation to the system processor and should be moderated.

Before you make changes to the following rule, comment out the notify_configure
rule. This information is no longer necessary since you are keeping your
addressing information within the scripts. Next you modify the
notify_for_fatal_events rule to run a script. Example 6-21 shows the original
format of the rule.

Warning No notification No notification

Harmless No notification No notification

Unknown No notification No notification

Severity Notification Escalation
254 Event Management and Best Practices

Example 6-21 Original notify_for_fatal_events rule

rule:
notify_for_fatal_events:
(

event: _event of_class _class
where [

severity: _severity equals 'FATAL',
 status: equals 'OPEN',
 msg: _msg

],
reception_action:
(

 first_duplicate(
_event, event: _dup_ev

where [status: _status outside ['CLOSED']]),
 commit_rule

),
reception_action:

 (
 (recorded(notify_list, _class, [_type,_user_name,_user_addr]) ->
 assert_notify(_event,_class),
 true
 ;
 assert_notify(_event,'EVENT')
),
 commit_rule
)
).

Example 6-22 shows the modifications that you need for this rule to use our
script to perform notification.

Example 6-22 Modified notify_for_fatal_events rule for using script notification

rule:
notify_for_fatal_events:
(

event: _event of_class _class
where [

severity: _severity equals 'FATAL',
 status: equals 'OPEN',
 msg: _msg

],
reception_action:
(

 first_duplicate(
 Chapter 6. Event management products and best practices 255

_event, event: _dup_ev
where [status: _status outside ['CLOSED']]),

 commit_rule
),
reception_action:

 (
exec_program(_event,'scripts/notify_bob.sh', '', [], 'NO'),

 commit_action
)
).

This rule now runs the notify_bob script whenever a fatal event comes in. We
changed the reception action to run our script instead of using the template to
send an e-mail. Example 6-23 shows the contents of the notify_bob.sh script that
you may use to send an e-mail to Bob.

Example 6-23 notify_bob.sh script

#!/usr/bin/ksh
NOW=`date`
echo $NOW, $hostname, $class, $msg, $date >>/tmp/notify_bob.out

PATH=/bin:/usr/bin:/usr/ucb:/usr/lib
export PATH

sendmail -F TEC -t << __EOF__
To: bob@company.com
Subject: Notification from TEC
$msg happened on $hostname, please fix this Bob or it's your job
__EOF__

In this script, we send an e-mail to Bob with the subject Notification from TEC.
We can now log the notification information in the /tmp/notify_bob.out log file. We
can also use variables from the IBM Tivoli Enterprise Console event to populate
our e-mail, such as $msg and $hostname. It is now a little easier to add and
remove recipients to this e-mail. We can even customize the message, without
restarting the IBM Tivoli Enterprise Console event server.

Options
Another way to notify from the rule base is to use fact files. These fact files keep
large amounts of information that the rule you are using consults. For notification
purposes, we can use a fact file to store the address information with which the
rule will use to send the notification. You can separate your events by:
256 Event Management and Best Practices

� Host name: Send each event to a recipient based on the hostname slot in the
event. For example, a event coming from host name rduwws01 goes to a
support team in Raleigh. This information is included in the fact file.

� Severity: You can send different event severities to different groups.

� TEC_Class: For example, you can send notifications for all TEC_ events to
the group that is responsible for maintaining IBM Tivoli Enterprise Console.

Here is an example of how we can modify the notfiy.rls rule to consult a fact file
for notification information by using the hostname slot. First, we create our fact
file /usr/local/Tivoli/custom/facts/tec_r.address.pro with our address information,
as shown in Example 6-24.

Example 6-24 tec_r.address.pro fact file

server(‘rduatf01’,’Bob’,’bob@company.com’)
server(‘dtmwas01’,’Peter’,’peter@company.com’)
server(‘sapwas01’,’Bill’.’bill@company.com’)
server(‘phiwas01’,’Jackie’,’jackie@company.com’)

Assuming that our fact file is already compiled, we modify our rule. We now
consult our fact file and use it to fill in the admin and address slots that we added
to our events (see Example 6-25).

Example 6-25 Rule modification to use a fact file for notification

rule:
load_addresses:
(event: _event of_class ‘TEC_Start’
where [],
reception_action: load_address_fact_file:
(
reconsult(‘/usr/local/Tivoli/custom/facts/address’)
)
).

rule:
set_admin_and_address:
(
event: _event of_class _class
where [
hostname: _hostname
],
reception_action:
 Chapter 6. Event management products and best practices 257

(
server(_hostname, _admin, _address),
bo_set_slotval(_event, admin, _admin),
bo_set_slotval(_event, address, _address),
re_mark_as_modified(_event, _)
)
).

rule:
notify_for_fatal_events:
(

event: _event of_class _class
where [

severity: _severity equals 'FATAL',
 status: equals 'OPEN',
 msg: _msg

],
reception_action:

 (
exec_program(_event,'scripts/notify_support.sh', '', [], 'NO'),

 commit_action
)
).

With this rule, any fatal event that comes into IBM Tivoli Enterprise Console
consults our fact file. If there is an entry in that file for the host name of the server
from which the event came, it sets the admin and address slots from that entry.

Figure 6-22 shows how the event attributes may appear if we send a fatal event
from the server sapwas01. Notice that the address slot is populated with Bill’s
e-mail address and the admin slot is set to Bill.
258 Event Management and Best Practices

Figure 6-22 Event details after using a fact file for notification

Now we can modify the same script we used earlier to actually send the
notifications. We change the name from notify_bob.sh to notify_support.sh
because everybody is going to be notified from this script, not just Bob.
Example 6-26 shows how the script should look.

Example 6-26 notify_support.sh script

#!/usr/bin/ksh
NOW=`date`
echo $NOW, $hostname, $class, $msg, $date >>/tmp/notify_bob.out

PATH=/bin:/usr/bin:/usr/ucb:/usr/lib
export PATH

sendmail -F TEC -t << __EOF__
To: $address
Subject: Notification from TEC about $hostname
Dear $admin
$msg happened on $hostname, $admin please fix this, or we will send Bob after
you.
__EOF__
 Chapter 6. Event management products and best practices 259

We changed the To: line from Bob’s e-mail address to $address which is
populated from our fact file based on the host name from which the event came.
We also added the Dear $admin line, which is also populated from our fact file.

6.4.4 IBM Tivoli Monitoring
IBM Tivoli Monitoring has two forms of notification:

� IBM Tivoli Monitoring Web Health Console
� Executing Tivoli Tasks upon an event situation

Web Health Console
IBM Tivoli Monitoring’s main form of notification is the Web Health Console. The
Web Health Console allow you to view the general health of a resource that you
are monitoring.

You can use the Web Health Console to check, display, and analyze the status
and health of any endpoint with profiles and resource models. Status reflects the
state of the endpoint displayed on the Web Health Console, such as running or
stopped. Health is a numeric value determined by resource model settings. You
can also use the Web Health Console to work with real-time or historical data
from an endpoint that is logged to the IBM Tivoli Monitoring database.

You can use the diagnostic and monitoring capabilities of the Web Health
Console to perform targeted analysis of problems associated with individual
endpoints when an event is sent to the Tivoli Enterprise Console. Use the online
and historical data to follow up on specific problems with single endpoints.
Figure 6-23 shows an example of the Web Health Console.
260 Event Management and Best Practices

Figure 6-23 IBM Tivoli Monitoring Web Health Console Example

Tasks
Built into IBM Tivoli Monitoring is the ability to run two Tivoli tasks to perform
notifications:

� dmae_mn_send_notice: This task creates a Tivoli Notice that you can view
via the Tivoli Desktop Notices window.

� dmae_mn_send_email: This task sends an e-mail to a specified e-mail
address.

To enable one of these tasks within IBM Tivoli Monitoring, you must follow these
steps:

1. Open a resource model via the Tivoli Desktop. Click the Indications button.

2. The Indications and Actions window opens. Select the indication about which
you want to be notified and click the Tasks button.

3. The Tasks window (Figure 6-24) opens. Under Libraries, select IBM Tivoli
Monitoring Utility Tasks. Under the Tasks pane, select the corresponding
task that you desire either for a Tivoli notice or an e-mail. Then, click the
Select Task button.
 Chapter 6. Event management products and best practices 261

4. You now see a window to configure the task. The notice task asks for a notice
group to send the notice to, as well as the priority. The e-mail task asks for the
e-mail address or addresses where you want to send the notification.

Figure 6-24 IBM Tivoli Monitoring resource model tasks notifications

6.5 Escalation
In this section, we discuss policies that you should define for proper handling of
event escalation, and how severities are set and escalated using NetView and
IBM Tivoli Enterprise Console.
262 Event Management and Best Practices

6.5.1 Severities
Chapter 1, “Introduction to event management” on page 1, presents three types
of escalation. The escalation type, increase the severities in response to a
worsening condition or based on business impact. They also ensure the handling
of problems by following a notification chain if they are not handled in a timely
fashion.

For these types of escalation, policies must be clearly defined. This section
presents some samples that demonstrate guidelines that we used in our lab case
study.

Severity mapping between tools
Often the severities employed by various software products differ. Administrators
who set up monitoring often do not know which severities to use for events
generated by their monitoring tools or the service-level implications of those
severities.

Therefore, we recommend this best practice. To provide consistency in event
handling, map the severities used by the different monitoring tools to each other
and to service-level agreements (SLA).

This ensures that the event is assigned the proper severity when events are
forwarded between event processors. It also ensures that administrators using
different tools to manage problems respond with the appropriate sense of
urgency.

Table 6-7 shows a sample mapping of severities between NetView, IBM Tivoli
Enterprise Console, and the trouble-ticketing system. It also shows the
relationship between severities and SLA response times.

Table 6-7 Severity mapping between IBM Tivoli NetView, Enterprise Console, trouble-ticketing systems

NetView
severity

NetView
trap color

IBM Tivoli
Enterprise
Console
severity

IBM Tivoli Enterprise
Console event colors
(foreground on
background)

Trouble ticket
severity

Service-level
agreement

Indeterminate Tan Unknown Black on blue 4 Respond
within 2 days

Cleared Tan Harmless Black on green Close

Warning Yellow Warning Black on yellow 3 Respond
within one day
 Chapter 6. Event management products and best practices 263

Setting severities
After an organization establishes which severities to use and when, the
monitoring tools must be configured to set the appropriate values. This section
discusses how NetView and IBM Tivoli Enterprise Console can set event
severities.

Setting trap severity in NetView for UNIX
Using our sample, suppose NetView receives a Router Down trap. The router is
a key networking component whose failure can affect many users. Therefore, our
SLA within the organization states that it should be fixed within one hour.

We must configure the trap in NetView with Major severity using the Event
Configuration window. Follow these steps:

1. Issue the xnmtrap command. Or from the NetView console, select
Options →Event Configuration →Trap Customization: SNMP.

Minor Green Minor Black on orange 2 Respond
within four
hours

Critical Red Critical Black on red 1 Respond
within two
hours

Major Orange Fatal White on black 1 Respond
within one
hours

NetView
severity

NetView
trap color

IBM Tivoli
Enterprise
Console
severity

IBM Tivoli Enterprise
Console event colors
(foreground on
background)

Trouble ticket
severity

Service-level
agreement
264 Event Management and Best Practices

2. The Event Configuration window (Figure 6-25) opens.

a. Under Enterprise Identification, select the enterprise that generates the
trap. NetView generates the Router Down trap, so we choose
netView6000 as the enterprise.

b. Under Event Identification, select the trap itself from the list.

c. Click Modify.

Figure 6-25 Event Configuration window in NetView
 Chapter 6. Event management products and best practices 265

3. In the Modify Event window (Figure 6-26), you now see information about the
trap. Select the appropriate severity from the list and click OK.

Figure 6-26 Setting the severity of a NetView trap

4. In the Event Configuration window, click Apply to force trapd to read the
changed configuration.
266 Event Management and Best Practices

Any router down traps now appear with Major severity in the NetView event
displays, as shown in Figure 6-27.

Figure 6-27 Router Down trap now shows Major severity

Setting trap severity in NetView for Windows
In NetView for Windows, trap severities are set in the trap configuration window.
Follow these steps:

1. From either the NetView main menu or Event Browser windows, select
Options →Trap Settings, or execute \usr\OV\bin\trap.exe.
 Chapter 6. Event management products and best practices 267

2. The Trap Settings window (Figure 6-28) opens. Under Select an enterprise,
select the desired enterprise. Its associated traps are displayed in the Select
a trap section of the window. Highlight the trap for which you want to set
severity, and click Properties.

Figure 6-28 NetView for Windows trap configuration window
268 Event Management and Best Practices

3. The Trap Properties window (Figure 6-29) opens. You can see the valid
options under With Severity. Select the desired severity and click OK or Apply
on this window for the change to take effect.

4. On the Trap Settings window, click OK or Apply for the change to take effect.

Figure 6-29 Setting trap severity in NetView for Windows
 Chapter 6. Event management products and best practices 269

Setting event severity in NetView for UNIX
From the Event Configuration window, it is possible to set the severity of the IBM
Tivoli Enterprise Console event that is generated when the trap is forwarded to
IBM Tivoli Enterprise Console using nvserverd.

1. When modifying the event, click T/EC Slot Map.

2. The Edit Trap Slot Map window (Figure 6-30) opens. If severity is not listed in
the list of slot variables, click Add. For Slot Name, type severity. In the Slot
Value field, type the desired value. Click OK.

Figure 6-30 Setting IBM Tivoli Enterprise Console severity in NetView

3. Click OK two more times.

4. Click Apply for the setting to take effect.
270 Event Management and Best Practices

When you enter the wtdumprl command on the IBM Tivoli Enterprise Console
event server, you see that the event arrived at IBM Tivoli Enterprise Console with
severity FATAL as shown in Example 6-27.

Example 6-27 wtdumprl output showing FATAL Router Down event

1~2863~65538~1065810029(Oct 10 14:20:29 2003)
EVENT
TEC_ITS_ROUTER_STATUS;source=nvserverd;nvhostname=9.24.106.154;category=2;msg="
Router Down.";date="10/10/03
14:22:09";routerstatus=DOWN;status=OPEN;adapter_host
=9.24.106.154;hostname=rdur01;origin=9.24.106.145;sub_source=N;iflist=['9.24.10
6.145','9.24.106.130'];severity=FATAL;END

END EVENT
PROCESSED

Setting event severity in NetView for Windows
You can set the severity of a trap to be forwarded to IBM Tivoli Enterprise
Console using the NetView adapter by modifying the tecad_nv6k.cds file. The
severity keyword and value are added to the MAP part of the trap definition, as
shown in Example 6-28.

Example 6-28 Setting severity in tecad_nv6k.cds

text omitted

CLASS Env_Temp_Hot_CBT
'envTempHot' traps are mapped to 'envTemperature' OPEN/CRITICAL
CLASS ENV_TEMPERATURE_CBT
SELECT
 1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, "1.3.6.1.4.1.52") ;
 2: $SPECIFIC = 282 ;
 3: ATTR(=,"boardIndex") ;
 MAP
 boardIndex = $V3 ;
 sub_origin = PRINTF("board %s", $V3) ;

 severity = CRITICAL ;
END

CLASS Env_Temp_Normal_CBT
'envTempNormal' traps are mapped to 'envTemperature' CLOSED
CLASS ENV_TEMPERATURE_CBT
 SELECT
 Chapter 6. Event management products and best practices 271

 1: ATTR(=,$ENTERPRISE), VALUE(PREFIX, "1.3.6.1.4.1.52") ;
 2: $SPECIFIC = 284 ;
 3: ATTR(=,"boardIndex") ;
 MAP
 boardIndex = $V3 ;
 sub_origin = PRINTF("board %s", $V3) ;

severity = HARMLESS ;
END

text omitted

The severity is set to CRITICAL for Cabletron temperature hot environmental
traps. It is set to HARMLESS for Cabletron temperature normal environmental
events.

In this example, two different NetView traps (envTempHot and envTempNormal)
are mapped to the same class, ENV_TEMPERATURE_CBT.

Setting severity in IBM Tivoli Enterprise Console
If the source does not generate an event with the desired severity, you can
specify IBM Tivoli Enterprise Console to set it. There are two ways you can set
severity in IBM Tivoli Enterprise Console.

The first method is to use the default settings from an IBM Tivoli Enterprise
Console class definition. If an event is generated without specifying severity, IBM
Tivoli Enterprise Console enters the severity based on the default value specified
in the BAROC files. When the class definition itself does not specify a default, the
value is inherited from a superclass to which the class belongs.

Out of the box, NetView enters information into its trapd.conf file to map traps to
IBM Tivoli Enterprise Console classes, but does not supply severities for the
events. Therefore, events received from NetView are initially assigned the default
severity for the class. In our example, the IBM Tivoli Enterprise Console class,
TEC_ITS_ROUTER_STATUS, is defined in the netview.baroc file (Example 6-29)
without a default severity. It is part of superclass TEC_ITS_L3_STATUS, which
specifies a default severity of WARNING.

If you do not add severities to the trap configuration definitions in NetView, all
traps are sent to IBM Tivoli Enterprise Console as severity WARNING.
272 Event Management and Best Practices

Example 6-29 Relevant excerpts from netview.baroc

text omitted

TEC_CLASS: TEC_ITS_BASE ISA EVENT
 DEFINES {

The default severity assigned to the event.
severity: default = WARNING; # (from EVENT)

The default source assigned to the event.
source: default = 'ITS'; # (from EVENT)

The default subsource assigned to the event.
sub_source: default = 'N/A'; # (from EVENT)

The network node name associated with the event.
hostname: STRING (from EVENT)

The event textual description.
msg: STRING (from EVENT)

The NetView server hostname associated with the event.
nvhostname: STRING;

An unique network id to identify management sites (placeholder).
networkid: STRING;

This field always contains the node's IP address as viewed by NetView.
hostaddr: STRING;

 # Category
 category: TEC_ITS_CategoryE, default = "undefined";

 # Slots for default event (that is, the raw trap data)
 nv_enterprise: STRING;
 nv_generic: INT32;
 nv_specific: INT32;
 nv_var1: STRING;
 nv_var2: STRING;
 nv_var3: STRING;
 nv_var4: STRING;
 nv_var5: STRING;
 nv_var6: STRING;
 nv_var7: STRING;
 nv_var8: STRING;
 nv_var9: STRING;
 nv_var10: STRING;
 nv_var11: STRING;
 Chapter 6. Event management products and best practices 273

 nv_var12: STRING;
 nv_var13: STRING;
 nv_var14: STRING;
 nv_var15: STRING;

 };
END

text omitted

TEC_CLASS: TEC_ITS_L3_STATUS ISA TEC_ITS_BASE
 DEFINES {

The default severity assigned to the event.
severity: default = WARNING; # (from EVENT)

 };
END

text omitted

TEC_CLASS: TEC_ITS_ROUTER_STATUS ISA TEC_ITS_L3_STATUS
 DEFINES {

The status associated with the network router.
routerstatus: TEC_ITS_RouterStatusE,

default = UP;

The list of comma separated IP addresses of network interfaces
attached to this router.
iflist: LIST_OF STRING,

default = [];

 };
END

text omitted

The second method is to use the default setting from the EVENT definition.
When IBM Tivoli Enterprise Console receives an event that does not have a
severity associated with it, it first looks at the BAROC definition for the IBM Tivoli
Enterprise Console classes. Assuming that does not set a severity either, IBM
Tivoli Enterprise Console assigns the WARNING severity, as defined in the
EVENT definition in root.baroc file.

When processing a trap or event, it is possible to override its severity. Increasing
the severity of an event is known as escalation. In 6.5.2, “Escalating events with
NetView” on page 279, and “Escalating events with IBM Tivoli Enterprise
274 Event Management and Best Practices

Console event server” on page 285, we discuss how to configure these products
to perform escalation. Out of the box, NetView uses this method to modify the
default severity of WARNING for a subset of events.

Setting severity in trouble-ticketing system
How trouble-ticketing systems set the severity of tickets differs based on the tool.
Some may perform the mapping in the IBM Tivoli Enterprise Console event
server. Others do it in the trouble ticketing software itself.

In our lab environment, we implemented Peregrine’s trouble-ticketing system and
configured the hub IBM Tivoli Enterprise Console to open trouble tickets. The
severity initially assigned to a ticket is assigned by a script that maps severity to a
trouble ticket. This script is called by an IBM Tivoli Enterprise Console rule when
processing events for which a ticket is desired.

An excerpt of the script is included in Example 6-30. It maps severities to priority
codes as shown in Table 6-8.

Table 6-8 IBM Tivoli Enterprise Console severity and Peregrine priority codes

Example 6-30 Peregrine sceventin.sh script

#!/bin/sh
##
#
(C) COPYRIGHT Peregrine Systems, Inc. 1996, 1997
Portions (C) COPYRIGHT Tivoli Systems, Inc. 1996, 1997
All Rights Reserved
Licensed Material - Property of Peregrine Systems, Inc.
#
##
#
This shell script may be used to perform expressions prior to mapping
Currently it converts Tivoli severity to ServiceCenter priorityCode
and converts environment names to a standard across Tivoli releases
#

IBM Tivoli Enterprise Console severity Peregrine priority code

FATAL 1

CRITICAL 2

MINOR 3

WARNING 4

HARMLESS 4
 Chapter 6. Event management products and best practices 275

##

#
The standard directory and the /Plus override script
#
ETC=/etc/Tivoli

#
If this is NT, then etc is in a different location
#
if [x\"$OS\" = x\"Windows_NT\"] ; then
 ETC=$SystemRoot/system32/drivers/etc/Tivoli
fi

. $ETC/setup_env.sh

OSERV=`objcall 0.0.0 get_oserv`
export OSERV
INST_DIR=`objcall $OSERV query install_dir`
INST_DIR=`echo $INST_DIR | tr "\\\\\\\\" "/"`
export INST_DIR

PLUSDIR=$INST_DIR/generic_unix/TME/PLUS
LINKDIR=$PLUSDIR/LINK
PRODDIR=$PLUSDIR/SERVICECENTER
export PRODDIR

PATH=$LINKDIR:$PRODDIR:$PATH
export PATH

cd $PRODDIR

. ./scplusdirs.sh

EVENT_CLASS=${EVENT_CLASS:-$CLASS_NAME}
hostname=${hostname:-$HOSTNAME}
severity=${severity:-$SEVERITY}
msg=${msg:-$MSG}
source=${source:-$SOURCE}
sub_source=${sub_source:-$SUB_SOURCE}
origin=${origin:-$ORIGIN}
sub_origin=${sub_origin:-$SUB_ORIGIN}
date_event=${date_event:-$DATE_EVENT}
date_reception=${date_reception:-$DATE_RECEPTION}
server_handle=${server_handle:-$SRVR_HANDLE}
event_handle=${event_handle:-$HANDLE}
adapter_host=${adapter_host:-$ADAPTER_HOST}

the next two lines are a fix to a problem in
276 Event Management and Best Practices

tivoli that date_reception is presented in hex
rather than decimal

temp=`$SCPLUSHOME/bin/hextodec $date_reception`
date_reception=$temp

#end of fix. this code will be removed when pmr39520 is resolved

export EVENT_CLASS hostname severity msg source sub_source origin
export sub_origin date_event date_reception adapter_host event_handle
export server_handle

 if [$severity = "FATAL"]; then
 priorityCode="1"
 fi
 if [$severity = "CRITICAL"]; then
 priorityCode="2"
 fi
 if [$severity = "MINOR"]; then
 priorityCode="3"
 fi
 if [$severity = "WARNING"]; then
 priorityCode="4"
 fi
 if [$severity = "HARMLESS" -o $severity = "UNKNOWN"]; then
 priorityCode="4"
 fi

export priorityCode

$SCPLUSHOME/bin/sceventin >> $SCPLUSHOME/sctivoli.log

exit 0

Best practice for setting severities
With so many options available to set severities, the question becomes: “Which is
best?” When determining which method to use, keep in mind ease of use,
capabilities of the event management tools, and processing overhead.

We suggest as a best practice that, in general, you set severity as close to the
event source as possible.

Processing is required to format and generate the event at the source. The
cycles required to add one additional field to the format are generally negligible.

This method is also easiest to debug. Using the severity mapping defined earlier,
it is easy to determine what the severity of an event is along any path in the event
 Chapter 6. Event management products and best practices 277

processor hierarchy. Many actions, such as forwarding events, opening trouble
tickets, and escalating unhandled events, are predicated upon the event’s initial
severity. Therefore, debugging those actions becomes easier.

Obviously, if the event source is incapable of setting the event severity, it needs to
be performed by an event processor in the hierarchy. Also, if the effort required to
set the severity in the source is large, it may be easier to allow another event
processor to perform the function.

Notification chain
Another important event management policy deals with the chain of people to
notify when an event is not addressed in a predefined time frame. The policy
should include event types, time frames, and responsible personnel.

Here is a simple example of an escalation policy:

1. If an event is not acknowledged within half the time specified in the SLA to
resolve that condition, increase its severity to the next level and notify the
same people who were informed about the problem initially.

2. If an event is not resolved within the time specified in the SLA for that
condition, increase its severity to the next level and notify the same people
who were informed about the problem initially.

3. Repeat this procedure for each increased severity to which the event is
assigned.

4. When the event is escalated to the highest defined severity, notify
management of the team responsible for the event.

Using the example in “Severity mapping between tools” on page 263, assume a
node down trap is given an initial severity of minor based on the importance of
the server referenced. It is assigned to the server support staff responsible for
the machine. The SLA states that the problem should be resolved within four
hours.

If the event is not acknowledged within two hours, it is escalated to a CRITICAL
status. If it is acknowledged within two hours but not resolved within four hours,
the event is escalated to a CRITICAL status, and the server group is informed
about the increased importance of handling the problem. If two more hours pass
without a resolution, the problem is escalated to a FATAL severity, and the server
team and their management are informed.

See “Escalation using escalate.rls” on page 286 for an example of how you can
implement this using the supplied IBM Tivoli Enterprise Console rule.
278 Event Management and Best Practices

6.5.2 Escalating events with NetView
Best practices dictate that you should perform escalation using IBM Tivoli
Enterprise Console for worsening problems or using the trouble-ticketing system
for problems that have not been addressed within a predefined time period.
However, in environments where NetView is the only monitoring tool, it may be
desirable to have it perform trap escalation. The NetView rule set is used to
perform this function.

Override ruleset node
One of the nodes available to the NetView ruleset editor is Override. This
provides the capability to change the object status or severity assigned to a
specific event and update applications that are registered to receive the output of
the rule set. Typically, the Event Display application is registered to receive the
output.

Figure 6-35 on page 283 contains the following relevant fields:

� Status: Specifies the new object status to be associated with this event. You
can click No override if you do not want to change the status. The Event
Display application updates the object status to this value.

� Severity: Specifies the new severity level to be used for this event. You can
click No override if you do not want to change the severity level. A trap that is
processed through this node is marked so that it is not handled by the default
processing action specified for this rule.

Business impact escalation rule
An example of business impact escalation is increasing the severity of traps
based on device type. A rule set may be coded in NetView that uses a Query
Database Field to determine the device type, and then uses an override,
depending on the type.

NetView issues Node Down traps when switches and servers fail. By default, the
traps are assigned a Minor severity. Assume that an organization decides to treat
switch failures as more critical than other node outages. The rule set shown in
Figure 6-31 accomplishes this.
 Chapter 6. Event management products and best practices 279

Figure 6-31 Escalation rule set in NetView

For the event stream to pass events, by default, follow these steps:

1. Right-click the Event Stream node and select Edit.

2. In the Ruleset window (Figure 6-32), click Pass and then click OK. This
ensures that traps, other than the one in question, are passed by default.

Figure 6-32 Event Stream default action

3. Add the Trap Settings node to check for the node down trap.

a. Right-click the Trap Settings node and select Edit.

b. In the Trap Settings window (Figure 6-33), choose the enterprise and trap,
and click OK.

Upon matching, it sends the trap onto the Query Database Field. Note that traps
that do not match are merely forwarded, as set by the default action for the event
280 Event Management and Best Practices

stream. The Query Database Field checks to see if the isBridge field is set for the
object. Switches have this field set.

Figure 6-33 Trap setting for escalating a Node Down trap
 Chapter 6. Event management products and best practices 281

Again, edit the node. Right-click the node and select Edit. As shown in the Query
Database Field window (Figure 6-34), for Field Name, click the Select button and
select isBridge. The Object ID Source is set to 2. This indicates that the query
should be performed for the object referenced in variable binding 2 (host name to
which the trap applies) from the trap. See Appendix A in Tivoli NetView for UNIX
Administrator’s Guide, Version 7.1, SC31-8892, for a list of the variables passed
in NetView internal traps.

Figure 6-34 Query Database Field settings for escalation
282 Event Management and Best Practices

The Override node is edited and the severity for the trap is set to Major, as shown
in Figure 6-35. No change was made to the object status.

Figure 6-35 Override node used in escalation rule

To test the rule set, we created a dynamic event display window, as shown in
Figure 6-36, and selected the escalation.rs rule for it. See Chapter 4, “Using
Dynamic and Static Work Spaces”, in Tivoli NetView for UNIX User's Guide for
Beginners, Version 7.1, SC31-8891, for information about how to create dynamic
work spaces.

Figure 6-36 Dynamic filtered workspace for escalation rule set
 Chapter 6. Event management products and best practices 283

The event now displays with Major severity, as shown in Figure 6-37.

Figure 6-37 Node down with escalated (major) severity

Worsening condition escalation
NetView can hold traps for a specified time to see if another event is received. It
can also resolve an event upon receipt of another.

However, it is incapable of reprocessing a trap that has already been processed.
Therefore, there is currently no way for NetView to escalate the severity of a trap
to indicate a worsening condition.

State correlation
The IBM Tivoli Enterprise Console state correlation gateway can handle
escalating or worsening events that pertain only to criteria matching the XML rule
and in the specified time period contained in the rule. This rule, or these rules,
can specify a time period to wait for other events. From there, it can escalate the
severity of the event before it is sent to the IBM Tivoli Enterprise Console event
server (if another event is received that matches this define criteria). This is a one
time only operation.

After the correlated event is sent to the IBM Tivoli Enterprise Console event
server, the rule resets itself, and waits for another event, which matches its
criteria. If the next event, which matches the criteria, represents a worsening
condition, it is treated as a new event, and the correlation in the rule starts over.
284 Event Management and Best Practices

We recommend that you use both the state correlation engine on the gateway
and the IBM Tivoli Enterprise Console event server rule engine in conjunction
with each other to ensure proper escalation of worsening conditions.

Escalating events with IBM Tivoli Enterprise Console event
server
The severity of events can be escalated using IBM Tivoli Enterprise Console
rules. This section reviews several rules that are supplied with IBM Tivoli
Enterprise Console and NetView. It explains how they are used to escalate the
severity of events. Plus it describes the predicates that are available in IBM Tivoli
Enterprise Console to code your own escalation rules.

Escalation in netview.rls
The default installation for NetView configures event forwarding, so that all traps
sent to IBM Tivoli Enterprise Console from NetView have a WARNING severity.
The rules in the netview.rls rule set adjust the severity of the events according to
Table 6-9.

Table 6-9 Rules from the netview.rls rule set

Rule Function

router_raise Raises the severity of router down events to CRITICAL.

interface_lower Lowers the severity of interface up events to HARMLESS.

isdn_lower Lowers the severity of ISDN active events to HARMLESS.

snmp_lower Lowers the severity of SNMP collect re-arm events to
HARMLESS.

node_lower Lowers the severity of node up events to HARMLESS.

router_lower Lowers the severity of router up events to HARMLESS.

subnet_lower Lowers the severity of subnet reachable events to
HARMLESS.

interface_added_lower Lowers the severity of interface added events to
HARMLESS.

interface_managed_lower Lowers the severity of interface managed events to
HARMLESS.

node_added_lower Lowers the severity of node added events to HARMLESS.

node_managed_lower Lowers the severity of node managed events to
HARMLESS.
 Chapter 6. Event management products and best practices 285

While most of the rules set severity HARMLESS for clearing events, the
router_raise rule does a business impact escalation based on device type. Since
the coders deemed the routers as more important network components, their
failures were escalated to a severity of CRITICAL.

In addition, netview.rls defines a few predicates that are used in subsequent rules
within the rule set, as shown in Table 6-10.

Table 6-10 netview.rls predicates

Escalation using escalate.rls
The escalation rule set contains rules that can increase the severity of events
that are not handled within a specified period of time. When used along with the
notification rule set, the escalation rules also trigger automatic e-mail or pager
notification of event escalation.

sa_status_lower Lowers the severity of SA events with sastatus within ifUp,
nodeUp and nodeResolved to HARMLESS.

l2_status_lower Lowers the severity of Layer 2 node status up to
HARMLESS.

Note: We highly recommend that you set event severity in NetView using one
of the approaches outlined in “Setting severities” on page 264 and disable the
Severity Adjustment section of netview.rls. By sending the event with the
desired severity, processing overhead is reduced in the IBM Tivoli Enterprise
Console event server. That is several rules that must be checked for each
network event are eliminated. Little processing is added to NetView using this
approach. It already formats each event to send. The addition of one more slot
variable in the event is negligible.

Predicate Purpose

svc_impact_severity_escalation Changes cause an event to fatal severity if service
impact was reported by IBM Tivoli Monitoring.
Otherwise set severity to critical unless it is already
bumped to fatal by an earlier event. Returns the new
severity in _result_sev.

higher_severity Compares two severities and succeeds if the first is
higher than the second.

severity_propagation If the effectSeverity is higher than the causeSeverity,
then it sets the severity of the cause event to the
effect’s severity.

Rule Function
286 Event Management and Best Practices

The escalation rule set is not activated in the default rule base. To use this rule
set, place it listed near the end of the rule_sets file (following the correlation rule
set, if that rule set is active) and activate it. In addition, the notification rule set
(notify.rls) provides required support for e-mail notification. The notify.rls rule
must be active for the escalation rules to trigger e-mail notification. See “Rule set
sequencing and dependencies” on page 238 for more information about the
required order for these rules.

The escalation rule set is preconfigured and ready to use. By default, this rule set
is configured only to trigger e-mail or pager notification for FATAL events that
require escalation. This function requires the notification rule set (notify.rls) also
to be configured and active. Severities are not increased because FATAL events
are already at their maximum severity. To escalate events with severities other
than FATAL, customize the rule set by modifying the statements in the
escalate_parameters action of the escalate_configure rule.

The following options are configurable:

� Administrator name: This is the administrator name to use when changing
event severity. The default administrator name is escalate.rls and should be
sufficient for most organizations. To change the administrator name, modify
the statement that sets the _escalate_admin parameter as follows:

_escalate_admin = admin,

Here admin is the administrator name to use, enclosed in single quotation
marks.

� Escalation check frequency: This is the frequency at which the escalation
rules check the event cache for events that need to be escalated. The default
frequency is every 60 seconds. To change this frequency, modify the
statement that sets the _escalate_timer parameter as follows:

_escalate_timer = seconds,

Here, seconds is the length of time that you want to elapse between
escalation checks.

� Latency: This indicates how far back in the event cache you want to search
for events to escalate. The default is 30 days. To change the latency, modify
the statement that sets the _esc_search_time parameter as follows:

_escalate_search_time = seconds,

In this case, seconds is the number of seconds representing how far
backward to search the cache for events.

� Housekeeping frequency: This specifies how frequently to remove
references to escalated events that are no longer in the event cache. When
an event is escalated, the rules assert an escalation fact in the knowledge
base. The housekeeping rule periodically checks to ensure that each
 Chapter 6. Event management products and best practices 287

escalation fact refers to an event that is still in the event cache. When an event
is removed from the cache because of its age or because of space limitations,
the housekeeping rule removes the associated escalation fact from the
knowledge base. The default housekeeping frequency is 86400 seconds (24
hours). To change this frequency, modify the statement that sets the
_esc_housekeeping_timer parameter as follows:

_esc_housekeeping_timer = seconds,

In this example, seconds is the length of time between housekeeping checks.

� Whether to increase event severity: Event severity may be automatically
increased when an event is to be escalated. If this option is disabled (false),
the escalation rules do not change event severity, but still trigger notification
by the notification rules (if notify.rls is active). By default, this parameter is set
to true. The syntax of the statement is:

_escalate_increase_severity = flag,

Here, flag represents either true or false.

� Classes to escalate: This indicates the IBM Tivoli Enterprise Console
classes of events to be escalated. Code is supplied to list TEC_Error and
TEC_DB events as those to be escalated. Uncomment this code and modify
the _escalate_class_list parameter with the desired event classes:

rerecord(escalate_class_list,[
ev_classes
]
)

ev_classes is a list of event classes, each enclosed in single quotation marks,
separated by commas. To apply the escalation rules to all classes, comment
out this line and leave _escalate_class_list undefined.

� Escalation time limits: Amount of time events should be allowed to remain in
ACK or OPEN status at each level of severity. For each level of severity at
which you want escalation to take place, include the following statement:

assert(escalate_severity_timers(severity, open_ack_time, ack_close_time)),

Here severity is the severity level enclosed in single quotation marks.
open_ack_time is the number of seconds to allow an event to remain open
before escalation. And ack_close_time is the number of seconds to allow an
event to remain acknowledged before escalation. A value of zero for
open_ack_time or ack_close_time specifies no time limit. By default, the only
severity level for which escalation time limits are defined is FATAL.

The following statement specifies that FATAL events are allowed to remain in
OPEN state for 12 hours and in ACK status indefinitely. To change these time
limits, modify the statement accordingly. To specify escalation for additional
288 Event Management and Best Practices

severity levels, uncomment the corresponding statements and modify the
time limits if necessary.

assert(escalate_severity_timers(’FATAL’, 43200, 0),

There are several rules within the rule set as summarized in Table 6-11.

Table 6-11 notify.rls rules

Rule Purpose

escalate_configure The settings in this rule govern the behavior of the escalation rules. When
the event server initializes, it sends a TEC_Start event, which triggers this
rule to load the settings into IBM Tivoli Enterprise Console’s knowledge
base. Customize this rule to configure the behavior of the escalation rules.

check_cache_for_escalation The check_cache_for_escalation rule runs upon receipt of the
Escalate_event event, which is periodically generated by the
escalate_old_events timer rule. When Escalate_event is received, the rule
searches the event cache for any events that have remained in ACK or
OPEN status longer than the allowed period of time. If a class list is defined
using the escalate_class_list configuration parameter, this search is
limited to the classes specified in that list.

For each matching event, the rule first checks the knowledge base for a
corresponding escalation fact, which indicates that the event is already
escalated. If no escalation fact is found, a timer is set with a duration of one
second to trigger immediate escalation by the escalate_specific_event
timer rule. An escalation fact is then asserted in the knowledge base for
the escalated event, and the received Escalate_event event is dropped.

escalate_old_events The escalate_old_events timer rule periodically generates Escalate_event
events, which trigger the check_cache_for_escalation rule. The rule then
resets the Escalate timer to trigger the next check. The duration of this
timer is determined by the _escalate_timer parameter in the
escalate_parameters configuration rule.
 Chapter 6. Event management products and best practices 289

For the purposes of our testing, we set the following configuration parameters to
match our escalation policy defined in “Notification chain” on page 278. Since the
policy applies to all events, we let the rule default to every event. It does not make
sense to escalate HARMLESS events. If an event requires action, it should be
supplied a different severity. Therefore, we left that configuration parameter
unset.

� _escalate_increase_severity = true
� assert(escalate_severity_timers('FATAL', 1800, 3600))
� assert(escalate_severity_timers('CRITICAL', 3600, 7200))
� assert(escalate_severity_timers('MINOR', 7200, 14400))
� assert(escalate_severity_timers('WARNING', 43200, 86400))
� assert(escalate_severity_timers('UNKNOWN', 86400, 172800))

By default, each severity is escalated as follows:

FATAL remains FATAL
CRITICAL becomes FATAL

MINOR becomes CRITICAL

escalate_specific_event The escalate_specific_event rule handles escalation. This rule runs upon
expiration of any Escalate_open or Escalate_ack timer. This timer is set by
the check_cache_for_escalation rule when an event is found that has
remained in ACK or OPEN status too long. When the timer expires, the
escalate_specific_event rule first checks to see if the event has been taken
out of ACK or OPEN status since the timer was set. If this has happened,
the rule retracts the associated escalation fact and then exits the rule.
If the event is still in ACK or OPEN status, the rule takes one of the
following actions:

� If the _escalate_increase_severity parameter is set to true, the
severity of the event increases, unless it is already FATAL, in which
case it is reset to FATAL.

� If the _escalate_increase_severity parameter is set to false, the
severity of the event is reset to its current value.

In either case, because the severity is reset, the change rules in the
notification rule set are triggered, if that rule set is active.

escalate_housekeeping The escalate_housekeeping rule runs upon expiration of the
Escalate_housekeeping timer, which is set by the configuration rule based
upon the duration specified by the _esc_housekeeping_timer parameter.
When the timer expires, the escalate_housekeeping rule checks the event
cache for each event for which an escalation fact exists in the knowledge
base. If any escalated events are no longer in the event cache, the rule
retracts the corresponding escalation facts from the knowledge base. It
then resets the timer.

Rule Purpose
290 Event Management and Best Practices

WARNING becomes MINOR
HARMLESS becomes WARNING

UNKNOWN becomes HARMLESS

We commented out the escalation of HARMLESS and modified UNKNOWN to
become WARNING. Example 6-31 shows the relevant lines from escalate.rls.

Example 6-31 Severity escalation definitions from escalate.rls

assert(next_level_of_severity('FATAL','FATAL')),
assert(next_level_of_severity('CRITICAL','FATAL')),
assert(next_level_of_severity('MINOR','CRITICAL')),
assert(next_level_of_severity('WARNING', 'MINOR')),

% assert(next_level_of_severity('HARMLESS','WARNING')),
assert(next_level_of_severity('UNKNOWN','WARNING')),

Then we activated the rule set by issuing the following command:

wrb -imptgtrule escalate -before notify EventServer genericTip006rRb

This places the rule toward the end of the rulebase, before the notify, as
recommended. Then, we recompiled, reloaded, and recycled the rule base.

Next, we tested the rule by generating a CRITICAL event and not acknowledging
it within the acknowledge time frame. As expected, the event becomes FATAL, as
indicated by the wtdumper output.

We ran a second test, generating a MINOR event and not acknowledging it within
the acknowledge time frame. As expected, it escalates to CRITICAL and then to
FATAL.

In environments where the IBM Tivoli Enterprise Console is used for
management, the escalate.rls rule works well to provide a best practices method
of escalating events that are not handled. It can also be effectively used to
escalate the severity of trouble tickets when the trouble ticketing interface
supports updating tickets for event changes.

Escalation using event_thresholds.rls
The main purpose of this rule is to perform throttling. This threshold capability of
the rule is discussed in 6.2.2, “IBM Tivoli Enterprise Console duplicate detection
and throttling” on page 212. A side function of the rule is to perform worsening
condition escalation.

As supplied, the rule determines the number of events of the same severity
received for the same host. When the number exceeds a specified threshold, it
 Chapter 6. Event management products and best practices 291

upgrades the status of the event that passed the threshold according to
Table 6-12.

Table 6-12 Event escalation table

Therefore, the eleventh event of severity MINOR within a minute is upgraded to
CRITICAL, and its repeat count set to 10. This escalation takes place once
during a five minute interval.

To test the rule, we wrote a script to generate a number of events of MINOR
severity in succession. The wtdumper output (Example 6-32) shows the eleventh
event. As expected, it has been upgraded to CRITICAL severity, and repeat
count was incremented to 10.

Example 6-32 The wtdumper output showing escalation based on threshold

TEC_Error;
 msg='Testing threshold rule';
 msg_catalog='';
 status=OPEN;
 administrator='';
 acl=[admin];

severity=CRITICAL;
 date='Oct 14 15:12:34 2003';
 duration=0;
 msg='Testing threshold rule';
 msg_catalog='';
 msg_index=0;
 num_actions=0;
 credibility=1;
 repeat_count=10;
 cause_date_reception=0;
 cause_event_handle=0;
END

Next, we tested by generating 13 CRITICAL events in succession. We expected
the sixth event to be escalated to severity FATAL and have a repeat count of five.
This worked as designed. The remaining events within the five minute time

Severity Threshold New severity Frequency

MINOR 10 events within 60
seconds

CRITICAL Once every 300 seconds
(5 minutes)

CRITICAL 5 events within 60
seconds

FATAL Once every 300 seconds
(5 minutes)
292 Event Management and Best Practices

interval were unaffected. After five minutes expired, we regenerated the thirteen
events, and again, the sixth event was again the only one modified.

The event_threshold.rls rule set is not activate upon installation. Before
activating, customize the rule to set meaningful criteria and thresholds. As
supplied, the rule is an example of how thresholds and escalation can be
performed using IBM Tivoli Enterprise Console rules.

To change the threshold values, modify the create_threshold predicate for the
appropriate severity events. Example 6-33 shows the section of the rule set in
which the processing values are set for CRITICAL events.

Example 6-33 Excerpt from event_threshold.rls: Set values for CRITICAL events

create_threshold(critical_threshold, % Name of threshold
 all_critical_search, % Cache Search to use

60, % Reception period (seconds)
5, % Event threshold count

300 % Maximum reporting frequency
),

As with any IBM Tivoli Enterprise Console rule, keep performance in mind when
modifying and using this rule. In general, scanning IBM Tivoli Enterprise Console
cache for all instances of events that meet a given criteria can be processing
intensive.

Escalating severity using IBM Tivoli Enterprise Console rules
There are several ways to update the severity of an event through IBM Tivoli
Enterprise Console rules. A main difference in several of the methods is whether
change rules are triggered by the predicate.

� Use set_event_severity.

This predicate sets the severity of the specified event by directly modifying the
value of the severity attribute without issuing an internal change request that
goes through the change rules. To trigger change rules, call the
place_change_request predicate following the set_event_severity call, or use
change_event_severity predicate. The syntax is:

set_event_severity(_event, new_severity)

Here, _event is a pointer to the event for which the severity is to be set and
new_severity is the new event severity.

The following example shows predicate usage:

set_event_severity(_event, ’CRITICAL’)
 Chapter 6. Event management products and best practices 293

� Use change_event_severity.

This predicate places an internal request to change the severity of the
specified event. This causes the change rules to evaluate the requested
change before it is actually applied. The syntax is:

change_event_severity(_event, new_severity)

Here, _event is a pointer to the event for which the severity is to be set and
new_severity is the new event severity.

The following example shows how to change the severity attribute of the event
under analysis to CRITICAL:

change_event_severity(_event, ’CRITICAL’)

� Use bo_set_slotval.

This method updates an event attribute value in the specified event with a
new value. Unlike the place_change_request predicate, change rules are not
evaluated in response to this action. Also, unlike place_change_request,
bo_set_slotval does not automatically update the attribute value in the event
database or the event consoles. Often these are updated automatically as
part of other rule base activity, such as when the event is initially processed or
during a change rule on that event. However, if you are using bo_set_slotval
from a change rule on a different event than the current event, the update
does not happen. To ensure that the attribute is updated everywhere, follow
this up with a call to the re_mark_as_modified predicate.

The syntax is:

bo_set_slotval(_event, _attribute, _value)

Here, _attribute is the attribute to update, _event is a pointer to the pointer to
the event to modify, and _value is the new value to assign the attribute.

The following example shows how to update the severity attribute of the event
under analysis to the value FATAL:

bo_set_slotval(_event, severity, ’FATAL’)

� Use place_change_request.

This method requests a change to an attribute value. Change rules are
triggered in response to the requested change. If there are no change rules in
the rule base, the bo_set_slotval predicate is a more efficient choice to
change an attribute value, because processing resources are not used to
check the rule base for change rules. The syntax is:

place_change_request(_event, _attributename, _newattributevalue)

Here, _attributename is the attribute to change, _event is a pointer to the
event containing the attribute to change, and _newattributevalue is the value
to assign the updated attribute.
294 Event Management and Best Practices

The following example requests to change the severity attribute to a value of
FATAL:

place_change_request(_event, severity, FATAL)

� Execute the Change_Severity task supplied by IBM Tivoli Enterprise Console.

The T/EC Tasks task library in the IBM Tivoli Enterprise Console Region in
the Tivoli Management Region contains a Change_Severity task.

� When correlating an escalation sequence, keep the first event, and escalate
its severity, adding information to it if necessary. You must keep the first
because it was reported, and event synchronization from trouble-ticketing
system looks for it to close when trouble ticket is closed. It also keeps record
of time failure first occurred this way.

– An implication is that IBM Tivoli Enterprise Console event must record the
trouble ticket number in a slot.

– You must discuss ways to update one event with information from another.

� Use timers to escalate in IBM Tivoli Enterprise Console. This is bad because
there is a limit on timers. We recommend that you escalate through the
trouble-ticketing system.

6.6 Event synchronization
Event synchronization is an important component of event management,
especially when working in a centralized event management world. Without event
synchronization, you or your colleagues can be working on problems which are
already solved, or you may miss problems that have escalated. This section
discusses how the correlating IBM products handle event synchronization.

6.6.1 NetView and IBM Tivoli Enterprise Console
NetView and IBM Tivoli Enterprise Console handle event synchronization via
rules. These rules are:

� netview.rls: Keeps IBM Tivoli Enterprise Console and NetView synchronized
downward.

NetView.rls is the main rule that handles all communication with NetView. It
mainly goes through the events that NetView sends and correlates them with
events that have already passed through. It also sends traps back to NetView
when an event is updated at IBM Tivoli Enterprise Console.

For example, if a router goes down and NetView picks it up, it sends a router
down event to IBM Tivoli Enterprise Console. When that router comes back
 Chapter 6. Event management products and best practices 295

up, NetView sends a router up event to IBM Tivoli Enterprise Console, which
netview.rls correlates with the original router down and closes it.

If you get the router down event in IBM Tivoli Enterprise Console from
NetView and then you acknowledge that event in IBM Tivoli Enterprise
Console, IBM Tivoli Enterprise Console sends a trap back to NetView so that
router’s icon is displayed as acknowledged on the NetView console.

If you close that router on the IBM Tivoli Enterprise Console, IBM Tivoli
Enterprise Console then sends a trap back to NetView. When NetView
receives this trap, it polls the affected device to see if it is still up. However
NetView does not send a new event back to IBM Tivoli Enterprise Console
because of its state change nature. The main purpose of the netview.rls rule
is for synchronization between IBM Tivoli Enterprise Console and the
NetView console.

Upward synchronization is not as vital. NetView doesn’t perform duplicate
detection, so it doesn’t need to update slot in IBM Tivoli Enterprise Console.
NetView typically does state change monitoring, which necessitates sending
a new event.

� Upward synchronization done by NetView sending an event of the same
class, with status=close.

6.6.2 IBM Tivoli Enterprise Console gateway and IBM Tivoli
Enterprise Console

IBM Tivoli Enterprise Console gateway and IBM Tivoli Enterprise Console event
server event synchronization is handled automatically by the IBM Tivoli
Enterprise Console product set. Event synchronization only occurs from the IBM
Tivoli Enterprise Console gateway to the IBM Tivoli Enterprise Console event
server. When state correlation is enabled on the IBM Tivoli Enterprise Console
gateway, and the XML rule is in place, depending on how you wrote the XML rule,
correlation occurs on the gateway. It is based on events that match your defined
criteria and events received within a defined timing interval which match that
same criteria. The events are correlated as you defined them. Then a summary
event is sent to the defined IBM Tivoli Enterprise Console event server.

There is no data flow from the IBM Tivoli Enterprise Console event server to the
IBM Tivoli Enterprise Console gateways. This is simply because the IBM Tivoli
Enterprise Console state correlation gateways handle all event correlation for
their managed event sources before sending data to the IBM Tivoli Enterprise
Console event server. There is no need for downstream data from the IBM Tivoli
Enterprise Console event server to the IBM Tivoli Enterprise Console gateways.
Once state correlation takes place at the gateway, all subsequent events are
handled independently. If you set a time interval for a specific correlation, and
296 Event Management and Best Practices

that time interval is reached, it is reset and starts when the next matched event is
received.

6.6.3 Multiple IBM Tivoli Enterprise Console servers
This section lists a few examples of when event synchronization is needed
between IBM Tivoli Enterprise Console event server.

CLOSED event synchronization from a low-level IBM Tivoli
Enterprise Console event server
One example of event synchronization between IBM Tivoli Enterprise Console
servers is when you close an event at a lower level IBM Tivoli Enterprise Console
event server. Automatic event synchronization is required to escalate this
situation to the upper level IBM Tivoli Enterprise Console event server.

Synchronizing events between IBM Tivoli Enterprise Console servers can
sometimes be a challenging task. You must make sure that, whenever you close
an event on one server, that event is closed on all servers. This helps to avoid
errors when correlating this event on all levels of your IBM Tivoli Enterprise
Console servers.

IBM Tivoli Enterprise Console 3.9 comes with an out-of-the box rule that helps
you forward an event from one IBM Tivoli Enterprise Console event server to
another. This rule is called forwarding.rls and is not activated by default. A little
customization of this rule is necessary for true bi-directional synchronization
between your IBM Tivoli Enterprise Console servers. You also need to tell this
rule what kind of events you want to forward.

You may be dealing with a hierarchy of IBM Tivoli Enterprise Console servers. In
this case, a low-level IBM Tivoli Enterprise Console event server does most of
your correlating. Then any duplicate detection and filtering that are not caught at
the gateway are forwarded along with any remaining events to a high-level IBM
Tivoli Enterprise Console event server. This high-level IBM Tivoli Enterprise
Console event server is responsible for correlating all events from all sources.

Figure 6-38 shows the relationship between the event sources and the different
levels of IBM Tivoli Enterprise Console servers. The lines that connect the two
IBM Tivoli Enterprise Console servers, NetView and the trouble-ticketing system,
are bidirectional.
 Chapter 6. Event management products and best practices 297

Figure 6-38 Relationship between IBM Tivoli Enterprise Console servers in a hierarchy

Now let’s look at the forwarding.rls rule. The default action part of the
forwarding.rls rule does not provide any rules that synchronize a closed event
with other IBM Tivoli Enterprise Console servers. For our purposes, we modify
this rule so that events are also forwarded to the other IBM Tivoli Enterprise
Console servers when an event is closed.

Example 6-34 shows the first part of the forwarding.rls rule. This is the reception
action section of the forwarding_configure rule.

Example 6-34 Reception action of the forwarding.rls rule

create_event_criteria(ups_fatal_forwarding, % event criteria name
 'upsDischarged', % class to filter on
 yes, % fire on non-leaf only (yes/no)
 [['severity', within, ['FATAL']] % criteria based on slots
]

Tier 1
Entry Tier

Tier 2

Event Sources

Trouble Ticketing
System

High Level TEC Server

Lower Level TEC server

NetView
298 Event Management and Best Practices

),

 create_event_criteria(temp_alarm_forwarding, % event criteria name
 'chassisAlarmOffTempAlarm',% class to filter on
 yes, % fire on non-leaf only (yes/no)
 [['severity', within, ['WARNING','FATAL']] % criteria based
on slots
]
),

This is the section of this rule where you define the type of events to forward. You
must also set the event server to where you will forward these events in the
tec_forward.conf file that is located in the TEC_RULES directory. See 6.4.3,
“Rules” on page 251, for more information about how you can place this
information into a fact file.

There are two examples or forwarding rules by default: one for
ups_fatal_forwarding and one for create_event_criteria. We use a test event
class for our testing. We modify this section of the rule as outlined in
Example 6-35.

Example 6-35 Test event class within the forwarding.rls rule

create_event_criteria(test_tec_event_forwarding,
 'TEC_Test_Event',
 yes,
 [['severity', within, ['WARNING','FATAL']]
]
),

We use the TEC_Test_Event class for this example. We forward only it if the
severity is WARNING or FATAL. Example 6-36 shows the section of the rule
where the actual forwarding takes place.

Example 6-36 Forwarding section of the forwarding.rls rule

rule: forwarding_events:
(
 event: _event of_class _class
 where [
],

 reception_action: forward_event:
 (
 Chapter 6. Event management products and best practices 299

 % check if event matches any forwarding criteria
 recorded(event_forwarding_criteria, _criteria),
 check_event_criteria(_criteria, any, _event),

 % if found, forward it
 forward_event(_event)
)
).

This rule works well for forwarding any event that we need. However, how do we
handle a situation where we close an event and let the other event servers know
that the event is closed? We do this by adding a change rule, as shown in
Example 6-37.

Example 6-37 Change rule for forwarding.rls

change_rule: 'cause_closed_in_TEC':
(

 event: _event of_class _class
 where[
],
 attribute: status set_to 'CLOSED',
 action: forward_to_other_tec:(
 recorded(event_forwarding_criteria, _criteria),
 check_event_criteria(_criteria, any, _event),
 forward_event(_event)
)
).

In this rule, we check any event that closes against our event criteria that we set.
If an event’s status changes to Closed and it matches the criteria, it forwards that
event in a Closed status to the other IBM Tivoli Enterprise Console event server.
After the other IBM Tivoli Enterprise Console event server receives this event, it
correlates it with the original event and then closes that it.

Synchronizing a CLOSED event from a high-level IBM Tivoli
Enterprise Console event server
We also need to perform some customizing to ensure that any event that is
closed on the higher level IBM Tivoli Enterprise Console is also closed on the
lower level IBM Tivoli Enterprise Console. This is the opposite direction of what
we discussed previously.
300 Event Management and Best Practices

To do this, we use the forwarding.rls rule set and modify it for our purposes. We
do not want to send any events other than update events to the lower level IBM
Tivoli Enterprise Console from the higher one. Therefore, we add only our
change rule to forwarding.rls and delete the rule for forwarding normal open
events.

Example 6-38 shows how our rule should look for adding event synchronization
from a high-level IBM Tivoli Enterprise Console event server.

Example 6-38 Rule for adding event synchronization

rule: forwarding_configure:
(
 event: _event of_class 'TEC_Start'
 where [
],

 reception_action: forwarding_parameters:
 (
create_event_criteria(test_tec_event_forwarding,
 'TEC_Test_Event',
 yes,
 [['severity', within, ['WARNING','FATAL']]
]
),
 record(event_forwarding_criteria, [test_tec_event_forwarding
])
)
).

change_rule: 'cause_closed_in_TEC':
(

 event: _event of_class _class
 where[
],
 attribute: status set_to 'CLOSED',
 action: forward_to_other_tec:(
 recorded(event_forwarding_criteria, _criteria),
 check_event_criteria(_criteria, any, _event),
 forward_event(_event)

Note: Remember to change the tec_forward.conf file to point to the lower level
IBM Tivoli Enterprise Console. Also change the event criteria at the top of
forwarding.rls to match for the type of events with which you are working.
 Chapter 6. Event management products and best practices 301

)

).

This is similar to our rule on the lower level IBM Tivoli Enterprise Console event
server. The exception is that we do not have the rule to forward events. We are
only concerned here with notifying the lower level IBM Tivoli Enterprise Console
when an event is closed on the higher level IBM Tivoli Enterprise Console.

6.6.4 IBM Tivoli Enterprise Console and trouble ticketing
Another type of situation where you want to consider synchronization is for
integration of an IBM Tivoli Enterprise Console and a trouble-ticketing system.
IBM Tivoli Enterprise Console provides an out-of-the-box troubleticket.rls rule to
help you do this. As with all of the out-of-the-box rules, some customization is
necessary. We look at this rule and discuss the integration of this rule with
Peregrine ServiceCenter.

The troubleticket.rls rule is provided as an example for integration with a
trouble-ticketing system. It gives an example of how you can integrate your
trouble-ticketing system with IBM Tivoli Enterprise Console. This is only an
example.

Most trouble-ticketing systems have their own method of integration. Keep in
mind that you can still use some of the rules from troubleticket.rls if necessary.
We investigate the troubleticket.rls rule to show an example of how you can
perform trouble-ticketing integration. We explain how to customize it to generate
a log file with the information that may go to a trouble-ticketing system.

To start customizing the troubleticket.rls, you must specify on which events you
want to open a ticket as shown in Example 6-39.

Example 6-39 troubleticket.rls event class match

% **
 % USER MUST ASSERT ALL RELEVANT CRITERIA HERE
 % **
 assert_tt('TEC_Error','FATAL',_)
),

With this configuration, we sending all Fatal events with the class TEC_Error. We
want to change this for our example to send Fatal events from the IBM Tivoli
Enterprise Console class TEC_Test_Event from the host rduatc01. We modify
this section as shown in Example 6-40.
302 Event Management and Best Practices

Example 6-40 troubleticket.rls showing TEC_Test_Event class match

% **
 % USER MUST ASSERT ALL RELEVANT CRITERIA HERE
 % **
 assert_tt('TEC_Test_Event','FATAL',’rduatc02’)
),

The troubleticket.rls rule calls a couple of classes that are not defined in the rule
base. You must define the following classes with the values shown in
Example 6-41 before the rule can work.

Example 6-41 Class definitions for the troubleticket.rls rule

TEC_CLASS:
 TT_Open_Event ISA EVENT
 DEFINES {

severity: default = MINOR;
 ttserver_handle: STRING;
 ttdate_reception: STRING;
 ttevent_handle: STRING;
 };
END

TEC_CLASS:
 TT_Update_Event ISA EVENT
 DEFINES {

severity: default = MINOR;
 ttserver_handle: STRING;
 ttdate_reception: STRING;
 ttevent_handle: STRING;
 slotvector: STRING;
 };
END

TEC_CLASS:
 TT_Close_Event ISA EVENT
 DEFINES {

severity: default = MINOR;
 ttserver_handle: STRING;
 ttdate_reception: STRING;
 ttevent_handle: STRING;
 };
END
 Chapter 6. Event management products and best practices 303

After we compile this rule, we run a script entitled TroubleTicket.sh based on the
criteria we defined. Because we currently do not have an actual integration with a
trouble-ticketing system, TroubleTicket.sh outputs to a file in /tmp.
TroubleTicket.sh is located in the $BINDIR/TME/TEC directory of your IBM Tivoli
Enterprise Console event server.

After we receive an event with a matching event class, we should receive a file in
/tmp. The file starts with tt, followed by a twelve-digit number, which is the trouble
ticket ID, suffixed with the .log extension. The file that is generated in our
environment is called tt111065704782.log. Example 6-42 shows an example of
this file. This contents of the file are quite large because it includes all of the
information that you may need to pass to a trouble-ticketing system.

Example 6-42 Trouble ticketing log file from IBM Tivoli Enterprise Console

Trouble Ticket ID:
tt111065704782
A trouble ticket has been opened on reception of this event from host rduatc02
The event has the following attributes:
BIM_PROLOG_DIR=/usr/local/Tivoli/bin/aix4-r1/TME/TEC
BUILD_INTERP=aix4-r1
DBDIR=/usr/local/Tivoli/db/rduatc02.db
DEST=/tmp/tt111065704782.log
DEST_DIR=/tmp
ERRNO=25
EVENT_CLASS=TEC_Test_Event
FCEDIT=/usr/bin/ed
IFS='
'
INTERP=aix4-r1
LANG=en_US
LIBPATH=/usr/local/Tivoli/lib/aix4-r1:/usr/lib:/opt/inst/iblib/aix4-r1:/usr/lib
LINENO=122
MAILCHECK=600
NLSPATH=/usr/local/Tivoli/msg_cat/%L/%N.cat:/usr/lib/nls/msg/%L/%N:/usr/lib/nls
/msg/%L/%N.cat:/usr/dt/nls/msg/%L/%N
.cat:/usr/dt/lib/nls/msg/%L/%N.cat:/usr/dt/lib/nls/msg/%l/%t/%c/%N.cat:/usr/dt/
lib/nls/msg/%l/%c/%N.cat:/usr/lib/nl
s/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
OPTIND=1
PATH=/usr/local/Tivoli/bin/aix4-r1/bin:/bin:/usr/bin
PPID=26564
PS2='> '
PS3='#? '
PS4='+ '
RANDOM=17231
304 Event Management and Best Practices

SECONDS=0
SHELL=/usr/bin/sh
SLOTS='server_handle date_reception event_handle source sub_source origin
sub_origin hostname fqhostname adapter_ho
st date status administrator acl credibility severity msg msg_catalog msg_index
duration num_actions repeat_count c
ause_date_reception cause_event_handle server_path ttid'
TEC_BIN_DIR=/usr/local/Tivoli/bin/aix4-r1/TME/TEC
TEC_KB_DIR=tec/rb_dir
TEC_MASTER_PORT=35770
TEC_MASTER_START_TIMEOUT=300
TEC_RECV_BUFSIZE=500
TEC_RECV_LOG=YES
TEC_RULE_CACHE_CLEAN_FREQ=3600
TEC_RULE_CACHE_FULL_HISTORY=86400
TEC_RULE_CACHE_NON_CLOSED_HISTORY=15552000
TEC_RULE_CACHE_SIZE=1000
TISDIR=/usr/local/Tivoli/bin/aix4-r1/../generic
TMOUT=0
TZ=EST5EDT
WLOCALHOST=rduatc02
acl=''\''[admin]'\'
adapter_host=''\'''\'
administrator=''\'''\'
cause_date_reception=0
cause_event_handle=0
class_name=TEC_Test_Event
credibility=0
date=''\''Oct 9 09:10:57 2003'\'
date_reception=1065704782
duration=0
event_handle=1
flag=OPEN_TT
fqhostname=rduatc02
hostname=rduatc01
message='A trouble ticket has been opened on reception of this event from host
rduatc02'
msg=test22
msg_catalog=''\'''\'
msg_index=0
num_actions=1
o_dispatch=94
origin=9.24.106.153
repeat_count=0
server_handle=1
server_path=''\''[rduatc01 1 1065705057 1]'\'
severity=FATAL
source=wposte
status=OPEN
 Chapter 6. Event management products and best practices 305

sub_origin=''\'''\'
sub_source=''\'''\'
ttid=tt111065704782

This should help you to understand the kind of information that you can pass to
the trouble-ticketing system. Keep note of the ttid. We use this slot later in
synchronizing events with the trouble-ticketing system.

Downstream correlation from the trouble-ticketing system
When you send a ticket from IBM Tivoli Enterprise Console to a trouble-ticketing
system, it is a good idea to send the trouble ticket ID (ttid) along with it. This gives
you the ability to inform the IBM Tivoli Enterprise Console event server when a
trouble ticket is closed. It also gives you the ability to correlate that information
with existing events based on the ttid. The ttid is populated into the ttid slot on the
event as shown in Figure 6-39.

Figure 6-39 The ttid event slot

Avoiding upstream correlation
You really should not close a ticket when an event is closed. Rather, you should
update the event. The reason for this is problem management. For example, you
page someone and then have them begin working on a problem. During that
time, the event is closed via automation, or manually. Then the person who was
306 Event Management and Best Practices

working on the problem stops and goes back to their normal tasks. If the problem
happens again, then the person must go back and start all over again.

This can be a challenging situation, especially during off hours. You don’t want to
continually page someone throughout the night. It’s best to have the matter
investigated fully by the person while they are already looking into the problem. If
the problem is truly resolved, then that person can make that determination. If the
problem isn’t fully resolved, then the person is already investigating it has a better
chance of resolving the situation, without being paged throughout the night.

It is key to choose a trouble-ticketing system that has bi-directional
communication between itself and the IBM Tivoli Enterprise Console event
server. This is a best practice. If you don’t have such a tool, you need to rely on
manually closing tickets.

6.7 Trouble ticketing
This section explains how IBM products integrate with trouble-ticketing software
and how to adhere to best practices in this environment.

6.7.1 NetView versus IBM Tivoli Enterprise Console
Both NetView and IBM Tivoli Enterprise Console have the ability to open trouble
tickets, via rules. Although NetView can open tickets directly from its rules set, it
is usually best to open only tickets automatically from one place.

When you use IBM Tivoli software, the one place is IBM Tivoli Enterprise
Console. This is because it is easier to correlate and synchronize events
between IBM Tivoli Enterprise Console and a trouble-ticketing system if all of the
event are going through IBM Tivoli Enterprise Console. All of the events go
through the same rule set before they cut a ticket instead of one or two different
rule sets, which may not be in synchronization.

6.7.2 IBM Tivoli Enterprise Console
You can directly open trouble tickets from within IBM Tivoli Enterprise Console
using rules. In this section, we discuss the how to use the rules that are
necessary to open trouble tickets.

The supplied rule set: troubleticket.rls
In 6.6.4, “IBM Tivoli Enterprise Console and trouble ticketing” on page 302, we
discuss how to customize troubleticket.rls to show an example of how to create a
 Chapter 6. Event management products and best practices 307

ticket. In this section, we show how to use this capability further when dealing
with closing and opening tickets and events.

Bidirectional update capability
The trouble-ticketing system for Peregrine’s Service Center has a Plus module
for integration with IBM Tivoli Enterprise Console. During the installation of the
Plus module, you are asked if you want to replace the TroubleTicket.sh script.
Make sure that you select yes. The Plus module installation replaces the script,
but generates a log file first in /tmp, with a script that sends the event to the
Service Center.

We can still use the troubleticket.rls file that we customized in 6.6.4, “IBM Tivoli
Enterprise Console and trouble ticketing” on page 302, to define the criteria of
which events to send to IBM Tivoli Enterprise Console. The troubleticket.rls rule
runs the TroubleTicket.sh script when that criteria is met.

After the installation of the Plus module, you must modify a few rules that are
provided with it for true bidirectional trouble ticketing integration. To understand
what is needed to achieve this integration, we look first at how the events are
linked to each other between the Service Center and IBM Tivoli Enterprise
Console. When an event meets the criteria in the troubleticket.sh script, it runs
TroubleTicket.sh. After it is modified by the Plus module, the installation
generates an event of the SCpmOpen class. Although it is not a best practice to
generate a separate event for every ticket, this is how the Plus module for the
Service Center works on its event synchronization. We can clean this up later in
the rule set.

The SCpmOpen event triggers the communication between IBM Tivoli Enterprise
Console and the Service Center based on maps that are stored in the SCPlus
directory on the IBM Tivoli Enterprise Console event server. If we fired an event
with our TEC_Test_Event class, which is still configured to send a trouble ticket in
troubleticket.rls, we should receive an SCpmOpen event, such as the event
shown in Figure 6-40.
308 Event Management and Best Practices

Figure 6-40 SCpmOpen event details

Notice the referenceNo slot. This number matches the referenceNo slot in our
original event. We use this later to correlate back and forth between IBM Tivoli
Enterprise Console and the Service Center. We must modify the
TroubleTicket.sh script to ensure that the referenceNo slot from the original event
is the same in SCpmOpen event. In the TroubleTicket.sh script, the following
command is run:

wpostemsg -m "$msg" severity=$severity category=example SCpmOpen ServiceCenter

We must modify this command as follows that the referenceNo slot is passed on:

wpostemsg -m "$msg" severity=$severity referenceNo=$referenceNo
category=example SCpmOpen ServiceCenter

After the SCpmOpen event is sent to the Service Center, the Service Center
creates a ticket and sends an event back to IBM Tivoli Enterprise Console with
the SCpmOpened class. This event has the trouble-ticket number in the number
slot, as shown in Figure 6-41.
 Chapter 6. Event management products and best practices 309

Figure 6-41 Event details showing the trouble ticket number

Notice that the referenceNo slot matches the referenceNo in our SCpmOpen
event and the original event that caused it.

The default rules supplied by the Service Center Plus module are outdated and
do not do a good job of correlating between the SCpm events and the originating
event. Therefore, we must first add the slots number and referenceNo to the
root.baroc EVENT class as a string. This ensures that every event that comes
through IBM Tivoli Enterprise Console has these slots for correlation later with
the Service Center.

Next we need to modify scenter.rls. This is the rule that is supplied with the
Service Center Plus module for handling Service Center events. First, we must
copy the scenter.rls file to scenter.rls.orig. Then delete the scenter.rls file. Create
a new scenter.rls file and populate it from the following rules. We use only certain
rules from scenter.rls, so doing this makes it easier to keep them straight.

Now make sure that the referenceNo slot is set for each event. We do this by
adding the rule shown in Example 6-43 to our blank scenter.rls rule set.
310 Event Management and Best Practices

Example 6-43 Rule to populate the referenceNo slot

rule: ensure_refno: (
 event: _event of_class within _class
 where [referenceNo: equals '',

date_reception: _dr,
server_handle: _sh,
event_handle: _eh],

 reception_action: set_refno: (
 sprintf(_refno, '%d%d%lu', [_sh, _eh, _dr]),
 bo_set_slotval(_event, 'referenceNo', _refno),
 commit_action
)
)

We want the SCpmOpen events that are generated to create a ticket. Therefore,
we add the rule outlined in Example 6-44 to run the Service Center script that
sends the information to the Service Center.

Example 6-44 Rule to execute the Service Center script

rule: 'create_SC_Event': (

 description:
 'Create ServiceCenter Event from Peregrine-defined TEC Event',

 event: _event of_class within ['SCpmOpen', 'SCtestOpen',
 'SCpmUpdate','SCtestUpdate',
 'SCpmClose', 'SCtestClose'] ,

 reception_action: run_sceventin: (
 (exec_program(_event, '/usr/SCPlus/lib/sceventin.sh', '', [], 'YES')),
 drop_received_event
)
).

Notice how the drop_recieved_event is at the end of this rule. This helps with
cleanup. Now that the SCpmOpen event has created a ticket, we no longer need
it, so we can drop it.

Now we want to place the Service Center trouble-ticket number that comes in the
SCpmOpened event into our original event. We do this by adding the rule in
Example 6-45 to scenter.rls, after the create_SC_event rule.
 Chapter 6. Event management products and best practices 311

Example 6-45 Rule to retrieve the SC trouble ticket number

rule: 'correlate_PM_number_with_event':(
 event: _evt of_class 'SCpmOpened'
 where [referenceNo: _refNo,
 number: _PM_No
],
 action: find_orig_and_fill_PM_No:(
 /* first, find the original SC Open event */
 first_instance(
 event: _orig_evt of_class _class outside ['SCpmOpened']
 where [referenceNo: equals _refNo,
 status: within ['OPEN', 'ACK']
]
),
 /* now fill "number" slot with Problem Ticket # */
 bo_set_slotval(_orig_evt, 'number', _PM_No),
 re_mark_as_modified(_orig_evt, _),
 drop_recieved_event
)
).

This rule acts when the SCpmOpened event comes in and populates the number
slot on the original event. It finds the original event based on the referenceNo
slot. Notice how again we drop the SCpmOpened event. We already pulled the
information we need from it, so we can drop it. This keeps necessary events from
lingering. Now our Service Center trouble-ticket number is in our number slot, as
shown in Figure 6-42.
312 Event Management and Best Practices

Figure 6-42 IBM Tivoli Enterprise Console event detail with ticket number in event

Now that we have our information in our event we can acknowledge an event
when we receive an SCpmOpened event. We also close the IBM Tivoli
Enterprise Console event when the Service Center trouble ticket is closed.

First, we add the rule shown in Example 6-46 to our scenter.rls file.

Example 6-46 Rule to set the status of original event to acknowledges

rule: sc_ack_event:
(
 event: _event of_class 'SCpmOpened'

 where [
referenceNo: _refNo],

reception_action:
 (
 all_instances(
 event: _tiv_event of_class _class outside ['SCpmOpened']
 where [status: equals 'OPEN',

referenceNo: equals _refNo]
),
 set_event_status(_tiv_event,'ACK'),
 drop_received_event,
 Chapter 6. Event management products and best practices 313

 commit_action
)
).

This rule sets the status of the original event to acknowledged. While it is an
acknowledged status, you may want to think about placing some duplicate
detection on events that are in acknowledged status. This prevents multiple
tickets from being opened for the same issue.

Now we can add a rule so that when an operator or analyst closes the Service
Center ticket associated with an IBM Tivoli Enterprise Console event, then that
event is also closed. When a ticket is closed in the Service Center, you can
configure it to send an event to IBM Tivoli Enterprise Console that lets IBM Tivoli
Enterprise Console know the ticket is closed. These events come into IBM Tivoli
Enterprise Console with the SCpmClosed class. We can add the rule shown in
Example 6-47 to close our original event.

Example 6-47 Rule to close original event

rule: close_event:
(
 event: _event of_class 'SCpmClosed'

 where [
referenceNo: _refNo],

reception_action:
 (
 first_instance(
 event: _tiv_event of_class _class
 where [status: equals 'ACK',

referenceNo: equals _refNo]
),
 set_event_status(_tiv_event,'CLOSED'),
 drop_received_event,
 commit_action
)
).

Once again, the drop_recieved_event drops the SCpmClosed events for cleanup.
Now we have bidirectional integration with Peregrine ServiceCenter.
314 Event Management and Best Practices

Handling related events
You may be concerned with tracking events from the same problem that come in
after you open a trouble ticket. One way to manage this is in the supplied
troubleticket.rls.

If the flag called _assoc_flag is set to on, it calls TroubleTicket.sh to send only an
update event and not to create a new ticket. This is for any events that are
duplicates of the original event that came in.

6.8 Maintenance mode
There are a many things to consider when it comes to maintenance modes. This
section attempts to describe how the corresponding IBM products handle this
type of situation.

6.8.1 NetView
NetView tracks the status of the devices it manages. It generates traps when it
detects changes in the condition of those devices. It also receives and processes
traps sent to it by SNMP-capable devices that have NetView defined as one of
their trap receivers. When discussing maintenance mode, it is important to
consider both types of traps.

Another consideration is how the NetView product is used. Consider the example
where all events within an organization are managed from IBM Tivoli Enterprise
Console, and no-one uses the NetView console for monitoring traps. In this case,
it may be sufficient to handle maintenance mode at the IBM Tivoli Enterprise
Console level and allow NetView to continue processing as normal. See 6.8.2,
“IBM Tivoli Enterprise Console” on page 328, for information about handling
event from devices in maintenance mode at the IBM Tivoli Enterprise Console
event server. Likewise, if the NetView user who monitors the console is the same
person who is performing the maintenance, it may not be necessary to take any
special action for the events.

We recommend that you use IBM Tivoli Enterprise Console to handle
maintenance mode when possible. Allow NetView to process traps as normal.
NetView and IBM Tivoli Switch Analyzer’s correlation capabilities can be used to
handle events generated by those products, performing root cause analysis to
suppress several unnecessary events. The device in maintenance mode is most
likely identified as the root cause of the problems. A trap reporting its status is
forwarded to other event processors. Assuming the processors were informed
that the network device is in maintenance mode through their normal means,
 Chapter 6. Event management products and best practices 315

they properly handle both the root cause event and any unsolicited traps
generated by the device itself.

An organization that does not have a higher level event processor may want to
implement a method of handling traps from devices in maintenance mode at the
NetView server. The same applies to organizations with users who are actively
monitoring events using NetView. Several NetView features can be implemented
to accomplish this.

Unmanaging SNMP devices in maintenance mode
The NetView object database contains global information for each object that
NetView has discovered. Two of the fields it maintains for an object are OVW
Maps Exists and OVW Maps Managed. These fields contain integers showing
the numbers of maps on which the object is located and the number on which it is
managed respectively. The information stored in the object database can be
displayed using the ovobjprint command. In Example 6-48, the information
about device sapsw01 was displayed using the command:

ovobjprint -s sapsw01

Example 6-48 Information from NetView’s object database

OBJECTID SELECTION NAME

OBJECT: 543

 FIELD ID FIELD NAME FIELD VALUE
 10 Selection Name "sapsw01"
 11 IP Hostname "sapsw01"
 14 OVW Maps Exists 2
 15 OVW Maps Managed 2
 20 IP Status Normal(2)
 23 isIPRouter FALSE
 35 vendor cisco Systems(12)
 47 isNode TRUE
 50 isConnector TRUE
 51 isBridge TRUE
 52 isRouter FALSE
 53 isHub TRUE
 54 isRepeater TRUE
 75 isIP TRUE
 94 isSNMPSupported TRUE
 96 SNMP sysDescr "Cisco Systems Catalyst
1900,V9.00.06 "
 97 SNMP sysLocation ""
316 Event Management and Best Practices

 98 SNMP sysContact ""
 99 SNMP sysObjectID "1.3.6.1.4.1.9.5.31"
 100 SNMPAgent Cisco Switch(372)
 106 SNMP ipAddress "9.24.106.164"
 107 isMLM FALSE
 108 isSYSMON FALSE
 109 isSIA FALSE
 110 isManager FALSE
 112 isSLM FALSE
 113 isSIAOS2 FALSE
 145 TopM Interface Count 1
 151 TopM Interface List "CPU Up
9.24.106.164 255.255.255.240 0x003080547D40 ethernet csmacd "
 233 XXMAP Protocol List "IP"
233 XXMAP Protocol List "IP"
 521 IP Name "sapsw01"
 590 default IP Symbol List 67
 68
 695 isRMON TRUE
 5192 jackiemap IP Symbol List 60
 61

When netmon detects a status change in the network, it calls ovtopmd, which
dispatches ovwdb to update fields for the appropriate managed objects in the
object database. If the OVW Maps Managed field is 0 for an object, NetView is
not managing it. Therefore, it does not update the IP Status field in the object
database or generate any traps for the device.

Unmanaging a network device that is undergoing maintenance prevents
unnecessary traps for the device from being generated by NetView and IBM
Tivoli Switch Analyzer and being forwarded to other event processors. This can
be accomplished by unmanaging the device on all maps. This does not suppress
unsolicited traps generated by the device if that machine defines NetView as one
of its trap receivers.

There are several ways to unmanage the device:

� Manually manage and unmanage the device through the NetView native or
Web consoles.

This relies on the administrator to remember to unmanage the device at the
start of the maintenance window and to re-manage it afterwards.

� Execute the nvmaputil utility on the NetView machine.

This utility provides a command line method of executing some of the
functions that are normally performed through the GUI. It can be used to both
manage and unmanage devices using the syntax shown in Table 6-13.
 Chapter 6. Event management products and best practices 317

Table 6-13 Syntax to manage and unmanage devices

The utility is located in the /usr/OV/bin directory for UNIX and in \urs\OV\bin
for Windows. Notice that two dashes precede the argument names, not just
one dash.

Successful execution of the commands requires the map to be opened in
read/write mode. Attempts to run the utility without the map open result in the
error message There is no read/write map opened whose map name is
"mapname".

You must run this utility on the NetView machine. You can run it manually by
typing the appropriate command at a command prompt on the machine. A
trap can be generated to signal the start or termination of maintenance mode
for a machine. A NetView rule can respond to it automatically by executing the
utility. Or the administrator can execute a Tivoli task that runs the utility, and
select the NetView box as the task subscriber.

For more information about nvmaputil, see Release Notes for NetView for
UNIX, Version 7.1.2 on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg21063303

Also see IBM Tivoli NetView for UNIX 7.1.3 Release Notes, GI11-0927.

This solution has several drawbacks:

– The device must be unmanaged on all maps.
– Maps must be open in read/write mode for successful execution of the

utility.
– It does not handle unsolicited traps sent from the device.

� Update \usr\OV\conf\offperiods.conf (NetView for Windows only).

NetView for Windows can be configured to disable status, configuration, and
discovery polling for weekly off periods. This function can be used to
temporarily stop polling of devices in maintenance mode.

To schedule off periods for polling, select Options →Polling. In the Polling
Options window, select Polling Off Periods and click the Edit button to edit
the default file \usr\ov\conf\offperiods.conf. The format of this file is:

IPaddress StartDay StartTime EndDay EndTime PollTypes

Function Command

Manage node nvmaputil.sh --manage-node hostname or IP_address --mapname map_name

Unmanage node nvmaputil.sh --manage-node hostname or IP_address --mapname map_name

Manage interface nvmaputil.sh --manage-interface IP_address --mapname map_name

Unmanage interface nvmaputil.sh --unmanage-interface IP_address --mapname map_name
318 Event Management and Best Practices

http://www-1.ibm.com/support/docview.wss?uid=swg21063303

Note the following explanation:

IPaddress Specifies the IP address, expressed in numerical dot notation,
of the node or nodes for which polling should be disabled. IP
address ranges and a wildcard character (*) can be used to
specify multiple nodes.

StartDay Specifies the day of the week to start the polling off period.
Specify the day by the first three letters, such as Sun, Mon,
Tue, and so on. This field is not case-sensitive.

StartTime Specifies the time of day to start the polling off period. Specify
the time in 24-hour time (colon separated).

EndDay Specifies the day of the week to end the off period. Specify the
day as described for StartDay.

EndTime Specifies the time of day to end the polling off period. Specify
the time as described for StartTime.

PollTypes Specifies the poll types to disable. Enter one or more of the
values p, c, or d to specify ping, configuration, and discovery,
respectively.

For example, add entries in the \usr\ov\conf\offperiods.conf file similarly to
what is shown here. The following entry turns off all polling for one hour
maintenance window for device 16.21.14.140:

16.21.144.140 Fri 23:00 Fri 23:59 pcd

The following entry disables all polling from 11 p.m. Friday to 6 a.m. Monday
for every device in the IP address range”

16.21.[140-150].* Fri 23:00 Mon 6:00 pcd

After editing the \usr\ov\conf\offperiods.conf file, in the Polling Options
window, click Apply or OK. The changes take effect immediately without
stopping the daemons.

Using this method to handle traps from devices in maintenance mode is easy
to implement. The administrator can run a command or BAT file to append the
necessary entry to the offperiods.conf file at the start of maintenance. The
administrator can run another command to remove it afterwards. This
solution, unlike the nvmaputil method described earlier, does not require
open maps for execution. However, it also cannot handle unsolicited traps
sent from the device.

Therefore, as stated earlier, we recommend that you use IBM Tivoli Enterprise
Console to handle maintenance mode for networking devices. Organizations that
still want to unmanage the network devices being maintained should automate
the process as much as possible. Administrators may not remember to
 Chapter 6. Event management products and best practices 319

unmanage or re-manage network devices, particularly after off-hours
maintenance windows.

Handling maintenance mode through NetView rules
If the NetView console is routinely monitored for network problems, an
organization may want to account for maintenance mode in NetView. There are a
few ways to handle the traps from devices undergoing maintenance:

� Block the traps. This prevents the traps from displaying on the console or from
being processed by applications that are registered to receive them. The
Block event display ruleset node can be used in a NetView rule to block the
traps. See 6.1.1, “Filtering and forwarding with NetView” on page 174, for
more information about this ruleset node.

� Flag the traps to indicate that they were received during the device’s
maintenance mode. NetView does not provide the capability to redo traps
through its rules. Therefore, it is not possible to unflag the traps after
maintenance mode ends. The Override ruleset node in a NetView rule can
change the status or severity of the traps to flag them as from a device in
maintenance mode.

� Hide the traps from view. A filter can be used with the NetView event console
to prevent the traps from displaying.

The three approaches all rely on properly identifying the trap as referencing a
device in maintenance mode. Because NetView is a versatile product, you can
choose from dozens of methods to make this determination. Consider
maintainability and performance when designing and implementing a
maintenance mode solution.

In keeping with the best practices discussed in 2.10.2, “Handling events from a
system in maintenance mode” on page 74, we decided for our case study to flag
the traps rather than to discard them. This ensures that, if there is a legitimate
problem with the device being maintained, it is reported. The console user can
optionally choose to filter the traps from the event display, if desired.

These are the steps we used to implement our solution.

Added a field to the NetView database
The NetView object database is implemented as a stand-alone module that
works in conjunction with the rest of NetView. Entries in the NetView object
database persist across NetView sessions. Fields and objects created in one
NetView session are available to all other applications in all NetView sessions.

Information about which devices are in maintenance mode is needed by all
users, applications, and sessions of NetView. Therefore, we chose to record this
320 Event Management and Best Practices

information in the NetView object database. This also provides an easy method
of creating a NetView smartset for objects in maintenance mode.

Such fields as corrstat1 can be used for this purpose. However, we decided to
define a new field for maintenance mode in case the corrstat fields were already
used by other NetView rules.

To separate our customization from the one supplied with NetView and
third-party applications, we created a separate file, /usr/OV/fields/C/lab_fields, to
define the field. Example 6-49 shows the contents of the file.

Example 6-49 Contents of the lab_fields file

/** ***
* Fields added for case study
 ***/

Field "Object_mode" {
 Type StringType;
 Flags Locate, General;
}

In our example, we specified Locate and General as flags. The Locate flag
causes the field name to appear in the window that opens when you select
Locate →By Attribute when users attempt to locate an object.

Use care in setting this field. If you do not specify the Locate flag, users cannot
locate an object based on your field. Indiscriminate use of the locate field results
in an overabundance of locate entries. This makes the window more difficult to
use effectively. Set this flag only if users need to locate objects through this field.
This flag cannot be set together with the list flag.

Fields with the General flag appear in a special General Attributes window
associated with every object. This is for fields that are not application-specific
and do not appear in any application-specific window. The vendor field is a good
example of a general field.

Then we added the field to the database by issuing the following command:

ovw -fields

This reads the files in /usr/OV/fields/C, and either adds the fields defined in the
files to the object database or verifies that they already exist. The output of the
command is lengthy. A portion of it is listed in Example 6-50. The last line notes
the addition of our field to the database.
 Chapter 6. Event management products and best practices 321

Example 6-50 Portion of output from the ovw -fields command

/usr/OV/fields/C/xxmap_fields: Verified Enumeration field "XXMAP Layout
Algorithm"
 Verified enumeration value "None" (1)
 Verified enumeration value "User Defined" (2)
 Verified enumeration value "Point to Point" (3)
 Verified enumeration value "Bus" (4)
 Verified enumeration value "Star" (5)
 Verified enumeration value "Spoked Ring" (6)
 Verified enumeration value "Row Column" (7)
 Verified enumeration value "Point to Point Ring" (8)
 Verified enumeration value "Tree" (9)
/usr/OV/fields/C/xxmap_fields: Verified Integer field "XXMAP Flush Trigger"
/usr/OV/fields/C/xxmap_fields: Verified Integer field "XXMAP Flush TimeOut"
/usr/OV/fields/C/zos_fields: Verified Boolean field "isZOS"
/usr/OV/fields/C/zos_fields: Verified String field "MVS SystemName"
/usr/OV/fields/C/zos_fields: Verified String field "MVS SysplexName"
/usr/OV/fields/C/zos_fields: Verified String field "MVS TcpipProcName"
/usr/OV/fields/C/wteuiap.fields: Verified String field "Software Status"
/usr/OV/fields/C/wteuiap.fields: Verified String field "wttest_field"
/usr/OV/fields/C/wteuiap.fields: Verified String field "WTMergeId"
/usr/OV/fields/C/wteuiap.fields: Verified Integer field "WTint"
/usr/OV/fields/C/wteuiap.fields: Verified String field "WTstring"
/usr/OV/fields/C/lab_fields: Created String field "Object_mode"

A field cannot be used until it is associated with an object. We used the
nvdbimport command to add the fields to all nodes in the database. The input file
used associates the Normal object_mode attribute to each node (see
Example 6-51). The first line of the file lists the field names to which the data
applies. The first field is the selection name, and the second is Object_mode.
Subsequent lines contain node names followed by the Normal mode. The data
on each line is comma delimited. There are no spaces around the data.

Example 6-51 The fields.data file used to associate object mode with object

Selection Name,Object_mode
dtmaas01.dtm.ibmitso.com,Normal
dtmsw01.dtm.ibmitso.com,Normal
dtmsw02.dtm.ibmitso.com,Normal
dtmwas01.dtm.ibmitso.com,Normal
mspsw01.msp.ibmitso.com,Normal
mspwas01.msp.ibmitso.com,Normal
phisw01.phi.ibmitso.com,Normal
phiwas01.phi.ibmitso.com,Normal
phiwas02.phi.ibmitso.com,Normal
rduanw01.rdu.ibmitso.com,Normal
322 Event Management and Best Practices

rduarm01.rdu.ibmitso.com,Normal
rduatc01.rdu.ibmitso.com,Normal
rduatc02.rdu.ibmitso.com,Normal
rduatf01.rdu.ibmitso.com,Normal
rdur01.rdu.ibmitso.com,Normal
rdur02.rdu.ibmitso.com,Normal
rdusw01.rdu.ibmitso.com,Normal
rdusw02.rdu.ibmitso.com,Normal
rduwws01.rdu.ibmitso.com,Normal
sapsw01.sap.ibmitso.com,Normal
sapwas02.sap.ibmitso.com,Normal

The fields were added to the database using this command:

/usr/OV/bin/nvdbimport -f /usr/OV/custom/scripts/fields.data

A subsequent listing of the object shows the new field and its Normal value. It is
the third field from the bottom in Example 6-52.

Example 6-52 The ovobjprint output showing the new Object_mode field

OBJECTID SELECTION NAME

OBJECT: 289

 FIELD ID FIELD NAME FIELD VALUE
 10 Selection Name
"dtmwas01.dtm.ibmitso.co
m"
 11 IP Hostname
"dtmwas01.dtm.ibmitso.co
m"
 14 OVW Maps Exists 1
 15 OVW Maps Managed 1
 20 IP Status Critical(4)
 23 isIPRouter FALSE
 35 vendor Microsoft(22)
 47 isNode TRUE
 49 isComputer TRUE
 50 isConnector FALSE
 51 isBridge FALSE
 52 isRouter FALSE
 53 isHub FALSE
 56 isPC TRUE
 75 isIP TRUE
 94 isSNMPSupported TRUE
 Chapter 6. Event management products and best practices 323

95 isSNMPProxied FALSE
 96 SNMP sysDescr "Hardware: x86 Family 6
Model 8 Stepping 3 AT/AT COMPATIBLE - Software: Windows 2000 Version 5.0 (Build
2195 Uniprocessor Free)"
 97 SNMP sysLocation ""
 98 SNMP sysContact ""
 99 SNMP sysObjectID
"1.3.6.1.4.1.311.1.1.3.1.2"
 100 SNMPAgent Microsoft Windows NT
4.0
(321)
 106 SNMP ipAddress "9.24.106.185"
 107 isMLM FALSE
 108 isSYSMON FALSE
 109 isSIA FALSE
 110 isManager FALSE
 112 isSLM FALSE
 113 isSIAOS2 FALSE
 145 TopM Interface Count 1
 151 TopM Interface List "IBM 10/100 Down
9
.24.106.185 255.255.255.240 0x0004AC98D22B ethernet csmacd "
 233 XXMAP Protocol List "IP"
 266 Object_mode "Normal"
 292 IP Name
"dtmwas01.dtm.ibmitso.com”

378 default IP Symbol List 47

We need a method to change the field when a node goes into maintenance
mode. We wrote a script to run from the NetView machine to do this. The script
(Example 6-53) accepts two parameters. The first tells whether to start or stop
maintenance. The second supplies the object on which to perform maintenance.
You can run this script from the command line on the NetView machine. Or you
can modify and set it up to execute from the object menu on the NetView map.

Example 6-53 Script to change Object_mode to Maintenance or Normal

#!/bin/ksh
#
This script sets the Object_mode for a node to Maintenance or Normal
depending upon whether the object is being put into or removed from
maintenance mode
#
Syntax: /usr/OV/custom/scripts/maintmode.sh start <nodename>
/usr/OV/custom/scripts/maintmode.sh stop <nodename>
#

324 Event Management and Best Practices

Checks for correct number of parameters
#
if (($# != 2));
then
 echo "Syntax: /usr/OV/custom/scripts/maintmode.sh start|stop <nodename>"
 exit
fi
#
Creates a temporary file, which is used as input to the nvdbimport command
#
echo "Selection Name,Object_mode" > /tmp/$$.file
case $1 in
start) echo $2,Maintenance >> /tmp/$$.file;;
stop) echo $2,Normal >> /tmp/$$.file;;
*) echo "Syntax: /usr/OV/custom/scripts/maintmode.sh start|stop <nodename>";;
esac
#
Runs the nvdbimport command to change the mode of the object
#
/usr/OV/bin/nvdbimport -f /tmp/$$.file
rm /tmp/$$.file
exit

Next, we coded a rule set to check the Object_mode field for all traps received. If
the object is in maintenance mode, the trap is set to an indeterminate severity. To
perform this function, the Query Database Field node was used in the rule set.
The ruleset name was activated for a user’s dynamic event workspace. The rule
set is shown in Figure 6-43.

Figure 6-43 Rule set to change traps to indeterminate for objects in maintenance mode
 Chapter 6. Event management products and best practices 325

Query Database Field compares the Object_mode field from the object database
to fields in the trap. The top comparison checks against NVATTR_2 in the trap,
which is where NetView populates the host name. The bottom Query Database
Field node checks NVATTR_7 in which IBM Tivoli Switch Analyzer populates the
host name. A sample setup for the node is shown in Figure 6-44.

Figure 6-44 Query Database Field node settings
326 Event Management and Best Practices

The Event Attributes node checks for IBM Tivoli Switch Analyzer’s enterprise ID,
shown in Figure 6-45.

Figure 6-45 Event Attributes node settings

Finally, as shown in Figure 6-46, the Override node sets the trap severity to
indeterminate.

Figure 6-46 Override node settings
 Chapter 6. Event management products and best practices 327

The filter is activated when creating a dynamic event workspace by selecting the
ruleset name from the supplied list as shown in Figure 6-47.

Figure 6-47 Setting the Query Database node to check for maintenance mode

6.8.2 IBM Tivoli Enterprise Console
Rules used for handling events for systems in maintenance mode are supplied
with the IBM Tivoli Enterprise Console product. In addition, the IBM Tivoli
Enterprise Console administrator can write custom rules to perform similar
processing.

This section describes the supplied maintenance rules in detail. It explains how
to initiate maintenance, customize the rules, and modify them to meet the needs
of the organization. A custom rule for long-term maintenance is presented to
handle problems whose resolution cannot be immediately implemented.
328 Event Management and Best Practices

Overview of maintenance_mode.rls
The maintenance mode rule set provides automated event processing to indicate
that a monitored system is being placed into maintenance mode for a specified
period of time. As supplied, the rule can be used to discard or close events that
occur from systems in maintenance mode.

Configuring the rules
Upon installation of IBM Tivoli Enterprise Console, the maintenance_mode.rls
rule set is loaded into the current rule base and activated. As described in “Rule
set sequencing and dependencies” on page 238, the maintenance_mode rule
set is placed near the beginning of the rule_sets file to avoid unnecessary
processing of events sent from systems in maintenance mode.

It is preconfigured with parameters that govern its execution, including
automatically closing events received for systems in maintenance mode. These
settings may be changed as described later. The rule base must be recompiled
and reloaded for the changes to take effect.

To customize this rule set, modify the appropriate statements in the
maintenance_mode_configure configuration rule. The following options are
configurable:

� Latency: Time period in seconds to keep maintenance facts in the knowledge
base after the corresponding maintenance window has ended.

This parameter allows for processing of events that were sent during a
maintenance window but arrive late. The default latency is one hour. To
change this interval, modify the statement that sets the _over_time variable as
follows:

_over_time = otime

otime is the length of time (in seconds) that you want to keep maintenance
facts in the knowledge base after maintenance has ended.

� Maintenance event severity: Severity assigned to TEC_Maintenance events
generated by the maintenance mode rules.

These events are generated when a maintenance window has ended. The
default severity is HARMLESS. To change the severity of generated
TEC_Maintenance events, modify the statement that sets the _severity
variable as follows:

_severity = msev

msev is a valid severity for the TEC_Maintenance event class.

� Administrator name: Name to use when automatically acknowledging or
closing received TEC_Maintenance events.
 Chapter 6. Event management products and best practices 329

The default administrator name is maintenance_mode.rls. To change the
administrator name, modify the statement that sets the _maint_admin
variable as follows:

_maint_admin = admin

admin is the administrator name to use.

� Fact file name: Name of the file to use to store maintenance facts in the
knowledge base.

Specify either an absolute location for the file or the file name only to create
the file in the $DBDIR directory. The default file name is
maintenance_mode.pro. Its default location is $DBDIR on the IBM Tivoli
Enterprise Console event server. To change the file name, modify the
statement that sets the _maintenance_file variable as follows:

_maintenance_file = filename

filename is the name of the fact file that you want to use. It optionally includes
a relative or absolute path and is enclosed in single quotation marks.

The fact file contains such entries as:

maintenance(rdur01,ON,0x3f8b00bc,3600)

This states that maintenance mode is “ON” for system rdur01, for a duration
of 3600 seconds, or 60 minutes. The start time for maintenance mode is
recorded in the hex form of the epoch time. Hex 3f8b00bc is decimal
1066074300, which is the epoch time for 13 October 2003 at 3:45 p.m.

� Event handling: Specifies whether to close or drop events received from a
system in maintenance mode.

The default action is to close them. To change this behavior, modify the
statement that sets the _maint_action variable as follows:

_maint_action = action

action is either CLOSE or DROP.

Initiating maintenance mode
The initiation of maintenance mode is indicated by an event of the
TEC_Maintenance class whose current_mode attribute is equal to ON. The
product offers two methods to generate this event:

� Execute the $BINDIR/TME/TEC/scripts/wstartmaint.sh script.

Note: This script should be executed on the IBM Tivoli Enterprise Console
event server. In our testing, attempts to run the script on other hosts failed.
330 Event Management and Best Practices

The syntax of this command is:

wstartmaint.sh host duration "owner info" [start time]

Note the following explanation:

host The fully qualified host name

duration The length of the maintenance window in minutes

owner info Information about the person who started the maintenance
window

start time The maintenance start time as YYYY MM DD HH MIN SS

Here’s an example of the command:

./wstartmaint.sh dtmwas01 15 "Jackie" 2003 10 13 13 30 00

Notice that there is a space between each element in the start time field.

Specifying the start time is optional. See “Processing logic” on page 333 for
an explanation about how start time is used.

� Use the Start_Maintenance task. The supplied task is located in IBM Tivoli
Enterprise Console Region →T/EC Tasks on the Tivoli desktop.

When the task is run by an administrator with the proper authority (super,
senior, administrator, or user), a window is displayed to enter the maintenance
mode information. Enter the appropriate values:

a. Choose the event server from the supplied list.

b. Enter the fully qualified host name of the machine to place in maintenance
mode.

c. Supply text to indicate the administrator handling the maintenance.

d. Enter the duration of the maintenance.

Note: You should run this task on the IBM Tivoli Enterprise Console
managed node. In our testing, attempts to run it on the IBM Tivoli
Enterprise Console endpoint or on other endpoints or managed nodes
failed.
 Chapter 6. Event management products and best practices 331

e. If the maintenance mode should begin immediately, leave the Time to
Start Maintenance field blank. Otherwise, specify the start time in the
format shown at the field prompt, as shown in Figure 6-48.

Figure 6-48 Starting maintenance mode with supplied IBM Tivoli Enterprise Console task
332 Event Management and Best Practices

Upon successful execution of the task, you see a window similar to the one
shown in Figure 6-49.

Figure 6-49 Output from IBM Tivoli Enterprise Console Start_Maintenance task

Processing logic
When the start maintenance event arrives, the rules record a maintenance fact in
the knowledge base. This fact records the following information:

� The fully qualified host name of the system being placed in maintenance
mode

If the fqhostname attribute of the TEC_Maintenance event is equal to a single
asterisk (*), this indicates that all monitored systems (except the event server)
are being placed in maintenance mode.

� The time maintenance started or is scheduled to start

If no start time is specified, the current time is assumed.

� The maximum allowed duration of the maintenance window (the period of
time during which the system is in maintenance mode)
 Chapter 6. Event management products and best practices 333

If the start time for the maintenance window is the current time (or a time already
in the past), this indicates that the specified system is being placed in
maintenance mode immediately. If the start time is in the future, this indicates
that the system is scheduled for maintenance at some time in the future. In either
case, the msg attribute of the generated TEC_Maintenance event indicates that a
maintenance window has begun or has been scheduled.

During the maintenance window, any events received from the system (other
than TEC_Maintenance events) are ignored. These events are either closed or
dropped, depending on how the rule set is configured. When the maximum
allowed duration of the maintenance window has elapsed (indicated by the
maintenance timer), the monitored system is no longer considered in
maintenance mode. Then a message is sent to the console indicating that the
maintenance window has ended.

Terminating maintenance mode
Maintenance mode is terminated when a TEC_Maintenance event is received
with current_mode equal to OFF. Reception of this event informs IBM Tivoli
Enterprise Console that either a system has finished maintenance or a
scheduled maintenance window has been canceled.

There are several ways in which to generate this event:

� When the maximum duration of a maintenance window has elapsed
� Using the wstopmaint.sh script about the monitored system

Specific handling of this event depends upon the value of the start_time attribute:

� If the start time matches a maintenance window that is currently in progress,
the maintenance window is immediately ended.

� If the start time matches a maintenance window that has not yet started, the
future maintenance window is canceled.

� If the start time is not specified, all current and future maintenance windows
for the system are canceled.

After a maintenance window ends (or is canceled), the relevant maintenance fact
remains in the knowledge base for a configurable period of time to allow for

Important: The proper functioning of maintenance_mode.rls relies on the
fqhostname slot variable in an event that contains the correct fully-qualified
host name. You must either ensure that events are sent with this slot variable
populated or write an IBM Tivoli Enterprise Console rule to populate the value.
IBM Tivoli Monitoring V5.1.1 Fix Pack 5 will use this variable. Be sure to install
it when it becomes available. NetView automatically populates fqhostname if it
knows devices by their fully-qualified host names.
334 Event Management and Best Practices

processing of events that arrive late. After this time period elapses, any
maintenance fact related to a maintenance window that has ended is retracted
from the knowledge base.

Rules
The maintenance_mode.rls rule set contains several rules. Table 6-14 outlines
the functions of these rules.

Table 6-14 Rules contained in the maintenance_mode.rls rule set

Type Rule Purpose

Startup rule maintenance_mode_configure The maintenance_mode_configure rule is a
configuration rule that runs upon receipt of the
TEC_Start event, which is sent during initialization of
the event server. By customizing this rule, you can
configure the behavior of the maintenance_mode.rls
rule set. In addition to setting global parameters for the
maintenance mode rules, the
maintenance_mode_configure rule restarts the
maintenance timers for any pending or ongoing
maintenance windows that were interrupted by a restart
of the event server.

Maintenance
rules

maintenance_received The maintenance_received rule manages scheduled
maintenance windows for monitored systems. When a
TEC_Maintenance event is received with the attribute
current_mode set to ON, this rule records a
maintenance fact that specifies the start time and
duration for the maintenance window. If the specified
duration is 0, this rule generates an error message and
closes the received TEC_Maintenance event without
taking any additional action. If the start time for the
maintenance window is in the future, this rule starts a
timer that expires when it is time for the maintenance
window to start.

When a TEC_Maintenance event is received with
current_mode set to OFF, this rule searches the event
cache for a matching TEC_Maintenance event
specifying the same system and the same start time.
Any matching event is closed. Any maintenance window
currently in progress for the system is canceled. If no
start time is specified by the received event
TEC_Maintenance, all current and future maintenance
windows for the specified system are canceled.
 Chapter 6. Event management products and best practices 335

Maintenance
rules

check_maintenance_mode The check_maintenance_mode rule runs upon receipt
of an event. It checks to see if the system that generated
the event is currently in maintenance mode. That is, the
start time of a maintenance window has passed, but the
duration of the maintenance window is not yet elapsed.
If the system is in maintenance mode, the received
event is closed or dropped, depending upon the
configuration, without further action.

Note: This rule does not drop or close events from the
event server. The event server cannot be placed in
maintenance mode.

Timer rules check_maintenance_timeout The check_maintenance_timeout timer rule checks
periodically to determine whether any system has been
in maintenance mode longer than the maximum allowed
period of time for the maintenance window. If the
maximum duration of the maintenance window has
elapsed and the system is still in maintenance mode,
this rule ends the maintenance window and generates a
message indicating that this happened. In addition, it
generates a TEC_Maintenance event with
current_mode set to OFF.

Timer rules start_maintenance_timer The start_maintenance_timer timer rule sees if the start
time for any scheduled maintenance window has
arrived. This rule is triggered by the expiration of a
maintenance timer set by the maintenance_received
rule. This timer is set upon receipt of a
TEC_Maintenance event specifying a maintenance
window in the future. If any system is scheduled to start
a maintenance window, the start_maintenance_timer
rule generates a message that the specified system has
entered maintenance mode. It starts a timer that expires
when the maximum duration of the maintenance
window has elapsed.

Type Rule Purpose
336 Event Management and Best Practices

Open Maintenance event group
IBM Tivoli Enterprise Console V3.9 comes with predefined event groups. One is
Open Maintenance. Events in this group are used to inform an operator that a
specific system is in maintenance mode. When a system is in maintenance
mode, events from that system cannot be processed.

Events in this event group can be in open state or acknowledged state. Events in
open state indicate a scheduled maintenance time for the system identified in the
event. Events in acknowledged state indicate that the system identified in the
event is within the scheduled maintenance time.

Testing maintenance_mode.rls
Several test cases were used in the lab to test the maintenance_mode.rls rule
set. The expected and obtained results were compared.

Test cases
To test the functionality of maintenance_mode.rls in the lab, we developed a
series of test cases and documented the expected outcome. Areas we focused
on included updates to the knowledge base, generation and correlation of
maintenance events, and dropping or closing of events from a machine in
maintenance mode. Table 6-15 summarizes the results of the test.

Table 6-15 Test case results

Timer rules check_overtime_timer The check_overtime_timer timer rule sees if it is time to
retract any maintenance facts from the knowledge base.
Maintenance facts are kept in the knowledge base for a
configurable period of time after the maintenance
window ends to allow for handling of related events that
arrive late. This interval is determined by the _over_time
parameter in the maintenance_mode_configure
configuration rule. When the specified amount of time
has elapsed since the end of the maintenance window,
the check_overtime_timer rule retracts the relevant
maintenance fact from the knowledge base.

Type Rule Purpose

Test Expected Actual

Generate maintenance mode event
starting immediately.

Update to knowledge base Updated knowledge base

Send an event from same host name
as the maintenance mode event

Event to be closed Event was closed
 Chapter 6. Event management products and best practices 337

Best practices customization
To meet best practices, modify the supplied maintenance rule so that events
received from devices in maintenance mode are placed in an acknowledged or
user status, rather than closed or dropped. When the device comes out of
maintenance, either by posting an event or by the duration expiring, reprocess
the events and report any outstanding events as problems.

6.9 Automation
As discussed in 2.11.2, “Automation implementation considerations” on page 80,
you must keep in mind several things when selecting the best tool for executing
an automated action. This section describes the features of various Tivoli
products that help to perform automation. It also provides guidelines on when
and how to use these products.

6.9.1 Using NetView for automation
NetView is an SNMP-based application used to manage IP networks and
devices. It can issue SNMP commands to track the status of network devices and
to perform actions upon them. By integrating with IBM Tivoli Switch Analyzer and

Generate the maintenance mode
stop event

Knowledge base update and
previous host name in
maintenance mode taken out

Knowledge base was updated
and host name was taken out

Send an event from the same host
name after the maintenance mode
stop event

Event would appear in open
status as normal

Event appeared as normal

Generate the maintenance mode
start event for five minutes in the
future

Update to knowledge base Knowledge base updated

Send an event before the five
minutes specified

Event would appear in open
status as normal

Event appeared as normal

Send an event after the five minutes
specified

Event to be in closed status Event appeared in a closed
status

Generate a maintenance start event
for a five minute duration

Update to knowledge base Knowledge base was updated

Send an event after the five minute
duration

Event would appear in open
status as normal

Event appeared as normal

Test Expected Actual
338 Event Management and Best Practices

third-party management applications, NetView extends its management
capabilities to layer 2 devices. It enhances its automation functionality with the
commands supplied by third-party software.

NetView is an ideal tool to use to perform automation on networking devices by
using SNMP commands and those supplied by integrated management
applications. It can also be used to trigger the automated actions in response to
an event or trap.

At this point, we must differentiate between executing automated actions and
triggering them. Executing automated actions implies running a command or
series of commands. Triggering automated actions responds to an event and
sets off a course of actions that culminates in the execution of the automated
action. The machine that triggers the action may not be the one to execute it. For
example, NetView may send a trap to the Tivoli Enterprise Console as an event.
IBM Tivoli Enterprise Console may perform some correlation and determine an
action that is required for the event. IBM Tivoli Enterprise Console may run a
Tivoli Framework task against the NetView machine, causing it to perform an
SNMP set command on a networking device. In this case, IBM Tivoli Enterprise
Console triggers the automated action in response to the event, but the NetView
machine actually performs it.

In general, you execute the required commands as close as possible to the
device requiring action. Keeping the path between the management station and
the device short minimizes the likelihood that the command, or its response, will
be lost or that the communications path will be unavailable. For most networking
devices, the NetView management server is the point closest to the device at
which automated actions may be executed.

Also, trigger the action from the closest point at which all necessary events are
available for correlation. This ensures that an accurate decision can be made
concerning the need to take action for the events. If the determination to
automate can be made at NetView, trigger the actions from NetView. Otherwise,
initiate them from IBM Tivoli Enterprise Console or another event processor at
which all relevant events are received.

There are several ways to use NetView to execute and trigger automation. These
are covered in the following section.

Executing commands from trapd.conf
If an action is desired every time a trap is received, NetView can be configured to
respond by placing the command in the /usr/OV/conf/C/trapd.conf file. This
approach is often used to execute commands that run quickly and scripts that
issue user defined SNMP traps. For example, sometimes business impact
managers rely on additional information that is not present in the original traps
 Chapter 6. Event management products and best practices 339

such as device type. Typically, the traps of interest are defined to execute a script
that determines the additional data required, combines it with information from
the original trap, and issues a second trap. The new trap, when processed, is the
one forwarded to the business impact manager.

Configuring command execution from trapd.conf
Add entries to the /usr/OV/conf/C/trapd.conf file by using the xnmtrap command.

Or from the NetView console, select Options →Event Configuration →Trap
Customization: SNMP. This opens the NetView Event Configuration window
(Figure 6-50). In the top portion of the window, highlight the enterprise which
generates the trap. Then in the lower part of the window, select the trap itself and
click Modify.

Figure 6-50 NetView Event Configuration window
340 Event Management and Best Practices

In the Command for Automatic Action (Optional) box at the bottom of the window,
type the command to execute. Click OK and then Apply. This tells the trapd
daemon to reread the trapd.conf file for changes. In Figure 6-51, the
/usr/OV/custom/scripts/threshold.ksh script is executed upon receipt of a
NetView threshold trap.

Figure 6-51 Modifying a trap for automated action in NetView
 Chapter 6. Event management products and best practices 341

When trapd receives a trap, it passes it along to several other daemons. If the
trap was configured to run a command, trapd passes it to the ovactiond daemon.
This daemon is responsible for formatting the command and passing it to the
shell for interpretation and execution.

The variable bindings in the trap are available for use by the script or command
that is started by ovactiond. They are referenced by $1, $2, etc. within the
automated action command. In our example, the threshold.ksh script can be
passed to the first two variables from the trap by typing the following command in
the Command for Automatic Action field:

/usr/OV/custom/scripts/threshold.ksh $1 $2

The variables are sanitized for security compliance. See “Security fix and its
impact on NetView automated actions” on page 350 for more information. For a
list of the variables that can be passed with each NetView internal trap, refer to
Appendix A in the IBM Tivoli NetView for UNIX Administrators Guide, Version
3.9, SC32-1246.

Customizing ovactiond
The ovactiond daemon logs its output by default to the /usr/OV/log/ovactiond.log
file. You can change this by modifying the options for the daemon using the
serversetup command or by editing the /usr/OV/lrf/ovactiond.lrf file and
restarting the daemon.

Another configuration parameter that you can change is maxWait time. This
parameter sets the number of seconds ovactiond will wait for completion of the
executed command. If maxWait is set to 0, ovactiond does not wait for the
command to complete. If maxWait is set to a non-zero value, the return status
and message can be logged to the log file. If the command does not complete
within the requested time, it is ended. Figure 6-52 shows the options window
where this is changed.
342 Event Management and Best Practices

Figure 6-52 Setting ovactiond configuration parameters using serversetup

Performance considerations of using ovactiond
If maxWait > 0, the ovactiond daemon waits until either the automatic action ends
or until maxWait amount of time expires before executing the next command. If
the actions are long running, or can time out, the queue of commands awaiting
execution by ovactiond can grow.

An example of this is attempting to validate node down or interface down traps by
automatically executing a demand poll of the resource referenced in the trap. If
the down trap is legitimate (not due to a missed ping or SNMP status request)
and maxWait > 0, ovactiond waits either maxWait seconds or until the demand
poll times out before executing the next command. If there are several outages at
once, the queue of commands awaiting execution by ovactiond can grow quickly.

Coding maxWait = 0 or running the command as a background process can
eliminate this problem. However, prevents the audit trail of execution errors from
being recorded in /usr/OV/log/ovactiond.log, even when tracing is enabled.

Executing commands from the rule sets
In 6.3.1, “Correlation with NetView and IBM Tivoli Switch Analyzer” on page 218,
we discuss the concepts of NetView rule sets and ruleset nodes. This section
explains how to use them to implement automated actions.
 Chapter 6. Event management products and best practices 343

Configuring automation in a NetView rule set
To initiate automation through a NetView rule set, use the Action or Inline Action
nodes in conjunction with the appropriate decision nodes. The decision nodes
test for the criteria that the traps must meet before automation is initiated for
them. These are discussed in “Correlation using NetView rules” on page 226.

The main difference between Action and Inline Action is how they are executed.
Inline Action is performed by the nvcorrd daemon. Rule processing waits for
completion of the action before continuing to the next node in the rule set. Action
is performed asynchronously by the actionsvr daemon. Rule processing
continues after spawning a process to run the action.

When defining Action or Inline Action nodes, specify the operating system,
NetView command, or fully-qualified script name to execute when an event is
forwarded to this node. The Inline Action node also allows setting fields that
govern how long the script will run.

Unlike a command specified in an Action node, a command specified in an Inline
Action node is not sent to the actionsvr daemon. Instead, the command is
executed immediately. Processing continues to the next node if the return code of
the action matches the return code that you specify within the specified time
period.

The Inline Action window (Figure 6-53) contains the following relevant fields:

� Command: Specifies any operating system command, the full path name of
any shell script or executable, or any NetView command.

� Wait Interval: Specifies the time period, in seconds, that the ruleset
processor should wait for the specified action to return. Values can be in the
range of 0 through 999 seconds. If the wait interval is 0, the return code from
the action is ignored and processing immediately proceeds to the next node.
If a wait interval is specified, and the return code from the action is not
received in the wait interval, it is considered to be a failure and processing
does not proceed to the next node. If the action is not completed within the
specified time period, processing does not proceed to the next node.

� Command exit code comparison: Specifies the type of comparison that you
want to make.

� Exit Code: Specifies the return code value from the specified action that you
want to use in the comparison.
344 Event Management and Best Practices

Figure 6-53 Inline Action window

Activating rule sets
There are three ways to activate a rule set:

� ESE.automation file: You can activate one or more rule sets for automatic
action when you start NetView by editing the /usr/OV/conf/ESE.automation
file, adding the names of the rule sets on separate lines. To change the file
when NetView is already active, make changes and recycle the actionsvr
daemon for them to take effect. Use this method for rule sets that need to
perform a specific action regardless of whether there is an event display
open.

Important: Do not set the default processing action as Pass in the Event
Stream icon or include a Forward node in rule sets started from the
ESE.automation file. Forwarded events are passed to the actionsvr
daemon, which has no events display and no mechanism to dequeue the
events. Therefore, the socket connection to the nvcorrd daemon fills up and
causes the nvcorrd daemon and all nvevents windows to hang.
 Chapter 6. Event management products and best practices 345

Since ESE.automation runs regardless of whether there is an open console, it
is an effective method to execute rule sets that perform notifications such as
paging or trouble ticketing, recovery actions, or problem verification. It is also
a useful way to execute scripts that add information to a trap by generating a
second trap or an event that contains the additional data.

� Filtered event work space: You can activate a new or modified rule set by
creating a new dynamic work space and pointing to the rule set that you want
to use. For each dynamic workspace, you can activate only one rule set and
one or more filters.

In the main work space, select Create →Dynamic Workspace. On the
window that opens, enter the ruleset name and any other appropriate
information. The new work space uses the rule set and filters, if any, to
determine which events are displayed. If you edit a rule set while it is active,
close and reopen the dynamic workspace window to put the changes into
effect. In the Dynamic Workspace window, click the Help button for
information about the window’s fields.

Filtering traps from display on the Event Display is effective for reducing CPU
consumption. While filters add cost to the processing of traps (check the trap
to see if the filter applies), the cost of checking the filter is far less than the
cost of displaying the trap on the Event Display.

Because a rule set activated in this fashion executes only when the event
work space is open, use it only in production to perform actions on behalf of a
particular NetView user. An operator can filter events from display by using a
filtered event work space. Or the operator can execute a script to gather
diagnostic data when a certain event is received. Automated actions may
need to run regardless of whether an operator is logged on and using the
event display. Execute these actions using another method, such as
ESE.automation. We do not recommend using filtered event work spaces for
triggering these types of automation.

An exception to this guideline is to employ this method of activating a rule set
to test automation before using the rule set in ESE.automation or with
nvserverd. You can open the work space using the rule set, generate test
traps, and observe the results. If the rule set does not perform as expected,
modify the rule, and re-open the dynamic workspace to quickly test again.

� IBM Tivoli Enterprise Console forwarding: In “Using nvserverd” on
page 189, we explain how to activate a NetView rule set by inserting the
name into the configuration of the nvserverd daemon. This rule set can
contain automation. Like ESE.automation, you can use this method for
actions that need to be executed regardless of an open console.

In general, if the automation affects whether the event is forwarded to IBM Tivoli
Enterprise Console (such as problem verification automation), add it to the rule
346 Event Management and Best Practices

set used by nvserverd. Otherwise, use ESE.automation. Use filtered event work
spaces to test rule sets containing automation.

Problem verification before forwarding an event to IBM Tivoli
Enterprise Console
A common problem with NetView monitoring is the generation of false down
traps due to missed status poll responses. If NetView does not receive a
response to its SNMP query or ICMP ping for an object, it marks the object down
and issues the appropriate trap.

We recommend that you determine whether the trap is a false warning before
you forward it to the IBM Tivoli Enterprise Console event server. We describe a
sample method of performing this verification which we implemented in our lab.

The solution is to automate a status check of the object for which the down is
received. Should the test indicate the object is really available, NetView
automatically changes its status to up and generates the appropriate up trap.

It is possible to modify the rule set used to forward events to IBM Tivoli Enterprise
Console to hold the interface, node, and router down traps a few minutes to see if
their clearing traps are received as a result of the automation. However, this IBM
Tivoli Enterprise Console forwarding rule is typically large. Editing it can be
cumbersome. Therefore, we decided to use the state correlation gateway rule to
drop both the up and down events if they are received in close proximity to each
other. See 6.3.2, “IBM Tivoli Enterprise Console correlation” on page 232, for
more information about the state correction engine.

To automate the status check, we wrote a NetView rule called testdowns.rs that
checks for interface down, node down, and router down traps. It also runs a
script, /usr/OV/custom/scripts/testdowns.sh, to perform a test of the object
referenced in the trap, as shown in Figure 6-54.

Figure 6-54 The rule set (testdowns.rs) to validate down traps
 Chapter 6. Event management products and best practices 347

The testdowns.rs rule set uses the event stream default of block to prevent
forwarding traps that do not meet the trap criteria to nvcorrd. Node down,
interface down, and router down traps are defined in the Trap Settings node,
shown in Figure 6-55. This means that these types of traps are forwarded to the
next node, the Action node that executes the appropriate script.

Figure 6-55 Selecting multiple traps in the Trap Settings node
348 Event Management and Best Practices

We entered this ruleset name into ESE.automation (Example 6-54) to ensure
that it is executed for each trap generated. We recycled the actionsvr daemon.

Example 6-54 ESE.automation file containing testdowns.rs rule set

#This file should contain a list of filenames
#that will be automatically started by actionsvr.
#Each ruleset name is on a separate line; the pound sign
#indicates a comment line.
#An example line, with the name commented out) is below:
#your_ruleset_here.rs
testdowns.rs

Best practices for automation with NetView
To help you determine when to use ovactiond or actionsvr to perform automation,
follow these performance considerations:

� Do not use ovactiond for long running processes unless necessary. Use it for
automation that generates second traps that contain more information.

– The ovactiond daemon processes serially. If one command is long
running, the others wait.

– Processes can be ended if they time out.

– Setting maxWait=0 or running the actions in the background fixes the first
problem, but prevents errors resulting from the commands to be logged to
ovactiond.log.

– You have to specifically pass data from the trap to it.

� Use actionsvr for executing long running automated actions.

– The actionsvr daemon spawns a child process and allows event
processing to continue.

– It still reports the action’s return code.

– It makes all data in the trap available to the action as environment
variables.

� Monitor the daemon performance to determine how to best split the
automation tasks between them.

Rule sets are processed by the nvcorrd daemon, which invokes the actionsvr
daemon to perform automation. If many rule sets are in use, either from
ESE.automation or through NetView event displays, the nvcorrd daemon can
become busy. In these cases, it makes sense to split the automated tasks
between the daemons and assign each the automated actions that are most
suited to it.
 Chapter 6. Event management products and best practices 349

Security fix and its impact on NetView automated actions
A fix has been made to ovactiond, nvcorrd, and actionsvr to close a potential
security hole. This hole may allow any non-authorized user, with some
knowledge of NetView trap customization, to gain root access to the NetView
system by sending a trap to the NetView system from anywhere in the network.

This did not happen in the product as it is shipped, but can occur after trap
customization is done by the NetView administrator or anyone with root authority
on the NetView system. The security hole opened when a trap was customized
to include a variable in the Command for Automatic Action field. A trap can then
be sent from any system using command substitution, rather than the intended
variable, to execute unauthorized operating system commands on the NetView
system.

The UNIX daemons impacted by this fix are ovactiond, nvcorrd, and actionsvr.
The Windows daemons impacted by this fix are nvcorrd and trapd. These
daemons now filter out all non-alphanumeric characters except for the minus sign
(-) and the decimal point (.). All characters that do not fall into this set are
replaced with an underscore (_). If a minus sign or decimal point is encountered,
it is escaped (preceded by a back slash (\)) as a precaution.

If any non-alphanumeric character is encountered (and filtering is not disabled), a
message is logged to the appropriate log file (if logging is enabled). On UNIX, the
log files are /usr/OV/log/nvcorrd.alog, /usr/OV/log/ovactiond.log, and
/usr/OV/log/nvaction.alog. On Windows, the log files are \usr\ov\log\nvcorrd.alog
and trapd.log.

The modified characters include: $, ‘, ;, &, |, @, #, %, ^, <, >, /, \, =, {, }, -, ", and !.
When these characters are encountered, a message is entered into the
appropriate daemon log file.

This list of filtered characters can be configured by creating a variable (UNIX) or
a registry variable (Windows) called AdditionalLegalTrapCharacters. If you set
this variable to disable, then no filtering is done. If you set the variable to a string
containing nonalphanumeric characters, then the filtering allows those
characters to pass through the filter, but they are escaped.

Stop and restart the NetView daemons after setting the variable.

When a variable contains one of the special characters listed previously, it is
sanitized to include a \ in front of the special character. The command that runs

Note: On UNIX, the best way to set an environment variable for an
ovspmd-controlled daemon is to place the definition of the environment
variable into the /usr/OV/bin/netnmrc.pre file.
350 Event Management and Best Practices

needs to account for the \. If a custom script is executed, it can be coded to
remove the appropriate \ characters. Example 6-55 shows a Korn shell script
snippet that provides this function.

Example 6-55 Korn shell code to handle sanitized variables

#!/bin/ksh
#
The purpose of this script is to simulate a user script which
sends a page after some processing to test nvcorrd and actionsvr
#
We used to send the following:
/usr/OV/bin/nvpage 1234567@skytel hi joe `date` $NVS $NVATTR_2 $NVATTR_3
Now we will use sed to remove the escape characters
set -x
fix up $NVATTR_2 to remove backslash “\”
host=`echo $NVATTR_2 | sed “s:\\\\\\::g”`
echo $host
/usr/OV/bin/nvpage 1234567@skytel hi joe `date` $NVS $host $NVATTR_3
exit
#

6.9.2 IBM Tivoli Enterprise Console
There are two main methods of executing automation from IBM Tivoli Enterprise
Console. Tivoli tasks can be run from an IBM Tivoli Enterprise Console rule, or a
script can be executed. The method that you choose depends upon the purpose
of the automation.

Tasks
If you want to run a task out of a rule from IBM Tivoli Enterprise Console, you can
use the exec_task predicate. For example, you may have a task called
example_task in the T/EC Tasks library, which runs a script called example.sh
and echoes “hello world” into a log file that you want to run every time you
receive an event of the class EVENT. In this case, you can use a rule such as the
one shown in Example 6-56.

Example 6-56 Running a task from within a rule using the exec_task predicate

rule:
run_task_example:
(
 event: _event of_class EVENT where
 Chapter 6. Event management products and best practices 351

 [
 status: equals 'OPEN',
 hostname: _hostname
],
 reception_action:
 (
 exec_task(_event, 'example_task', '-l "T/EC Tasks" -h "%s"', [_hostname],
'YES'),
 commit_action
)
).

This rule runs the task specified on whichever host name the event came from. If
you look at the line starting with exec_task, you can see, at the end, that there is
a ‘YES’. If this parameter is set to YES, you can see a display of the output from
the task on the event console. You can see this by clicking the icon next to the
event. Then you see a window showing you the output and the success or failure
of the task, as shown in Figure 6-56.

Figure 6-56 Output of a task executed from a rule

Scripts
If you want to execute the example.sh script without using a task and you want to
run it from the IBM Tivoli Enterprise Console event server itself, use the
exec_program predicate.
352 Event Management and Best Practices

To use this predicate, we modify our rule as shown in Example 6-57.

Example 6-57 Run a script from a rule using the exec_program predicate

rule:
run_task_example:
(
 event: _event of_class EVENT where
 [
 status: equals 'OPEN',
 hostname: _hostname
],
 reception_action:
 (

exec_program(_event, '/tmp/example.sh', '', [], 'YES'),
 commit_action
)
).

This runs the same script that we ran from the task. Notice the ‘YES’. You can
also view the output from this program by clicking in the same icon as you would
the task. The output should look similar to what is shown in Figure 6-57.

Use tasks to execute automation that must run on a system other than the event
server.

Tivoli tasks can be executed upon any system defined to the Tivoli Management
Region. Therefore, this is a good way to run automation on a problem system.
Since the exec_program predicate runs a script on the event server itself, it is not
as useful in automation that must run on the failing machine, such as gathering
diagnostic data and attempting recovery.

It is possible to use exec_program to run a script on the event server and have
the script trigger Tivoli tasks on the problem machine. This serves the same
function as using the execute_task predicate for the target machine. However, it
adds complexity, which makes it more difficult to determine what the rule set is
doing and how to maintain it.

Note: Any programs the run from the exec_program predicate must reside on
the machine where the event server is located.
 Chapter 6. Event management products and best practices 353

Figure 6-57 Output of program executed from within a rule

6.9.3 IBM Tivoli Monitoring
In IBM Tivoli Monitoring, you can specify your monitor to run any task once an
indicator is met. You can do this from the actions section on the Indications and
Actions window. This window is shown in Figure 6-58.

If you click the Tasks button, you can select the task that you want to run from a
list of tasks. You can run any task that is defined in the TMR where your IBM
Tivoli Monitoring installation resides.
354 Event Management and Best Practices

Figure 6-58 IBM Tivoli Monitoring Profile for assigning tasks
 Chapter 6. Event management products and best practices 355

356 Event Management and Best Practices

Chapter 7. A case study

This chapter discusses a case study that was implemented within the
International Technical Support Organization (ITSO) lab during the creation of
this IBM Redbook. It describes the lab environment, installation issues that we
encountered, and helpful diagnostic information regarding the products that we
implemented.

7

© Copyright IBM Corp. 2004. All rights reserved. 357

7.1 Lab environment
This section provides a detailed description about the lab environment that we
use in the case study. It includes a description about the software and versions
that we use in the lab. Finally it looks at the reasons why we chose this layout for
our environment.

7.1.1 Lab software and operating systems
This lab environment uses the following software and operating systems.

Operating systems
The operating systems that we install in our lab are:

� AIX 5.1 with AIX 5110–2, running on level 12
� Windows 2000 Server with Service Pack 3
� Windows 2000 Professional with Service Pack 3
� Linux Intel

– RedHat Version 7.2 (2.4.7-10 kernel)
– RedHat Advanced Server Version 2.1
– SuSE Version 7.2 (2.4.4-4GB kernel)
– UnitedLinux Version 1.0

Databases
We use DB2 Universal Database™ (UDB) 7.2 with Fix Pack 7.

Tivoli products
The Tivoli products that we use are:

� Tivoli Management Framework, Version 4.1 with:

– 4.1–TMF–0010E
– 4.1–TMF–0013
– 4.1–TMF–0014
– 4.1–TMF–0015

� IBM Tivoli Enterprise Console 3.9
� IBM Tivoli NetView with Integrated TCP Service Component 7.1.4
� IBM Tivoli Switch Analyzer 1.2.1
� IBM Tivoli Monitoring 5.1.1

– IBM Tivoli Monitoring Component Services 5.1.0 with 5.1.0-ITMCS-FP01
– IBM Tivoli Monitoring for Business Integration 5.1
– IBM Tivoli Monitoring for Web Infrastructure 5.1.1
– IBM Tivoli Monitoring for Databases 5.1
358 Event Management and Best Practices

Applications
We use the following applications:

� WebSphere Application Server Version 5.0 Base Edition
� Peregrine ServiceCenter Version 4.0.4
� WebSphere MQ 5.2 or 5.3 (IBM Tivoli Monitoring)
� Java Runtime Environment (JRE) 1.3.1

7.1.2 Lab setup and diagram
This section looks at the layout of our lab environment. It includes a description of
the software that we install on each individual box. It discuses the network setup
and naming conventions.

Naming conventions
We use the following naming conventions:

� The first three letters correspond to the location of the machine.

� The next letter is either an A for AIX or W for a Windows operating system.

� The next two characters correspond to that machine’s purpose. For Tivoli
machines, we use an abbreviation of the Tivoli software installed on the
machine. For endpoints, we specify whether they are an application server or
file server. The majority are application servers to host DB2, WebSphere MQ,
and WebSphere Application Server.

� For the machines installed with Tivoli software, TC corresponds to IBM Tivoli
Enterprise Console, NW corresponds to Integrated TCP Service Component
in NetView, WS corresponds with WebSphere Application Server, and TF
corresponds to Tivoli Management Region (TMR) (Tivoli Framework).

� The last two characters are a unique two-digit number for that machine.

For example, the first machine located in Raleigh, North Carolina, has Windows
2000 as its operating system and is used as a file server. It has the name
RDUWFS01.

Lab layout
Figure 7-1 shows the layout that we create in the ITSO lab for our case study and
testing purposes.

Note: Having a standard naming convention for your endpoints greatly
increases the ease of correlating events.
 Chapter 7. A case study 359

Figure 7-1 Lab layout

Servers
We use a total of six AIX-based and six Intel-based servers. The following list
includes the names of these servers and their purpose. Refer to Figure 7-1 for
their location in the network.

� The servers beginning with RDU located in Raleigh are:

– RDUARM01: This server hosts RemedyHelp Desk for trouble ticketing. A
DB2 database is also installed for Remedy’s use.

– RDUATC01: This server hosts the Focal Point IBM Tivoli Enterprise
Console. It has the UI server, RIM host, and a TMR installed. This server
also hosts an instance of DB2 for the use of the Focal Point IBM Tivoli
Enterprise Console.

Tier 2 Remedy
DB2

rs6000
AIX

m1097502
 RDUARM01

TEC
TMR

UI_Server
RIM host

DB2
rs6000

AIX
m10df58f

 RDUATC01

9.24.106.136 9.24.106.135

Tier 1
Entry Tier

Event Sources

Risk Manager Network

 WebSphere
State Correlation

GW
xSeries 230

Windows 2000
m23vnx64

RDUWWS01

TMR
ITM
DB2

rs6000
AIX

m106244
RDUATF01

Endpoint w/
ITM
ACF

 NetFinity 5100
Linux

m23x3078
MSPWAS01

Endpoint w/
ITM
ACF
300pl

 Windows 2000
m23caaxy

SAPWAS02

Endpoint w/
ITM
ACF

rs6000
AIX

Venus
 DTMAAS01

9.24.106.151 9.24.106.153 9.24.106.154

9.24.106.167 9.24.106.183

9.24.106.184

9.24.106.185 9.24.106.186

9.24.106.152

CISC OSYSTEMS CISCOSYSTEM S CISCOSYST EMS9.24.106.164

9.24.106.168

9.24.106.180 9.24.106.181

9.24.106.130

9.24.106.145

CISCOSYSTEMS 9.24.106.131

CISCOSYSTEMS Cisco 2600 Router

CISCOSYSTEMS 9.24.106.147

TEC
 UI_Server
 RIM host
 rs6000

 AIX
 m10df5bf

 RDUATC01

ITSC/NetView
ITSA

rs6000
AIX

m1083a6f
RDUANW01

9.24.106.161
9.24.106.161

CISCOSYSTEMS Cisco 2600 Router

Endpoint w/
ITM
ACF
300pl

 Windows 2000
 m23caaac
 PHIWAS01

9.24.106.177

9.24.106.146

CISCOSYSTEMS9.24.106.179

Endpoint w/
ITM
ACF
300pl

 Windows 2000
m23caaxp

DTMWAS01

Endpoint w/
ITM
ACF

 NetFinity 5100
Linux

m23x2636
PHIWAS02

CISCOSYSTEMS 9.24.106.163
360 Event Management and Best Practices

– RDUWWS01: This server hosts a WebSphere server for the IBM Tivoli
Enterprise Console Web Console. It is installed with a gateway to run the
IBM Tivoli Enterprise Console Gateway Process and state correlation.

– RDUATF01: This server hosts another TMR for the use of the lower-level
IBM Tivoli Enterprise Console. IBM Tivoli Monitoring is installed on this
TMR. An instance of DB2 is installed for the lower-level IBM Tivoli
Enterprise Console server’s use.

– RDUATC01: This server hosts the lower-level IBM Tivoli Enterprise
Console. It also has the UI server and RIM host installed.

– RDUANW01: This server hosts Integrated TCP Service Component in
NetView as well as IBM Tivoli Switch Analyzer.

� The following servers are used for an endpoint with IBM Tivoli Monitoring
Resource Models and ACF Logfile Adapters running at each site:

– Server starting with MSP for Minneapolis, Minnesota

• MSPWAS01

– Server beginning with SAP located in San Paulo, Brazil

• SAPWAS01

– Servers beginning with PHI located in Philadelphia, Pennsylvania

• PHIWAS01
• PHIWAS02

– Servers beginning with DTM located in Dortmund, Germany

• DTMAAS01
• DTMWAS01

Network components
We use a combination of one Cisco 2600 router, one Cisco 3600 router, and
seven switches. Our main router, the Cisco 3600, is named rdur02. The 2600
router is named rdur01. For our purposes, here we refer to our switches by their
IP address. Refer to Figure 7-1 for the general layout.

Our lab has four networks, 9.24.106.160, 9.24.106.176, 9.24.106.144, and
9.24.106.128. The main router rdur02 is connected to the Risk Manager Network
and connects the 9.24.106.160 and 176 networks.

In the 160 network, we have two switches: 9.24.106.163 and 9.24.106.164. The
164 is cascaded off of the 163, and the 163 is connected to rdur02. Both
switches on this network have one server connected to them.

Note: These PHI servers are a Linux cluster.
 Chapter 7. A case study 361

In the 176 network, there are three switches: 9.24.106.179, 9.24.106.180, and
9.24.106.181. The 180 and 181 are cascaded off of the 179, and the 179 is
connected to rdur01. Switch 179 has two servers connected to it. The other two
switches have one server connected to them.

In the 144 network, we have one switch 9.24.106.147. This switch is between
rdur01 and rdur02 and has four servers connected to it.

In the 128 network, we have one switch 9.24.106.131. This switch is connected
to rdur01 and has two servers connected to it.

7.1.3 Reasons for lab layout and best practices
We set up our lab to try to test most situations that customers would configure in
their networks. In this section, we discuss the reasoning behind our lab layout
and the positioning of the IBM Tivoli software.

Network layout
We are limited to the amount of networking hardware and the type of network
hardware available to the ITSO at the time of running the lab. We acquire and
use two Cisco routers (one 3600 and one 2600) and seven Cisco Catalyst 1900
switches.

We position our network to try to create as many situations as possible in this
limited test environment. First we divide our lab into four networks, one for each
location that we specify. Our locations here represent virtual geographical
locations. This assists us with using locations to separate each network event.

Another goal we accomplish is to cascade at least one network switch off of
another network switch. This determines whether IBM Tivoli Switch Analyzer
recognizes a failure on the cascaded switch and forwards the event to NetView.
For this same reason, we locate a switch between our main and secondary
router. In addition, we use our limited network hardware to include at least one
switch in each of our virtual geographic network locations.

Machine layout
In conjunction with our network layout, we locate at least one machine in each of
our four locations. The servers at each location represent servers that run
business critical applications. Again, we use this configuration to assist with
event management and event source location. This type of information is
invaluable when working specifically on correlation and other event management
disciplines.
362 Event Management and Best Practices

Tivoli software
The IBM Tivoli software configuration in the lab consists of two interconnected
TMRs, each with a local IBM Tivoli Enterprise Console installation. This is
configured to show an IBM Tivoli Enterprise Console hierarchy and to explain
how to implement an event management solution in such an environment. In this
IBM Tivoli Enterprise Console configuration, the lower-level IBM Tivoli Enterprise
Console server handles filtering and drops unnecessary events. In turn, it sends
only events to the higher-level IBM Tivoli Enterprise Console when those events
should be acted upon.

We set up the IBM Tivoli software as a centralized installation. Our high-level
servers, such as NetView, IBM Tivoli Switch Analyzer, TMF, and IBM Tivoli
Enterprise Console are located in one location. TMF gateways are in each
remote location to represent a typical centralized management solution.

7.2 Installation issues
This section describes the installation issues that we encounter during our case
study in the ITSO labs.

7.2.1 IBM Tivoli Enterprise Console
For IBM Tivoli Enterprise Console, we encounter the problems presented in the
following sections.

tec_gateway
The Adapter Configuration Facility (ACF) tec_gateway_sce does not contain file
.tec_gateway_diag_config.

Windows
In Windows, you change the tec_gateway.conf file. The parameter that points to
the Extensible Markup Language (XML) file is incorrect by default. You must
change all back slashes (\) to forward slashes (/), as shown in Example 7-1.

Example 7-1 tec_gateway.conf file changes for Windows

Fri Oct 03 09:12:11 2003

tec_gateway Configuration

ServerLocation=@EventServer
GatewaySendInterval=5
 Chapter 7. A case study 363

GatewayQueueSize=40000
BufEvtPath=C:\WINNT\system32\drivers\etc\Tivoli/tec/tec_gateway_sce.cache
Pre37Server=no
UseStateCorrelation=YES
StateCorrelationConfigURL=file:///C:/WINNT/system32/drivers/etc/Tivoli/tec/tecr
oot.xml
SendEventPort=5561
ReceiveAckPort=5562
ReceiveEventPort=5563
SendAckPort=5564
gwr_ActiveConnections=20
gwr_ActiveConnectionsSafety=80
gwr_Enable=yes
LogLevel=ALL
LogFileName=c:\temp\tec_gateway.log
TraceLevel=ALL
TraceFileName=c:\temp\tec_gateway.trc

7.2.2 NetView
We do not encounter installation issues during the NetView installation.

7.2.3 IBM Tivoli Switch Analyzer
On AIX, ensure that there is at least 50 MB in /tmp, or run the installation using
another temporary directory with at least 50 MB by issuing the following
command:

./switchanalyzer_install -is:tempdir alternate temp directory

Make sure you have X Window System capability, since the InstallShield wizard
is used.

Use the ./switchanalyzer_install command to invoke the InstallShield wizard
and answer the appropriate questions. Figure 7-2 shows the initial window. Then
click Next.
364 Event Management and Best Practices

Figure 7-2 InstallShield wizard initial window

The Software License Agreement panel (Figure 7-3) opens. Agree to the
licenses and click Next.

Figure 7-3 License agreement window
 Chapter 7. A case study 365

You see a window similar to the one in Figure 7-4. If you are ready to begin the
installation, select Yes and click Next.

Figure 7-4 Confirmation window
366 Event Management and Best Practices

You see a summary window (Figure 7-5). Confirm the information and click Next.

Figure 7-5 Summary window

The installation begins. When it completes, you see a window similar to the
example in Figure 7-6.

Figure 7-6 Completion window
 Chapter 7. A case study 367

When the installation is completed, verify that the daemon is running using the
ovstatus itsl2 command. Use the following procedure to manually start the
itsl2 daemon:

� For UNIX, if the Tivoli NetView product is not started, always use the
/usr/OV/bin/serversetup utility to start the daemons. This utility automatically
starts the Tivoli Switch Analyzer product. If the Tivoli NetView product is
started, use the Tivoli NetView ovstop and ovstart commands to start and
stop itsl2 daemon. For example, use the following command to start the itsl2
daemon:

/usr/OV/bin/ovstart itsl2

� For Windows, use the following command to start IBM Tivoli Switch Analyzer:

\usr\ov\bin\ovstart itsl2

Layer 2 root cause events and topology status updates are available immediately
after IBM Tivoli Switch Analyzer is installed and started. IBM Tivoli Switch
Analyzer reports are enabled immediately for the SuperUser role. However, you
must activate them as follows:

1. From the main menu of the Tivoli NetView native console, select
Administrator →Security Administration →Web Console Security to start
the security console.

2. From the main menu, select File →Save, and then click File →Restart Web
Server.

IBM Tivoli Switch Analyzer reports are not available for other user roles until you
enable and activate them as follows:

1. From the main menu of the Tivoli NetView native console, select
Administrator →Security Administration →Web Console Security to start
the security console.

2. Check the following Tivoli Switch Analyzer reports for the required roles. The
SuperUser role includes them all as the default value.

– Impact Analysis
– Impact Analysis (connectors)
– Discovery
– Rediscovery

3. From the main menu, select File →Save, and then click File →Restart Web
Server to integrate the menu items, as shown in Figure 7-7.
368 Event Management and Best Practices

Figure 7-7 Restart Web Server window

IBM Tivoli NetView Web console users with the appropriate roles now have
access to the IBM Tivoli Switch Analyzer report menu items.

The installation of IBM Tivoli Switch Analyzer performs the following tasks:

� Copies files and binaries to /usr/OV/ITSL2
� Updates IBM Tivoli Switch Analyzer specific files
� Imports layer 2 NetView object identifiers (OIDs)
� Updates system files
� Installs NetView files
� Creates itsl2 daemon
� Adds traps

Before IBM Tivoli Switch Analyzer can recognize a switch, you must define it as a
switch in the Tivoli NetView database. Run the following command:

/usr/OV/bin/ovtopodump –X

This command determines the following information:

� That the machine the NetView product is installed on is discovered

– If this machine is not discovered, the itsl2 daemon does not start.

– The node must be managed.

– All devices downstream from an unmanaged device are ignored by IBM
Tivoli Switch Analyzer.
 Chapter 7. A case study 369

� That devices classified as switches by the Tivoli NetView product have Simple
Network Management Protocol (SNMP) sysObjectId entries in the
/usr/OV/ITSL2/conf/files/l2_oids.cfg file

This file is automatically updated during installation of the IBM Tivoli Switch
Analyzer using information from the IBM Tivoli NetView oid_to_type file.

� That the isConnector capability field is set to True and the isRouter field is set
to False for the device object

The analysis output provided by the command includes the following
information about a node:

– OVwDb object ID
– Node name
– IP status
– SNMP address
– sysObjectID
– Layer2Status field value

The command output also provides a column named Layer 2 OID?, which
indicates whether the SNMP sysObjectId is missing from the
/ur/OV/ITSL2/conf/files/l2_oids.cfg file. This output is shown in Example 7-2. In
Example 7-2, the switches are recognized, but still have no layer 2 status.

Example 7-2 Recognized switches missing layer 2 status

root:/ >ovtopodump -X
Node ID Object IP Status L2 Status IP Address SNMP OID Layer 2 OID?
 OID?
 541 rdusw03 Up Unset 9.24.106.163 1.3.6.1.4.1.9.5.18 Yes
 543 rdusw04 Up Unset 9.24.106.164 1.3.6.1.4.1.9.5.31 Yes
 549 rdusw05 Up Unset 9.24.106.179 1.3.6.1.4.1.9.5.18 Yes
 551 rdusw06 Up Unset 9.24.106.180 1.3.6.1.4.1.9.5.18 Yes
 555 rdusw07 Up Unset 9.24.106.181 1.3.6.1.4.1.9.5.31 Yes
 568 rdusw01 Up Unset 9.24.106.131 1.3.6.1.4.1.9.5.18 Yes
 605 rdusw02 Up Unset 9.24.106.147 1.3.6.1.4.1.9.5.31 Yes

7.3 Examples and related diagnostics
This section provides a set of examples and diagnostics regarding things found
in our case study.

7.3.1 Event flow
One of the first actions performed in debugging event correlation and automation
is to trace the path of the event through various event processors. Determining
370 Event Management and Best Practices

how far the event has proceeded gives an indication of where to look for the
problem. This section explores the means that are available to verify the
reception of events in NetView and IBM Tivoli Enterprise Console.

Event reception in NetView
When troubleshooting NetView event flow, consider the items in the following
sections.

Determining if an event was received by NetView
There are several ways to determine if a trap was received by NetView:

� If you already have an active NetView console, see if the event is displayed in
the event window. Make sure that the event window you are viewing is not one
to which filters are applied, which may prevent display of the event of interest.

Examine the time stamp on the traps. If the most recent trap in the list
occurred a while ago, it can be a sign that NetView is not processing traps or
is being flooded by them. For flooding conditions, the event window still
updates periodically with new entries. If trapd stops processing, no new
events are displayed.

Become familiar with the rate at which you normally receive traps. This helps
you to determine from the time stamp of the latest trap which condition has
occurred.

Slow processing of traps may be due to long running inline actions in your rule
sets. For example, if NetView executes automation that may time out, all other
rule processing for that event waits until the end of the timeout interval.

� Examine the trapd.log file. If you follow the best practices described in
Chapter 6, “Event management products and best practices” on page 173, all
traps received by NetView are logged in this file, and several days worth of
data are stored online in files.

If the trap of interest is not in the appropriate file, this may be the result of
several reasons:

– The trapd daemon may not be running. Use the ovstatus trapd command
to verify that the daemon is active. If it is not active, start it by executing the
ovstart trapd command.

– There may not be a definition for the trap in the trapd.conf file. If the trap is
received but not formatted, there may be an unknown format trap in
trapd.log.

– The trap may be configured as “Don’t log or display”. Check the trapd.conf
file (either by viewing the file directly or through the event configuration
screen) to see if the trap is defined there. If it does not exist, add it. If it
exists, ensure that it is not defined as “Don’t log or display”.
 Chapter 7. A case study 371

– SNMP in the networking devices may be improperly configured. This
affects unsolicited traps sent by a device. It does not pertain to such traps
as Node Down, which are generated by NetView.

If a device’s log shows an error condition that you want to see at your
consoles and no corresponding trap is received by NetView, this may
result for a few reasons. The device may be misconfigured to suppress the
trap, or its trap destination configuration may be set improperly. Check the
SNMP definitions in the device to ensure that these are not the problem.

Determining why a NetView event has not reached the IBM Tivoli
Enterprise Console server
If a NetView event is expected at IBM Tivoli Enterprise Console and does not
arrive, this can result for several reasons. First, verify whether NetView itself
received the trap by using the techniques outlined in the previous section. Next,
ensure that IBM Tivoli Enterprise Console is actually receiving events from other
sources. If it is, then the problem is on the NetView side. If not, the problem may
be with the IBM Tivoli Enterprise Console server itself.

If NetView receives the trap but IBM Tivoli Enterprise Console does not,
determine whether IBM Tivoli Enterprise Console is receiving other NetView
traps from this server. If it is not, then perform the following steps. If it is, skip the
first three steps.

1. Verify that the nvserverd daemon or tecad_nv6k adapter is running.
Depending on your operating system and event processing requirements, use
one of these methods to forward events to IBM Tivoli Enterprise Console.

Use the ovstatus command to check the operation of the appropriate
daemon. If the daemon is not running, start it by using the ovstart command.

2. If the appropriate daemon is running, check its configuration for the correct
destination IBM Tivoli Enterprise Console server.

For nvserverd forwarding, the /usr/OV/conf/tecint.conf file indicates the target
IBM Tivoli Enterprise Console server as shown in Example 7-3.

Example 7-3 Two ways to specify target IBM Tivoli Enterprise Console in tecint.conf file

ServerLocation=146.84.157.39
TecRuleName=forwardall.rs

ServerLocation=tecservr.raleigh.tivoli.com
TecRuleName=my_tec_rule.rs

The first method specifies the IP address of the destination IBM Tivoli
Enterprise Console server. The second method specifies its name. Verify that
372 Event Management and Best Practices

the entry in your tecint.conf file is correct for the destination IBM Tivoli
Enterprise Console server and that NetView can route traffic to that subnet. If
specifying by name, ensure that NetView can properly resolve the host name.

When using the NetView adapter, the information is stored in
\usr\OV\conf\tecad_nv6k.conf file, as shown in Example 7-4. The
ServerLocation parameter indicates the destination IBM Tivoli Enterprise
Console. Again, ensure that the setting is correct and that NetView can reach
the subnet.

Example 7-4 Specifying the target IBM Tivoli Enterprise Console in tecad_nv6k.conf

ServerLocation=tecservr.raleigh.tivoli.com
ServerPort=0

ServerLocation=@EventServer
ServerPort=5529

ServerLocation=146.84.157.39
ServerPort=0

ServerLocation=@EventServer#tmr-central
ServerPort=0

The destination IBM Tivoli Enterprise Console can be specified by host name,
IP address (non-TME), or Tivoli Event Server object (TME). In an
interconnected TMR environment, specify @EventServer#region_namer if the
IBM Tivoli Enterprise Console to which events should be forwarded is in an
interconnected TMR.

Next, verify the port. Specifying 0 is typical, and means to use portmapper to
determine the port. If a port is coded with a different value, ensure that it
matches the setting of the tec_recv_agent_port parameter in the .tec_config
file on the IBM Tivoli Enterprise Console server:

tec_recv_agent_port=5529

In firewall environments, ensure that the proper firewall rules exist to allow the
traps to flow to the IBM Tivoli Enterprise Console.

3. Examine the NetView cache. If NetView is unable to reach the IBM Tivoli
Enterprise Console server, it caches events until the connection can be
re-established. The location of the cache file is specified in the configuration
files for nvserverd and tecad_nv6k as shown in Example 7-5.
 Chapter 7. A case study 373

Example 7-5 Specifying cache location in tecad_nv6k.conf

BufEvtPath=%SystemRoot%/system32/drivers/etc/Tivoli/tec/nv6k.cache
BufferFlushRate=5

In this example, events are cached in the file specified by the BufEvtPath
parameter. The BufferFlushRate specifies the number of events sent per
minute. When the adapter recovers the lost connection, and there are events
in the buffer, the events are sent in bursts at this rate per minute. The default
value is 0. All events are sent in one burst.

The nvserverd daemon caches events by default in the /etc/Tivoli/tec/cache
file. This location may be changed by specifying BufEvtPath=pathname
parameter in the tecint.conf file.

4. Review NetView’s event forwarding configuration.

NetView may be configured, for example, to prevent the forwarding of a
particular trap to NetView. Review each configuration option to ensure that it
is not blocking the event.

When using nvserverd to forward events, check the rule set used by the
daemon to see if there are any Trap Settings nodes or other logic that may
prevent the trap from being forwarded. Also, see what IBM Tivoli Enterprise
Console class to assign to the event either by viewing the Event configuration
screen or the trapd.conf file.

For the NetView adapter, check for Filter statements in the tecad_nv6k.conf
file. If the trap is listed, and FilterMode=OUT, the trap is blocked. If
FilterMode=IN and the trap is not listed in a Filter statement, add it.

Likewise, if a FilterCache statement exists for the trap and the adapter goes
into caching mode, it is possible that the event is dropped. The FilterCache
keyword prevent traps from being cached in the event that IBM Tivoli
Enterprise Console is unreachable. It is used for traps that are
time-dependent, which are those for which action cannot be taken after a
certain interval has passed.

5. If it is still not apparent why the event is not forwarded, then trace the
appropriate subsystem.

Use subsystem tracing when you suspect a problem with the Tivoli NetView
program. To trace subsystems with the nettl operation in the Server Setup
application, use the nettl command, or complete the following steps:

a. Log in as root.

b. From the command line, perform the following steps:

i. Enter the serversetup command to invoke the Server Setup
application.
374 Event Management and Best Practices

ii. Select Diagnose →Set subsystem tracing and logging options
(nettl) →Start subsystem (nettl) tracing.

c. The Start subsystem (nettl) tracing window opens. Enter the subsystem
and trace type. For event management services, the subsystem is OVE.
The trace options are proc, state, error, and logging. Refer to the online
help for information about the fields in this window. Click OK.

The nettl command (and nettl option of the Server Setup application)
creates a single log file of entries. By default, the file is
/usr/OV/log/nettl.LOGxx, where xx is 00 or 01. To change the default log file,
use the Server Setup application.

The nettl command requires root user authority. Disaster and error logging
are enabled at system startup and should not be disabled.

Each log entry contains header information and a user data field. The header
information has a date and time stamp, the name of the subsystem, a Log
Class field indicating the type of event being logged, and other miscellaneous
fields. Under the header, a text string describes the log event and a
subsystem error number. In some cases, the text string may include
corrective actions.

Use the netfmt command to format the nettl trace output.

6. Consider tracing the trapd daemon for further diagnostic information.

By default, trapd trace records are written to /usr/OV/log/trapd.trace. Use the
trapd -T command to toggle tracing on and off for both NetView for UNIX and
NetView for Windows.

If you suspect a problem with the trapd daemon on NetView for Windows, try
the following actions to further isolate the problem:

a. Look at the nv.log file for trapd process errors. The default log file is
\usr\ov\log\tnv.log.

b. At the command prompt, type:

event

c. Check that a Node Up trap appears in the Event Browser or SQL
database.

d. If the trapd daemon appears to be hung, stop all the daemons by
double-clicking the Stop Daemons icon in the NetView program group or
by using the ovstop command.

e. Restart all the daemons by double-clicking the Start Daemons icon or by
using the ovstart command.

f. Ensure that adequate paging space is available:

i. Double-click the Control Panel icon.
 Chapter 7. A case study 375

ii. Double-click the System icon.

iii. Click Virtual Memory to check the available paging space. The
recommended minimum is 120 MB. If necessary, increase the paging
space.

Generating test traps
There are various ways to generate test traps, some easier to execute than
others. Table 7-1 shows a quick summary.

Table 7-1 Methods of generating test traps

Choose the method that is easiest and provides the necessary information. If you
have test equipment, causing the error condition to happen may be easiest and
supply all the required data for the trap. You may use the event command with

Method Syntax Example

event command

Sends an event
to the trapd
daemon

event [-a data] [-b database] [-d
descr] [-E event_number] [-e event]
[-h node] [-l]
[-n num] [-s source] [-t hostname]
[-u hostname] [-T hostname] [-x]

event -E 58916865

This example sends a node down trap.

snmptrap
command

Issues an
SNMP trap

snmptrap [-d] [-t timeout] [-r
retries] [-p port] [-c community]
node enterprise
agent-addr generic-trap
specific-trap time-stamp [variable
type value ...]

/usr/OV/bin/snmptrap -c public
.1.3.6.1.4.2.6.3.1 nmstation.abcd.com
<agent-addr > 6 31 1
.1.3.6.1.4.1.2.6.3.1.1.3.1
octetestring \ "named"
.1.3.6.1.4.1.2.6.3.1.1.3.2 octetstring
"$hostname" “”

Sends a trap (generic trap 6, specific 31 for
enterprise 1.3.6.1.4.2.6.3.1) indicating that
named died.

Cause error
condition

Error dependent Disconnect a link on Cisco router to cause
a Link Down trap to be generated.

Generate test
trap from an
SNMP device

Some networking devices provide a
method (command line or graphical
user interface (GUI)) to generate test
traps.

IBM 3494 provides this function through its
console.

To send a TESTM SNMP trap, select SNMP
Options →Send TESTM Trap. Selecting
this menu item opens a window that allows
you to enter a string to send to all the
monitor stations for which the Library
Manager is configured.
376 Event Management and Best Practices

NetView traps. However, doing so may not work for simulating unsolicited traps
that come from the networking device itself.

The snmptrap command is most complex because it requires knowledge of the
Management Information Base (MIB) variables passed in the trap, their dotted
decimal format, and type (string, number, IP address, counter, etc). If you miss
one of the expected variables, the trap is not generated.

Event reception in IBM Tivoli Enterprise Console
All events received by the IBM Tivoli Enterprise Console server are stored in the
IBM Tivoli Enterprise Console reception log, regardless of whether they pass
parsing. To query the IBM Tivoli Enterprise Console reception log, use the
wtdumprl command. This command has several parameters that you can use to
modify the output, which is presented via standard output. When you have a
large number of events, it is helpful to use the -o DESC option and pipe it to more:

wtdumprl -o DESC | more

This variation of the command shows the most recent events first and prevents
you from dumping the entire database out to screen at one time. By default,
running the wtdumprl command displays all events in the reception log in
ascending order.

If you do not see the event that you expect in the output of the wtdumprl
command, then the IBM Tivoli Enterprise Console server did not receive the
event. From here, it is helpful for you to examine the IBM Tivoli Enterprise
Console gateway log files, and the source of the event, to determine why the
event was not received by the IBM Tivoli Enterprise Console server.

7.3.2 IBM Tivoli Enterprise Console troubleshooting
This section discusses how to solve possible problems when using IBM Tivoli
Enterprise Console.

Gateway and state correlation
You can perform IBM Tivoli Enterprise Console gateway diagnosis and
troubleshooting in three different ways:

� Use the LogLevel and TraceLevel parameters in the tec_gateway.conf file to
debug Java problems.

� Use the .tec_gateway_diag_config file to debug event flow and state
correlation.

� Use external tools to write and test XML rules before production.
 Chapter 7. A case study 377

To configure debug in the tec_gateway.conf file, follow these steps:

1. Edit the tec_gateway.conf file to specify the level of tracing that you want. The
sample tec_gateway.conf file is located in the event server in
$BINDIR/../generic_unix/TME/ACF_REP.

You can specify the following debug parameters in tec_gateway.conf:

LogLevel=value
LogFileName=filename
TraceLevel=value
TraceFileName=filename

Here value is the value of the parameter you want to use, and filename is the
name of the output file for the debug.

Example 7-6 shows the tec_gateway.conf file with all debug options enabled
in the four last lines.

Example 7-6 tec_gateway.conf file with all debug options enabled

#
cat tec_gateway.conf
Fri Oct 3 18:33:25 2003
#
tec_gateway Configuration
#
ServerLocation=@EventServer
GatewaySendInterval=5
GatewayQueueSize=40000
BufEvtPath=/etc/Tivoli/tec/tec_gateway_sce.cache
Pre37Server=no
UseStateCorrelation=YES
StateCorrelationConfigURL=file:///etc/Tivoli/tec/tecroot.xml
SendEventPort=5561
ReceiveAckPort=5562
ReceiveEventPort=5563
SendAckPort=5564
gwr_ActiveConnections=20
gwr_ActiveConnectionsSafety=80
gwr_Enable=yes
LogLevel=ALL
LogFileName=/tmp/tec_gateway.log
TraceLevel=ALL
TraceFileName=/tmp/tec_gateway.trc
#

2. Distribute a gateway configuration profile with the updated tec_gateway.conf
through the Adapter Configuration Facility.
378 Event Management and Best Practices

To troubleshoot problems with the tec_gateway program, you can configure
tracing for the tec_gateway process, which is controlled by one of these files:

� UNIX: /etc/Tivoli/tec/.tec_gateway_diag_config

� Windows:
%SystemRoot%\system32\drivers\etc\Tivoli\.tec_gateway_diag_config

To configure tracing for the tec_gateway process, follow these steps:

1. Edit the .tec_gateway_diag_config file to specify the level of tracing that you
want. The sample .tec_gateway_diag_config file is located on the event
server in the $BINDIR/../generic_unix/TME/ACF_REP directory. By default,
the .tec_gateway_diag_config file looks similar to this example:

Highest_level error
Truncate_on_restart true
#tec_gateway
#############
tec_gateway Highest_level error
tec_gateway GW_Send error /tmp/tec_gateway
tec_gateway State_Correlator error /tmp/tec_gateway

Both Highest_level keywords set the highest trace level possible within the
following sections in the file. The tracing levels from least verbose to most
verbose are:

error
warning
trace0
trace1
trace2

The Truncate_on_restart keyword specifies whether trace files are truncated
to zero bytes when the tec_gateway process starts.

2. Distribute the gateway configuration profile with the Adapter Configuration
Facility.

You should only set tracing on to determine the cause of a problem. Otherwise,
disable tracing or set tracing at the error level. If you distribute a gateway
configuration profile and you want to disable tracing, delete the
.tec_gateway_diag_config file from the gateway configuration profile. If you
already distributed the .tec_gateway_diag_config file and you want to disable

Note: If you upgrade from a previous release of the Tivoli Enterprise Console
product, the Distribution tab for existing gateway configuration profiles is not
updated with the .tec_gateway_diag_config file. If you want to enable tracing,
you must delete the existing gateway configuration profile and create and
distribute a new gateway configuration profile.
 Chapter 7. A case study 379

tracing, delete the .tec_gateway_diag_config file manually from the Tivoli
Enterprise Console gateway.

IBM Tivoli Enterprise Console V3.9 does not come with any tools to edit or test
state correlation XML rules. However, many free tools are available for XML
editing. We recommended that you use one of these tools to make your work
easier. We also recommend that, as always, you test the rules before you go to
the production environment.

Reception buffer
The reception buffer is a first in, first out (FIFO) queue. If you routinely see
QUEUED events in the output from the wtdumprl command, the rule engine is
too busy. If you see only PROCESSED events in the output from the wtdumprl
command, the reception buffer is adequately sized, and rule engine processing is
efficient.

When the reception buffer accepts the event, the reception engine process
changes the event to the QUEUED state. If you routinely see WAITING events in
the output of the wtdumprl command, the reception buffer is not large enough,
the rule engine is too busy, or both.

When the event server is restarted, the reception engine is reloaded with events
from the reception log that are in the WAITING or QUEUED state.

The reception engine does not process internally generated events (for example,
those generated by rules). Internally generated events never appear in the
reception log or the reception buffer.

The reception buffer is located in system memory (RAM). You can configure the
size of the reception buffer using the wsetesvrcfg command or from the Event
Server Parameters window.

Rules cache
The event cache is basically a list of received events in RAM that have been
through rule processing. The default size is 1000 events. It is configured with the
wsetesvrcfg command or from the Event Server Parameters window.

Events are uniquely identified by a number that is a combination of the event
attributes event_handle, server_handle, and date_reception, sometimes referred
to as an event ID.

After rule processing, the event is placed into the event cache of the rule engine.
The rule engine evaluates and correlates events with other events in the event
cache. The rule engine uses the event cache for its processing, and the event
380 Event Management and Best Practices

cache is kept in memory. The rule engine interacts with the dispatch engine to
synchronize the updates of its event cache with the event database.

When the event server is started, the dispatch engine retrieves events from the
event database to reload the event cache for the rule engine.

When the internal TEC_Notice event Rule Cache full: forced cleaning occurs,
five percent of the events are removed from the cache. Events are removed in
order by age, with the oldest events removed first.

If this TEC_Notice event is received, you must either increase the size of the
event cache or to reduce the time that events are kept in the event cache. For
more information about setting these parameters, see the description of the
wsetesvrcfg command in the IBM Tivoli Enterprise Console Command and Task
Reference, Version 3.9, SC32-1232. You can also configure these parameters
through the Tivoli Desktop using the Event Server Parameters window.

Event cache searching
Searching the event cache for related events begins with the most recent event in
the cache and progresses backwards to the oldest.

Rule base
When the event server is started, it activates a rule base into memory for rule
engine use. The rule base contains all rules and event class definitions that are
to be evaluated against events.

Measuring event processing performance
You can measure event processing performance on the event server by
generating a report of event arrival and processing during a user-defined sample
period. This report includes the overall count of events received and processed.
You can also specify a time interval to be used to periodically calculate
throughput during the sample period.

Events received by the event server are inserted into the reception log with a
state of QUEUED. When processing by the event server is complete, the state of
the event in the reception log is updated to PROCESSED.

Note: The event cache may have different contents than the event repository
or an event console. This is because it is primed with events from the event
repository when the IBM Tivoli Enterprise Console server is started.
 Chapter 7. A case study 381

To create a report of this processing activity, add the following two parameters to
the .tec_config configuration file:

tec_benchmark_report_period=report_period
tec_benchmark_sample_period=sample_period

Here report_period is an integer that specifies the rate at which processing rates
are printed. sample_period is an integer that specifies the time window for which
event arrival and processing rates are computed. After you add these
parameters, stop and restart the event server.

If either of these parameters is specified in the configuration file, the output is
printed to the tec_reception trace file. Example 7-7 shows the output produced
with time stamps removed.

Example 7-7 Output with time stamps removed

===
Event Throughput Statistics
===
Reporting Interval is 2 seconds
Sample Interval is 60 seconds
Actual Period 8 seconds
Events Received:592
Event Arrival Rate:74.000000 events/second
Events Processed:700
Event Processing Rate:87.500000 events/second
--
Total Events Waiting:0
Total Events Received:6604
Total Events Processed:5666
Processing Backlog:938

The output is displayed in two sections. The first section displays the following
information:

� The reporting and sample intervals specified in the configuration file
� The current cumulative time within the sample period
� The count of events received and the arrival rate
� The count of events processed and the processing rate (event server

processing throughput in events per second)

The second section shows event-related statistics computed since the server
was started, including the number of received, processed, and waiting events, as
well as the current server back log. The back log is the difference between the
received and processed events.
382 Event Management and Best Practices

Monitoring and maintaining the IBM Tivoli Enterprise Console
logs
IBM Tivoli Enterprise Console uses several database tables to store events, logs,
and information about console users and configuration. Some of the tables are
created as database managed. These tables have a fixed size. When they
become full, IBM Tivoli Enterprise Console stops processing events.

The IBM Tivoli Enterprise Console reception log is stored in the
tec_t_evt_rec_log table. The events in the reception log are deleted from the
table when they expire.

The IBM Tivoli Enterprise Console event repository, tec_t_evt_rep, stores events
that can be viewed on the Event Console. This table is not cleaned up by any
default process.

When events are deleted from the IBM DB2 Universal Database tables, the event
data is removed. However, the space occupied by the deleted events is not
released. A DB2 reorg command is necessary to free these pages.

DB2 tables are stored in containers called tablespaces. One or more tables may
be stored in a single tablespace. When setting the size of a DB2 table, you
actually set the size of the tablespace that is holding the table.

Perform the following steps to view the state of the tablespaces:

1. Launch a DB2 command line processor.

2. Connect to the tec database using the following command using the correct
password for the db2 account:

connect to tec user db2 using password

3. Execute the following command:

list tablespaces show detail

4. You see a list of all tablespaces in the tec database along with vital
information about free space. The lab test system returned the data shown in
Example 7-8.

Example 7-8 Example tablespace data

Tablespace ID = 3
 Name = TS_REC_LOG
 Type = Database managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal
 Chapter 7. A case study 383

 Total pages = 23360
 Useable pages = 23296
 Used pages = 160
 Free pages = 23136
 High water mark (pages) = 160
 Page size (bytes) = 16384
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 2

 Tablespace ID = 4
 Name = TS_EVT_REP
 Type = Database managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 30720
 Useable pages = 30688
 Used pages = 2112
 Free pages = 28576
 High water mark (pages) = 4128
 Page size (bytes) = 16384
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 1

The data highlighted in bold reveals that:

– Both tablespaces are database managed. They will not be increased in
size when full.

– The Reception Log tablespace is using the default, minimum number of
pages (160). The reception log was cleared and the table was recently
reorganized.

– The Event Repository tablespace has grown to about 7% of its maximum
size. This is not a problem at this point. We allocated 2 GB rather than the
default 75 MB for the database. The table will grow and needs regular,
scheduled maintenance.

To clear the reception log and the event repository, use the following steps:

1. Open a Tivoli command prompt and run the following command:

wtdbclear -l -t 0

This deletes all events from the reception log database table.

2. Enter the following command:

wrmdbclear -t 24
384 Event Management and Best Practices

Assuming that you have events in the database that are more than 24-hours
old, the command displays the number of events scheduled for deletion and
asks for confirmation. Select y to confirm the deletion.

At this point, you may see an error message. If you selected more than 1,000
events for deletion and you are using a default DB2 transaction log size, the
command may fail. If this happens, increase the DB2 transaction log size
using the DB2 control center and reboot the event server. We used a
transaction log size of about 500 MB and could delete more than 100,000
events using this command.

3. The events are deleted. If you list the tablespaces again, you will find that the
pages are not released. Using the DB2 command line processor, enter the
following commands:

reorg table db2.tec_t_evt_rec_log
reorg table db2.tec_t_evt_rep

4. Enter the following DB2 command again:

list tablespaces show detail

5. The pages for the tablespaces are released as shown in Example 7-9.

Example 7-9 Tablespace data after database cleanup

Tablespace ID = 4
 Name = TS_EVT_REP
 Type = Database managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 30720
 Useable pages = 30688
 Used pages = 160
 Free pages = 30528
 High water mark (pages) = 4128
 Page size (bytes) = 16384
 Extent size (pages) = 32
 Prefetch size (pages) = 32
 Number of containers = 1

The event repository tablespace now displays only 160 pages used.
 Chapter 7. A case study 385

Creating a task that cleans the reception log and event repository is not entirely
straightforward. You must be able to run both DB2 and Tivoli commands
sequentially. The batch file shown in Example 7-10 does this. You can improve it
if necessary. The DB2 password is supplied in clear. Substitute the word
password with the DB2 password.

Example 7-10 db_cleanup.cmd

REM **
REM * This batch file will clear the TEC Reception Log, Remove *
REM * events older than 24 hours from the TEC Event Repository and *
REM * reorganize the database tables to free the pages occupied by *
REM * the deleted events.
REM **

chcp 1252

REM **
REM * Set Tivoli environment - required for Tivoli commands. *
REM **
@echo off
rem Licensed Materials- Property of IBM
rem (C) Copyright IBM Corp. 1996, 2002 All Rights Reserved
rem
rem US Government Users Restricted Rights- Use, duplication,
rem or disclosure restricted by GSA ADP Schedule Contract with
rem IBM Corp.
rem
rem Tivoli Environment Configuration Script
rem

rem Mon Sep 15 10:44:37 2003
rem generated at TMP install time

set BINDIR=C:\PROGRA~1\Tivoli\bin\w32-ix86
set DBDIR=C:\PROGRA~1\Tivoli\db\m23x2900.db
set TMRDIR=C:\WINNT\SYSTEM32\DRIVERS\ETC\Tivoli
set o_dispatch=94
set WLOCALHOST=
set INTERP=w32-ix86

Important: Make sure that you run a database cleanup at regular intervals. If
you don’t, IBM Tivoli Enterprise Console stops processing events when one or
more tablespaces reaches the maximum allocated size. There is no warning in
IBM Tivoli Enterprise Console when this occurs.
386 Event Management and Best Practices

if not "%PERLLIB%" == "" set PERLLIB=%BINDIR%\tools\lib\perl;%PERLLIB%
if "%PERLLIB%" == "" set PERLLIB=%BINDIR%\tools\lib\perl
set TivPath=%BINDIR%\bin;%BINDIR%\tools;%BINDIR%\ADE;%BINDIR%\AEF
set Path=%TivPath%;%Path%
set TMP=%DBDIR%\tmp
set TEMP=%DBDIR%\tmp
set REGI=%DBDIR%\region.out
if exist %REGI% if exist %TMRDIR%\tmrset.txt copy %TMRDIR%\tmrset.txt+%REGI%
%TMRDIR%\tmrset.bat
if exist %TMRDIR%\tmrset.bat call %TMRDIR%\tmrset.bat
set TISDIR=%BINDIR%\..\generic
set NLSPATH=C:\PROGRA~1\Tivoli\msg_cat\%%L\%%N.cat
echo Tivoli environment variables configured.
echo on
cmd /C wtdbclear -l -t 0
cmd /C wrmdbclear -t 24 -f
db2 connect to tec user db2 using password
db2 reorg table db2.tec_t_evt_rec_log
db2 reorg table db2.tec_t_evt_rep
db2 reorg table db2.tec_t_slots_evt

Save this file as db_cleanup.cmd.

We pasted the contents of the Tivoli environment batch file,
C:\winnt\system32\drivers\etc\Tivoli\setup_env.cmd, into the batch file. Use the
contents of the file on your systems to ensure that the path statements are
correct.

Finally, you must have a path to the DB2 bin directory, in our case,
C:\SQLLIB\bin. Enter the following command:

db2cmd db_cleanup.cmd

It starts the DB2 command line processor, loads the Tivoli environment, and
executes the cleanup commands sequentially.

Use the Windows or Tivoli scheduler to run this batch file at regular intervals. You
may want to run it every night to keep IBM Tivoli Enterprise Console running for
extended periods with no manual maintenance.

With the base tuning done, the system is prepared to handle a large number of
events, stay responsive, and display only the required information. The next
section looks at fine tuning performance, setting individual thresholds for event
categories, and the possibility of suppressing certain incident group categories.
 Chapter 7. A case study 387

Debugging rules with trace directive
In our lab environment, we initially test the maintenance_mode.rls rule and do
not achieve the expected results. We use IBM Tivoli Enterprise Console rule
tracing to determine the cause of the problem.

To enable IBM Tivoli Enterprise Console tracing, first set tracing to on for the
event server. On the Tivoli desktop, simply right-click the Event Server icon and
select parameters. On the resulting window (see Figure 7-8), click Trace Rules,
and then click Save & Close. Note the entry for the Rule Trace file. This is where
the trace output is written. The entry defaults to /tmp/rules.trace.

Figure 7-8 Enabling IBM Tivoli Enterprise Console tracing on the Tivoli desktop

You can also do this by entering the following command on a command line:

wsetesvrcfg -t tracefile

Here the tracefile name is optional. If you do not specify it, it defaults to
/tmp/rules.trace.

Next, add the trace directive to the rule set or rule for which tracing is desired. It is
possible to trace all rules. However, the trace output file quickly becomes
unreadable due to the large volume of events being processed concurrently.
Example 7-11 shows the trace directive that we added to the
maintenance_mode.rls file. Notice that the entry is placed at the beginning of the
rule set before any rules to trace the entire rule set. To trace only one rule within
388 Event Management and Best Practices

the rule set, specify the directive as the first entry in the rule, before the event
filter definitions.

Example 7-11 Excerpt from maintenance_mode.rls showing the trace directive

%---
%
% RULESET : maintenance_mode
%
% Tivoli Enterprise Console
% Correlation & Automation
% IBM Corporation
%
% DESCRIPTION
%
% This ruleset implements rules supporting the Maintenance function.
%
%---
directive: trace

%---
% RULE: maintenance_mode_configure
%
% DESCRIPTION
%
% This rule is used to configure the maintenance_mode behavior.
%---
rule: maintenance_mode_configure:
(

Next, recompile, reload, and recycle the IBM Tivoli Enterprise Console rule base
using the following commands:

wrb -comprules rulebasename
wrb -loadrb rulebasename
wstopesvr
wstartesvr

The trace entries for the rules traced with the trace directive (or the entire rule
base, if the -trace parameter is used on the wrb -comprules command) are
written to the trace file specified or /tmp/rules.trace by default.

Note: Specifying -trace on the wrb -comprules command enables tracing for
the entire rule base, if desired.
 Chapter 7. A case study 389

In our example, we place a machine, dtmwas01, in maintenance mode using the
script wstartmaint.sh. Next, we generate a node down event for the device. The
event does not automatically close as expected.

The check_maintenance_mode rule in the rule set detects when a device is in
maintenance mode. We hypothesized that it was not working and searched for it
in the trace output. Example 7-12 lists an excerpt of the output.

Example 7-12 Excerpt of IBM Tivoli Enterprise Console rule trace output

43] 18:44:30-> rule check_maintenance_mode
event : 0x20a48218 of_class TEC_ITS_NODE_STATUS

[944] call condition
[945] call fqhostname : _1142
[946] exit fqhostname : ''
[947] call hostname : _1820
[948] exit hostname : dtmwas01
[949] call date_reception : _2498
[950] exit date_reception : 0x3f8b2ace
[951] exit condition
[952] 18:44:30 call action check_for_event_server
[953] call recorded(mt_event_server, _3810)
[954] exit recorded(mt_event_server,rduatc01)
[955] call '' == rduatc01 , recorded(commit_rule,exec_rule, _4449) , cut(_4449)
; dtmwas01 == rduatc01 , recorded(commit_rule,exec_rule, _4449) , cut(_4449)
[956] fail '' == rduatc01 , recorded(commit_rule,exec_rule, _4449) , cut(_4449)
; dtmwas01 == rduatc01 , recorded(commit_rule,exec_rule, _4449) , cut(_4449)
[957] 18:44:30 fail action check_for_event_server
[958] 18:44:30 call action drop_events_in_maintenance
[959] call maintenance('', _3413 , _3414 , _3415)
[960] fail maintenance('', _3413 , _3414 , _3415)
[961] 18:44:30 fail action drop_events_in_maintenance

The first action in the rule is check_for_event_server. It checks to see if the event
is specifying the IBM Tivoli Enterprise Console server as the machine to place in
maintenance mode. In our example, it is not. Line [955] shows that the dtmwas01
= rduatc01 comparison fails, so the dtmwas01 maintenance mode host is not the
event server rduatc01.

Next, we examine the drop_events_in_maintenance action. This compares the
entries in the maintenance fact file (host name, mode, start time, and maximum
duration) with the blank, and the values assigned to variables _3413, _3414, and
_3415. Since there are no entries in the fact file with a blank full-qualified host
name, we determined the problem. The fqhostname slot was not getting
390 Event Management and Best Practices

populated for the event. Therefore, it never matched any entries in the
maintenance mode fact file.

For more information about using IBM Tivoli Enterprise Console rule traces, see
Chapter 6, “Testing, tracing, and profiling rules” in IBM Tivoli Enterprise Console
Rule Developer's Guide, Version 3.9, SC32-1234.

Generating sample events
Sometimes it is not possible to create a condition in which an event source sends
the event that you want to test. You can use the wpostemsg and postemsg
commands to send test events to the IBM Tivoli Enterprise Console.

In the previous example, we wanted to see if specifying an fqhostname slot
variable in the event allows the event to be properly processed by the
maintenance_mode.rls. We issued the following statement:

wpostemsg -r CRITICAL -m “Node down” fqhostname=dtmwas01.itso.ral.ibm.com
hostname=dtmwas01 TEC_ITS_SA_STATUS dtmwas01

The event arrived in IBM Tivoli Enterprise Console with the fully-qualified host
name. It was successfully dropped by the rule, as shown by the last line in
Example 7-13.

Example 7-13 IBM Tivoli Enterprise Console rule trace output successful

[1366] 18:55:56-> rule check_maintenance_mode
event : 0x20a4ba18 of_class TEC_ITS_SA_STATUS

[1367] call condition
[1368] call fqhostname : _1142
[1369] exit fqhostname : 'dtmwas01.itso.ral.ibm.com'
[1370] call hostname : _1820
[1371] exit hostname : dtmwas01
[1372] call date_reception : _2498
[1373] exit date_reception : 0x3f8b2d7c
[1374] exit condition
[1375] 18:55:56call action check_for_event_server
[1376] call recorded(mt_event_server, _3810)
[1377] exit recorded(mt_event_server,rduatc01)
[1378] call 'dtmwas01.itso.ral.ibm.com' == rduatc01 ,
recorded(commit_rule,exec_rule, _4449) , cut(_4449) ; dtmwas01 == rduatc01 ,
recorded(commit_rule,exec_rule, _4449) , cut(_4449)
[1379] fail 'dtmwas01.itso.ral.ibm.com' == rduatc01 ,
recorded(commit_rule,exec_rule, _4449) , cut(_4449) ; dtmwas01 == rduatc01 ,
recorded(commit_rule,exec_rule, _4449) , cut(_4449)
[1380] 18:55:56fail action check_for_event_server
[1381] 18:55:56call action drop_events_in_maintenance
 Chapter 7. A case study 391

[1382] call maintenance('dtmwas01.itso.ral.ibm.com', _3413 , _3414 , _3415)
[1383] exit maintenance('dtmwas01.itso.ral.ibm.com',ON,0x3f8b2d65,1800)
[1384] call 0x3f8b2d7c > 0x3f8b2d65 , _3457 is 0x3f8b2d7c - 0x3f8b2d65 , (_3457
< 1800 , recorded(maintenance_mode,maint_admin, _3477) , recorded(maintenance_action, _3483)
, (_3483 == CLOSE , set_event_administrator(0x20a4ba18, _3477) ,
set_event_status(0x20a4ba18,CLOSED) ; _3483 == DROP , drop_received_event) ,
recorded(commit_set,exec_rule, _3517) , cut(_3517) ; true) ; true
[1385] exit 0x3f8b2d7c > 0x3f8b2d65 , 23 is 0x3f8b2d7c - 0x3f8b2d65 , (23 < 1800 ,
recorded(maintenance_mode,maint_admin,'maintenance_mode.rls') ,
recorded(maintenance_action,CLOSE) , (CLOSE == CLOSE ,
set_event_administrator(0x20a4ba18,'maintenance_mode.rls') ,
set_event_status(0x20a4ba18,CLOSED) ; CLOSE == DROP , drop_received_event) ,
recorded(commit_set,exec_rule,39) , cut(39) ; true) ; true
[1386] 18:55:56exit action drop_events_in_maintenance

For more information about using the wpostemsg and postemsg commands to test
IBM Tivoli Enterprise Console rules, see the command syntax in IBM Tivoli
Enterprise Console Command and Task Reference, Version 3.9, SC32-1232.

Verifying action taken on events
You may use IBM Tivoli Enterprise Console to determine the action taken upon
an event. Through the console, you can see whether an event is closed, its
severity is escalated, or its slot variables are set appropriately.

Another way to verify action is to query the event repository table of the IBM
Tivoli Enterprise Console database for the event. The wtdumper command,
supplied by IBM Tivoli Enterprise Console, easily lists the contents of the table.
The output can be limited to events occurring within a specific time frame and
may be ordered in ascending or descending sequence. The default action is for
events to be listed in the order in which they occurred. Example 7-14 shows the
syntax of the command.

Example 7-14 wtdumper syntax

wtdumper [–f file] [–t start_time] [–e end_time] [–o ASC | DESC] [–m number]
[–d] [–w where_clause]

Note the following explanation for this command:

–d Lists detailed formatted information in the event report.

–e end_time Lists events that occurred prior to the specified date and time.
end_time is a date in the format Mon dd hh:mm:ss yyyy. If this
flag is omitted, the command uses the current time for the end
time.
392 Event Management and Best Practices

–f file Writes output to the specified file.

–m number Specifies the maximum number of events to record in the
report. If the number of events in the database exceeds the
specified value, the command omits entries from the end of the
report. For example, if the report is displayed in ascending
order, the most recent database entries are not included in the
report.

–o ASC | DESC Sets the order in which events are listed to ascending or
descending respectively.

–t start_time Lists events that occurred after the specified date and time.
The start_time parameter must be a date in the format Mon dd
hh:mm:ss yyyy.

–w where_clause Specifies a partial SQL WHERE clause for the event
database query. This clause is appended to the internally
generated WHERE clause with the AND operator. This option
is useful if you are experienced with SQL statements.

In our example, it seems as though the maintenance_mode rule closed the Node
down event for dtmwas01 as expected. We can verify this by querying the IBM
Tivoli Enterprise Console event repository for the event and checking its status.
We issue the following command:

wtdumper -d

The -d flag was added to make the output more readable and to display more of
the event’s slot variable. The applicable event from the output is included in
Example 7-15. Notice that the status is CLOSED and the administrator is
maintenance_mode.rls. This indicates that the maintenance mode rule closed
this event.

Tip: If wtdumper is run from a node other than the Tivoli Enterprise Console
server, it uses the time from the local system to determine which events to
display. This may cause unexpected behavior. For example, if the time on the
node is 9:00 and the Tivoli Enterprise Console server is 9:30, a wtdumper
command run from the node displays every event in the database, except for
those occurring during the 30 minutes specified. The same command run on
the Tivoli Enterprise Console server displays the entire database.
 Chapter 7. A case study 393

Example 7-15 Excerpt from wtdumper output

TEC_ITS_SA_STATUS;
server_handle=1;
date_reception=1066085756;
event_handle=1;

 source=dtmwas01;
 sub_source=N/A;
 origin=9.24.106.185;
 sub_origin='';
 hostname=dtmwas01;
 adapter_host='';
 status=CLOSED;
 administrator=maintenance_mode.rls;
 acl=[admin];

severity=CRITICAL;
 date='Oct 13 18:55:56 2003';
 duration=0;
 msg='Node down';
 msg_catalog='';
 msg_index=0;
 num_actions=0;
 credibility=1;
 repeat_count=0;
 cause_date_reception=0;

cause_event_handle=0;
 category=undefined;

fqhostname=dtmwas01.itso.ral.ibm.com;
 nv_generic=0;
 nv_specific=0;
 sastatus=ifDown;
END

For more information about wtdumper, see IBM Tivoli Enterprise Console
Command and Task Reference, Version 3.9, SC32-1232.

7.3.3 NetView
This section discusses debugging state correlation and rule sets.

Debugging state correlation
NetView’s use of state correlation is defined in the /usr/OV/conf/tecint.conf file.
Example 7-16 shows the relevant entries.

First, state correlation is activated by specifying UseStateCorrelation=YES in the
tecint.conf file. The StateCorrelationConfigURL specifies a file on the NetView
394 Event Management and Best Practices

machine that contains the XML state correlation rules. Refer to Example 7-16 for
a sample of the tecint.conf file.

Example 7-16 Entries in tecint.conf for state correlation

ServerLocation=nswin11
TecRuleName=TEC_ITS.rs
ServerPort=5529
DefaultEventClass=TEC_ITS_BASE
BufferEvents=YES
UseStateCorrelation=YES
StateCorrelationConfigURL=file:///usr/OV/conf/nvsbcrule.xml
The following four lines are for debugging the state correlation engine
LogLevel=ALL
TraceLevel=ALL
LogFileName=/usr/OV/log/adptlog.out
TraceFileName=/usr/OV/log/adpttrc.out

NetView traps in Example 7-16 are subject to the XML rules specified in the file
/usr/OV/conf/nvsbcrule.xml, which resides on the NetView server. If these rules
do not work as expected, enable tracing by uncommenting (or adding, if they are
not in your file) the lines specifying LogLevel, TraceLevel, and their
corresponding file names. Check the listed files for relevant debugging
information.

Debugging NetView rules
Events and traps provide information about changes in the status of network
elements and alert the NetView program to occurrences in the network. When
events and traps are received, they are acted upon in the manner defined in the
NetView rule sets. These rule sets perform the major functions of interest,
including correlation, notification (including paging and sometimes trouble
ticketing), and automated actions.

The event and trap processing daemons described in this section—nvcorrd,
actionsvr, and ovactiond—execute those functions on behalf of NetView. If you
achieve unexpected results, trace these daemons to find the cause.

The logs and trace files for these and other NetView daemons are stored in
/usr/OV/log (UNIX) or \usr\OV\log (Windows). Check this directory for logs that
are applicable to problems that you are debugging.

nvcorrd daemon
The nvcorrd daemon executes rule sets in the foreground, in dynamic work
spaces running in the Events window, or in the background, having been loaded
 Chapter 7. A case study 395

in ESE.automation. The nvcorrd daemon executes all nodes in a rule set, except
for Action and Paging nodes.

By default, nvcorrd logs its activities to /usr/OV/log/nvcorrd.alog and
nvcorrd.blog. First, nvcorrd.alog is written. When this file becomes full, it is
moved to nvcorrd.blog, and a new nvcorrd.alog is started. Consult these files to
determine the event processing activities performed by nvcorrd.

The Windows version of nvcorrd is called nvcord. Nvcord registers for trap
callback using the standard OVW application programming interface (API) and is
given a copy of every trap received by the system. It processes these traps
according to the specific rule sets that are active at the time and determines if the
rule passes or fails.

Every time a rule is activated, nvcord adds the ruleset name and a rulesetID to a
table in the event database (unless the rule is already present). This provides a
database of all ruleset names.

actionsvr daemon
The actionsvr daemon executes the Action and Paging nodes in rule sets
(nvcorrd does inline actions). Upon startup, actionsvr also loads the rule sets
listed in /usr/OV/conf/ESE.automation for nvcorrd to execute in the background.

When an action is to be processed, the actionsvr daemon starts a child process
to execute the action. The event is passed to the next node in the rule set. When
Tivoli NetView is started, the actionsvr daemon checks the rule sets for automatic
action in the /usr/OV/conf/ESE.automation file.

The actionsvr daemon makes all data in the trap available as environment
variables. If the action returns a nonzero return code, the actionsvr daemon
generates a failed action trap.

Note: You can change the log file name by using the -l parameter of the
nvcorrd command.

Note: It is assumed that most traps do not pass correlation. If a trap passes a
rule, then nvcord creates a new trap based on the last trap processed by the
rule. This trap is given a source value that is associated with the active rule.
For example, if there is a rule set where the correlation passes if a node-down
event is received for a node that is a member of smartset routers, and such a
node-down trap arrives, nvcord creates a new node-down trap. The two traps
are identical, except that the first trap has Source==Netmon and the second
trap has Source==RuleSetID.
396 Event Management and Best Practices

By default, actionsvr logs its activities to /usr/OV/log/nvactiond.alog and
nvactiond.blog. First, nvactiond.alog is written. When it the file becomes full, it is
moved to nvactiond.blog, and a new nvactiond.alog is started. Consult these files
to determine the event processing activities performed by nvactiond. They list the
ESE.automation rule sets loaded at started, trap variable sanitation, and identify
the automated actions that actionsvr performs.

ovactiond daemon
This daemon executes a shell command upon receipt of an event. The ovactiond
daemon is configured by selecting Options →Event Configuration: SNMP. The
ovactiond daemon listens to trapd for predefined events. Then it formats and
passes a string to the shell for interpretation and execution.

You start the ovactiond daemon using the ovstart command without any options.
You can change the starting options by editing the ovactiond.lrf file in /usr/OV/lrf.

The ovactiond daemon logs its activities to the /usr/OV/log/ovactiond.log file.
Again, you can use the -l parameter on the ovactiond statement to change the
log file to which ovactiond logs its activities. Similarly, you can use the -v flag to
make the output to the log file more verbose for enhanced debugging
information. To trace the execution of ovactiond, use the -t flag.

Rule sets
Rule sets are criteria applied to the event flow in NetView by the correlation
daemon, nvcorrd, to perform automatic action when the selected events occur.
Rule sets are similar to filters, in that you can use them to alter the operator
display. They are similar to automatic actions (defined in trapd.conf and executed
by ovactiond) in that they can trigger processes to run in the background.

Ruleset editor
The ruleset editor is a tool for creating rule sets using a graphical display rather
than a line-oriented text editor. This shields the user from the underlying
complexities of ruleset syntax.

You activate rule sets either by creating a dynamic work space in the events
window or by adding them into the ESE.automation file. The ESE.automation file
is loaded when the actionsvr daemon starts. This daemon must be recycled if
additional rule sets are added to ESE.automation after the NetView GUI starts.

All rule sets are kept in /usr/OV/conf/rulesets by default and have the suffix .rs
appended to them. You must have root authority to edit a rule set. When an

Note: You can change the log file name by using the -l parameter of the
actionsvr command.
 Chapter 7. A case study 397

existing rule set is opened for edit, a backup copy of the original is made in the
rulesets directory. For information about rule sets and using the ruleset editor,
see the Tivoli NetView for UNIX Administrator’s Guide, Version 7.1, SC31-8892.

Ruleset creation problems
If you have a problem creating a rule set (for example, a problem with the ruleset
editor), perform these steps before you contact Tivoli Customer Support:

1. Look for error messages in the ruleset editor logs /usr/OV/log/nvrsEdit.alog
and nvrsEdit.blog.

2. Get a copy of the rule set from the /usr/OV/conf/rulesets file and any files with
the same name but with different suffixes such as:

– BAK, which is the backup copy
– Meaningless letters on the end, which are temporary copies used to hold

changes while the editor is open

3. Look for core files, especially the /usr/OV/conf/rulesets file and the root
directory. Save the core file in another directory for customer support when
you call to report the problem. Customer support may have you run
debugging commands on the file.

Ruleset directory problems
You may find that the ruleset directory, /usr/OV/conf/rulesets, fills up with strange
files, which look like your rule sets, but have different suffixes. The files with the
suffix .bak are backup copies of existing rule sets opened for edit. You can delete
these .bak files after the original is filed safely away. The files with suffixes, such
as lQ8Ekr and P%wKiw or other such combinations, are temporary copies that
are made while updates are performed.

You delete these files if you exit the editor by selecting File →Exit. However, they
may remain if you only close the window when you are finished. You can delete
these files (unless you need them for problem determination) or the editor
deletes them the next time you edit that rule again and close the editor properly.

Tracing
After nvcorrd is running, enter the following command:

nvcdebug -d all

Generate a test event or wait for the real one to occur, whichever is better. Test
events can be generated with the event command (for selected netmon events)
or the snmptrap command (for any events). To enter these commands from the
Tivoli desktop, select Diagnose →Send SNMP trap to a node or
Diagnose →Send event to trapd daemon.
398 Event Management and Best Practices

Hanging or halted events
Events can be suspended or stopped if rule sets that are designed to send
events to a display window are run in the background. This is because actionsvr
has no way to delete events that are sent to it, unless there is an action to run
and it has no display capability. Therefore, the events build up on the receive
socket until it is full. Then, they back up on nvcorrd sending socket until it
becomes full. 32767 is the limit of messages on a socket. This backup causes
nvcorrd to stop suspending events.

Therefore, rule sets that run in the background, out of ESE.automation, must not
contain a forward node or have the default action (on the beginning node)
change from block to pass. In the short run, if this problem occurs, to clear the
problem until the rule sets can be corrected, enter:

ovstop actionsvr

Using filtered dynamic work space
As mentioned in Chapter 6, “Event management products and best practices” on
page 173, one method to debug rule sets is to use filtered dynamic work spaces.
Select Create →Dynamic Workspace in the main work space. Then enter the
ruleset name of the rule set that you are testing, along with any other appropriate
information. The new work space uses the rule set and filters, if any, to determine
which events are displayed and correlated.

Generate a test trap using one of the methods described in “Generating test
traps” on page 376, or wait for the events to occur naturally. View the main work
space to verify that the events are received and view the filtered work space to
observe the results. If the rule set does not perform as expected, modify the rule
and reopen the dynamic work space to quickly test again.

netview.rls rule set
You can load and activate the netview.rls rule set supplied with NetView in the
IBM Tivoli Enterprise Console server. Use the debug capability within IBM Tivoli
Enterprise Console to debug this rule set. See “Debugging rules with trace
directive” on page 388 for more information.

7.3.4 IBM Tivoli Switch Analyzer
When troubleshooting IBM Tivoli Switch Analyzer, download a copy of the IBM
Tivoli Switch Analyzer Troubleshooting Guide, Version 1.0, from the Web at:

http://www.ibm.com/software/support

This is an official Tivoli Field Guide and was written by Michael L. Webb and Terri
Peterson. This troubleshooting guide for IBM Tivoli Switch Analyzer is an
 Chapter 7. A case study 399

http://www.ibm.com/software/support

indispensable document to have when trying to troubleshoot IBM Tivoli Switch
Analyzer. It covers a wide range of issues that you may experience and explains
how to resolve those issues.

An issue in our labs is in regard to moving a device from one port to another. In
this case, IBM Tivoli Switch Analyzer reports the related device as marginal until
the next layer 2 rediscovery. By default, IBM Tivoli Switch Analyzer rediscovers
the layer 2 environment once a day.

In networks with a reasonable amount of movements between ports, adjust the
default rediscovery rate by modifying the discovery_interval in
/usr/OV/ITLS2/conf/topo_server.ini. The default is once a day (1440 minutes).
Refer to Example 7-17 for details.

Example 7-17 /usr/OV/ITSL2/conf/topo_server.ini

[Server]
log_file=../log/topo_server.log
log_size=1000
msg_lvl=5
timeout=15

[Layer2]
base_topo_oid=50000000
req_cnt=10
retry_interval=900
retry_cnt=3
discovery_interval=1440
mac_timeout=15
debug=0
log_file=../log/L2_data.log
log_size=20000

[SNMP]
req_cnt=20
timeout=5000
retry_cnt=5

[Correlator]
host=localhost
port=31100
timeout=30
400 Event Management and Best Practices

Appendix A. Suggested NetView
configuration

This appendix contains information, which you may find helpful when working on
NetView configurations. These are not necessarily best practices. Instead, they
are configurations used by the authors of this IBM Redbook throughout their
workings with the NetView product.

A

© Copyright IBM Corp. 2004. All rights reserved. 401

Suggested NetView EUI configuration
In most cases, you access the NetView EUI via a normal workstation. In this
case, most administrators prefer to have the main NetView window, the topology,
displayed. You should minimize the tools and navigation window. You should also
disconnect the event console to have it independent from the main window. To
achieve this, you need to modify the appropriate configuration files after you
make backup copies of the files:

1. Open /usr/OV/app-defaults/OVW with your editor. In this file, search for the
string CopyRightWindow and change its attribute to False.

2. In the same file, search for strings toolShellIconify and
navTreeShellIconify. Set both attributes to True.

3. In the file, locate the strings shellwidth and shellHeight. The assigned
number are the dimensions of the NetView main window. Adjust them to your
needs.

Example A-1 shows the changes that we made for the NetView layout in our lab
environment. This finishes the EUI modification.

Example: A-1 Changes in /usr/OV/app-defaults/OVw

!**
!
! Tired of clicking in OK button for Copyright information window ?
! Then change this to False.
!
!**

*displayCopyRightWindow: False
.
.
! Defines the EUI shell x and y coordinates used in the creation. Not used
! when the creation is related with a drag/drop operation. If this resource
! is not set (omitted) the shells are open in cascade mode.
! The unit is number of pixels.
!
OVw*shellX: 0
OVw*shellY: 0
!
! Defines the EUI shell width and height to be used in the creation.
! The unit is number of pixels.
!
OVw*shellWidth: 800
OVw*shellHeight: 650
402 Event Management and Best Practices

.

.
!
! Determines whether the EUI ToolPalette shell is created iconified or not
!
OVw*toolShellIconify: True
.
!
! Determines whether the EUI NavTree shell is created iconified or not
!
OVw*navTreeShellIconify: True

After you make these changes, the EUI presents a navigation bar and a toolbar
that is minimized or appears as an icon. The event console still appears attached
to the main EUI window. The following modification causes the event console to
be detached from the main EUI window. In addition, the modification resizes the
event console and changes the initial display of events from card to list mode. It
also makes sure that any dynamic work spaces that you create are displayed as
disconnected from the main EUI window.

Event console configuration
Open the /usr/OV/app-defaults/Nvevents file and modify the following entries:

1. Change the nvevents.initialPresCard field to False.

2. Adjust the width and height of the event window by modifying the
nvevents.widthMain and nvevents.heightMain to a dimension, which fits into
your screen layout. The assignments for the two fields are measured in pixels.

3. Set the field nvevents.outside to True. This ensures that the event console
starts outside the main NetView window.

4. Change the field nvevents.wsOutside to True. Any dynamic work spaces that
you open are created outside the main window.

Optionally, you can set the entries nvevents.loadEnvOnInit and
nvevents.saveEnvOnExit to True in case you want to save and reload the layout
and possible dynamic work spaces during NetView initialization.

Example A-2 summarizes the changes.
 Appendix A. Suggested NetView configuration 403

Example: A-2 Changes in /usr/OV/app-defaults/

! defines initial presentation style (card or list)
!
nvevents.initialPresCard : False
.
.
! size of nvevents windows
nvevents.widthMain : 500
nvevents.heightMain : 300
.
.
! defines if application starts up outside of the control desk
! valid when running integrated to OVw
!
nvevents.outside : True
! defines if new workspaces are opened outside the control desk
!
nvevents.wsOutside : True
!
.
.
! defines if nvevents loads an existing environment file
!
nvevents.loadEnvOnInit : True
! defines if nvevents saves all workspaces during exit process
!
nvevents.saveEnvOnExit : True

Web console installation
You can access the NetView Web console via a stand-alone Java application or
via a Web browser using a Java applet. The following sections outline both
methods for accessing the Web console.

Web console stand-alone installation
We show the installation of the Web console for a Windows desktop. To bring the
console to other platforms, follow the same steps, but select the correct
distribution. Remember to specify at least one user account to the Web console
using the NetView native EUI as discussed in “Web console security” on
page 407.

1. From a Web browser, access the download page of your NetView server by
typing:

http://your_netview_address:8080/download
404 Event Management and Best Practices

Here your_netview_address is the name or IP address of the NetView server.
A Web page opens similar to the one shown in Figure A-1. For a Windows
platform, you need to download the nvwcinstall.exe package, which contains
all necessary code to run the Web console.

Figure A-1 Web console download page

2. Locate the package that you downloaded. Double-click it to start the
installation. A normal Installshield operation is started.

3. When you reach the dialog asking for the install location, we suggest that you
replace the default suggestion and change it to a short path, which contains
no spaces and follows the ancient 8.3 convention like c:\nvwc as shown in
Figure A-2. If you plan to integrate the Web console into other applications, an
8.3 path name is often required. Our experience shows some problems to
pass parameters containing long pathnames or spaces to an application.

After you change the path name of the installation path, the Web console
installs without requiring further intervention.
 Appendix A. Suggested NetView configuration 405

Figure A-2 Changing the default path

After a successful installation, you see an icon that represents the Web console
on your Windows desktop.

Web console applet
As an alternative, you can access the Web console via a standard Web browser.
A Java plug-in for your browser is required, which you download from the Internet
on demand. Therefore, you may need a working Internet connection when you
first launch the Web console via the browser. To start the Web console, follow
these steps:

1. From a Web browser, access the NetView applet provided by the NetView
Web server by typing:

http://your_netview_address:8080/netview/NetViewApplet

Here your_netview_address is the name or IP address of the NetView server.

2. If the required Java plug-in is not present, you see the Security Warning panel
(Figure A-3). In this case, you need to download the plug-in from the Internet.
406 Event Management and Best Practices

Figure A-3 Downloading the Java plug-in

3. Follow the installation instructions for the plug-in. After a successful
installation, the applet starts downloading the required classes and resources
from the NetView server. You can observe the loading of these components in
the browser window. Finally, a Web console identical to the stand-alone
version appears in a Java applet window.

Web console security
Before you launch the Web console, you must create at least one user using the
native NetView EUI using the following steps:

1. Select Administer →Security Administration →Web Console Security.

2. The Web Console Security window (Figure A-4) opens. In the left pane, select
Users. Then, from the menu, select Selected →Add. In the right pane, enter
a user name and password. Select a role for the user. For the first available
user, you should choose SuperUser and No scoping restrictions to gain
access to all Web console features.

3. When you are finished, select File →Save to save the new created user.
 Appendix A. Suggested NetView configuration 407

Figure A-4 Web Console Security window

4. A message box is displayed as shown in Figure A-5. Select Yes to restart the
Web server.

Figure A-5 The restart/save window

This completes the initial security configuration of the Web console.

Web console menu extension
Starting with NetView Version 7.1, the NetView Web console is meant to be the
main interface to NetView. Use the native console only for administrative
purposes such as modifying maps and NetView working options.
408 Event Management and Best Practices

Tivoli Enterprise Console also launches the NetView Web console on demand to
show NetView-related topology information, diagnostic tools, and object
properties.

The NetView Web console offers limited extension capabilities. You can extend
the menus and execute commands as long as you can display the output in a
Web browser window. The supplied Web console functions and menus are
defined in two files:

� /usr/OV/www/webapps/netview/warf/Actions.xml

This file contains all the actions and functions provided by the Web console in
a compressed format.

� /usr/OV/www/webapps/netview/warf/Templates/WebConsole/Menubar.xml

This file contains the menu definitions for the actions and functions provided
by the Web console.

You can modify these two files, but in the event of a NetView update or patch
apply, the update may overwrite them. To prevent this, you can supply your own
action definition file and your own menu file, which are not overwritten. We
provide the extensions in separate definition files.

Each distinctive function of the NetView Web console consists of two definitions:

� An action definition, which you must store under
/usr/OV/www/webapps/netview/warf: The action definition defines what you
want executed when selected.

� A menu definition that you must store under
/ust/OV/www/webapps/netview/warf/Templates/WebConsole: This definition
specifies the position of your new menu under the menu tree.

Note: While working with NetView 7.1.4, we found more custom definition files
in the warf directory. All of these files contain compressed definition calling
internal Java and JavaScript functions. All these functions are not
documented, and there is no intention to release any documentation.

warf subdirectory in the file path: The role and behavior of the NetView
Web console definition files are similar to NetView Application Registration
Files (ARF). They are called Web Application Registration Files (WARF) and
are located in the path's warf subdirectory. The main difference between
WARFs and ARF-type registration files is the format. Unlike standard NetView
registration files and their descriptive C-style format, the WARFs use
Extensible Markup Language (XML) as their description language.
 Appendix A. Suggested NetView configuration 409

With this information, we show all the steps required to extend the Web console
with a new menu. This enables us to view the contents of the netmon seed file
from the Web console. You can use this example as a template for your own
extensions of the Web console. Example A-3 lists the action definition, and
Example A-5 contains the Menu definition.

You also may refer to the “Web Console Enhancements” section in the IBM Tivoli
NetView for Windows Release Notes, Version 7.1.4, SC32-1239, for additional
information about action and menu definitions.

Example: A-3 MyActions.xml

<!--<!DOCTYPE WARF SYSTEM 'WARF.dtd'>-->
<WARF xmlns:xlink="http://www.w3.org/1999/xlink">
 <Meta name="Version" value="2.0" />
 <Meta name=”Written" value="2002 ITSO Austin/Glasi GA24-6610,

 modified Glasi sep-2003 Raleigh" />
 <Application name="my-webconsole">
 <!-- <Action id="viewseed" securityConstraint="RelaxedAccess" roles="SuperUser,User"> -->
 <Action id="viewseed" roles="SuperUser,User">
 <Name>View_Seed</Name>
 <Mnemonic>U</Mnemonic>
 <ShortDescription>View seedfile</ShortDescription>
 <LongDescription>Display the seedfile in a Browser window</LongDescription>
 <ActionHandler name="LaunchServerAppHandler">
 <Method>
 <MethodName>com.tivoli.netview.client.NetViewApplet.launchServerApp</MethodName>
 <ArgList>
 <Val>
 <Array>
 <Val>Glasikey1</Val>
 <Val>/usr/OV/bin/viewseed.ksh</Val>
 </Array>
 </Val>
 </ArgList>
 </Method>
 </ActionHandler>
 </Action>
 </Application>
</WARF>

Note the following explanation:

<?xml ...> You must not change the first three entries in a WARF,
especially the first line that specifies the encoding. Be
sure it specifies UTF-8 as the character set.
410 Event Management and Best Practices

<Application> Defines the name of the application. You can assign any
unique name to your application. Note that webconsole is
a reserved name used in the main action definition.

<Action id=> This keyword specifies a unique ID, which you reference
in your menu definitions. You may apply all the roles you
want to allow to perform the action, but leave the
securityConstraint= entry unchanged.

<Name> Defines a name for the action.

<Mnemonic> Defines a menu shortcut for your action. Be sure the
mnemonic is specified from the characters used in the
name definition.

<ShortDescription> Specify a short description of your new menu. It appears
in the role window of the NetView Security Console, as
shown in Figure A-6 on page 415.

<LongDescription> Defines a more specific explanation of your new menu.
Also appears in the roles window.

<ActionHandler> Specifies the handler meant to execute the action. Don’t
change the name LaunchServerAppHandler. This handler
executes your action on the NetView server.

<Method> Starts a method subsection in which you define the
program to be executed, along with all arguments it may
require.

<MethodName> Specifies the method assigned to the application handler.
The full path of the method is required. In our case, it is
com.tivoli.netview.client.NetViewApplet.launchServerApp.

<ArgList> Starts an argument list subsection. Each argument is
defined inside a <Val></Val> definition.

<Array> Our action, issuing a bulk upload to IBM Tivoli Business
Systems Manager, is actually implemented as a Korn
shell script. Parameters to a shell script are passed in the
form of an array. Although our bulk upload script does not
require any parameters, you must supply the parameter
array. The first value in the array acts as a key, which must
be unique for all actions defined to execute under a given
action handler. In our case, the key must be unique for all
actions executed under LaunchServerAppHandler.

The second value in the array must be the program name.
A full path is required. Therefore, our array is:
 Appendix A. Suggested NetView configuration 411

<Array>
<Val>Glasikey1</Val>
<Val>/usr/OV/bin/viewseed.ksh</Val>
</Array>.

You can place multiple action definitions into one single file. Each definition
requires the full set of keywords as discussed.

The key definitions for the new menu entry are the Actionhandler, Method, and
ArgList tags in the definition:

� Actionhandler tag: This tag defines the handler to be started on the NetView
Web server. Do not change this reference.

� Method tag: This tag defines the Java method being launched on the Web
server and the program that the method must execute along with all the
required arguments. You should not change the method reference.

� ArgList tag: This tag specifies the arguments to the method. In our case, we
pass the name of a small wrapper script placed in /usr/OV/bin as in
Example A-4. The script executes a UNIX cat of the netmon seed file. You can
specify the command directly in the ArgList definition. However, the indirect
call makes it easier to change the behavior of the command without reloading
the Action and Menu definitions.

Note the way that the script is defined in the ArgList. The Actionhandler
requires arguments passed as key/value pairs. The key can be any unique
name, while the value is the full path reference to the program being
executed.

Example: A-4 The wrapper script

!/bin/ksh
cat /usr/OV/conf/netmon.seed
exit

The second set of definitions required is the menu entries. As mentioned
previously in this section, menu definitions are stored under
/usr/OV/www/webapps/netview/warf/Templates/WebConsole. Example A-5
shows the menu definition.

Example: A-5 MyMenu.xml

<?xml version='1.0' encoding='UTF-8'?>
<!--<!DOCTYPE WARF SYSTEM '../../WARF.dtd'>-->
<WARF xmlns:xlink='http://www.w3.org/1999/xlink'>
412 Event Management and Best Practices

 <Meta name="Written" value="2002 ITSO Austin/Glasi GA24-6610,modified Raleigh Sep-2003
24-6094" />
 <Application name='webconsole'>
 <!-- MenuBar name cannot be 'MenuBar', which is reserved by the default MenuBar.xml
-->
 <MenuBar name="MyMenuBar">
 <Menu name="tools">
 <Separator/>
 <Menu> <Name>MyTools</Name>
 <MenuItem name="View seedfile">
 <ActionRef xlink:href='MyActions.xml#xpointer(id("viewseed"))'/>
 </MenuItem>
 </Menu>
 </Menu>
 </MenuBar>
 </Application>
</WARF>

Note the following explanation:

<?xml ...> This is the same as for the action definition. Don’t change
the first three lines, and be sure the character set
encoding is set to UTF-8.

<Application> Use the same name as in your action definition.

<MenuBar> Starts a menu bar definition. Apply the same rules as for
the application name. The name must be unique. You
can’t give it the name MenuBar because this name is
already used for the default menu bar of the Web console.

<Menu> Specifies an existing menu where our submenu should be
placed. The NetView Web console already features a
tools menu such as the native GUI. Therefore, we specify
name="tools" as the menu entry where our new menu
resides.

<Separator/> Causes a separator line to be inserted into the menu. You
can use it anywhere inside a menu definition.

<Menu> The second menu keyword specifies the name of the
menu being placed under tools. We gave it the name
“MyTools”.

<Mnemonic> Again, this specifies a shortcut to the menu name.

<Name> As mentioned, our new menu should appear as TBSM in
the tools submenu.

<MenuItem> The MenuItem keyword specifies the entry in the menu
tree that triggers the action. We gave it the name “View
 Appendix A. Suggested NetView configuration 413

seedfile”. You can specify additional extensions as new
menu items under the Mytools submenu.

<ActionRef> This entry is the most important keyword in our menu
definition because it defines the connection to the action
definition. Remember that we named our action
“launchbu” and it was stored in the MyActions.xml file.
This information forms the Actionref attribute
xlink:href='MyActions.xml#xpointer(id("launchbu"))'.

To activate the new menu, launch Web Console Security. At the time this redbook
was written, there was no other way to activate Web console extensions.

Launch the security console using one of these methods:

� Using the NetView GUI: Select Administer →Security Administration →
Web Console Security

� Using nvsetup: Select Configure →Configure Web Server →Configure
Web Console Security

� Directly issue /usr/OV/bin/launch_securityconsole

In the console, select Roles and then the role where you want to activate the new
entry. You should see your newly created menu in the list of menus, as in
Figure A-6. Be sure to mark the new entry as active for the wanted role.
414 Event Management and Best Practices

Figure A-6 The Roles window with the new menu entry

In case either the action or the menu file is malformed, you see an error message
window as shown in Figure A-7. Review your definitions and correct any errors.

Figure A-7 Parsing error

If you launched the security console via a command line, the parsing errors are
written to the console. They are also logged under
/usr/OV/log/ecurityconsole.log. Near the end of the log file, you find such entries
 Appendix A. Suggested NetView configuration 415

as the one shown in Example A-6, which further specifies the type and location
of the error.

Example: A-6 Parsing errors in securityconsole.log

2003-09-24 09:22:51,962 [Thread-4] ERROR com.tivoli.netview.securityconsole.server.JDOMHelper
- failed to parse byte stream -- org.jdom.JDOMException: Error on line 23: The element type
"ArgList" must be terminated by the matching end-tag "</ArgList>".

2003-09-24 09:22:52,620 [AWT-EventQueue-0] ERROR
com.tivoli.netview.securityconsole.server.SecurityConsoleUI -
1. Failed to parse file "/usr/OV/www/webapps/netview/warf/MyActions.xml"
-- Error on line 23: The element type "ArgList" must be terminated by the matching
end-tag "</ArgList>".

If the security console is displayed and the menu is activated for all necessary
roles, click File →Save even if you did not change any entries. Saving initiates a
Web server restart and a reread of all console definitions.

To test the function of the new entry, open the NetView Web console using your
favorite method. Example 7-9 shows the new submenu in the Tools menu, which
is the View seed file entry that we defined previously in this section.

Figure 7-9 NetView Web console and the new menu
416 Event Management and Best Practices

Now you can display your seed file from the Web console. Select
Tools →Mytools →View seed file from the Web console menu. A browser
window (Figure A-8) opens that shows the result of the operation.

Figure A-8 The resulting output

A smartset example
Smartsets are great when you need to group objects of the same type or in a
specific location. They provide an overview of the status of the type of selected
object without clicking through multiple submaps. An additional advantage is, in
case you defined the correct rule, the dynamic nature of a smartset.

You can define rules to include NetView objects based on the actual contents of
an attribute. For example, we define a smartset, which displays only those
connection objects, switches, and routers that are marked in a status other than
normal.

The status for a switch is maintained in two object attributes:

� IP Status attribute: Is set by the layer 3 topology management components
only. In case of a switch, it never shows the status marginal.
 Appendix A. Suggested NetView configuration 417

� Layer2Status attribute: Is set by IBM Tivoli Switch Analyzer and shows a
status that is not equal normal in case IBM Tivoli Switch Analyzer cannot
status poll the ports discovered for that node.

Based on these conditions, we can develop a simple rule, which matches only
those switches that are not up and running:

� The device or object being included must be of type connector.
� Its IP status or Layer2 status must be other than normal.

Now we need to bring this into a smartset rule definition:

(('isConnector' = True) && ('IP Status' != 'Normal') || ('Layer2Status' !=
'Normal')

Then define the rule with the ruleset editor:

1. From the NetView EUI, select Tools →Smartset Editor.

2. In the window that opens, select the Text Editor button and click Add.

3. The compound rule editor opens. The editor window that you normally use to
define simple rules cannot be used in our case, because we compare status
attributes. The simple rule editor only allows us to define an equal condition in
the form <status attribute = ‘<enumeration of states>’. It negates the
result at once, which makes an ineffective definition. In our case, we want to
test for a status not equal normal.

Give the rule a name and a description. Enter the rule definitions as shown in
Figure A-9. Then click OK.
418 Event Management and Best Practices

Figure A-9 The rule definition

4. If you have some failing connector devices, you can test the rule. Otherwise
save it. Saving the rule creates a smartset, which remains in Unknown status
until it is opened for the first time. Then it shows you the objects similar to
what you see in Figure A-10. This example contains the failing objects from
test case 2 in 5.2.7, “Real-life example” on page 161.

Figure A-10 A dynamic smartset
 Appendix A. Suggested NetView configuration 419

After you resolve the failure conditions, NetView removes the affected objects
from the smartset submap as shown in Figure A-11.

Figure A-11 Test situation resolved
420 Event Management and Best Practices

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 422. Note that some of the documents referenced here may
be available in softcopy only.

� Tivoli NetView 6.01 and Friends, SG24-6019

� Tivoli Web Solutions: Managing Web Services and Beyond, SG24-6049

� Tivoli Business Systems Manager Version 2.1: End-to-end Business Impact
Management, SG24-6610

Other publications
These publications are also relevant as further information sources:

� Release Notes for NetView for UNIX, Version 7.1.2

http://www-1.ibm.com/support/docview.wss?uid=swg21063303

� IBM Tivoli Switch Analyzer Troubleshooting Guide, Version 1.0

http://www.ibm.com/software/support

� IBM Tivoli NetView for UNIX 7.1.3 Release Notes, GI11-0927

� Tivoli NetView for Windows NT Programmer’s Reference, Version 7.1,
SC31-8890

� Tivoli NetView for UNIX User's Guide for Beginners, Version 7.1, SC31-8891

� Tivoli NetView for UNIX Administrator’s Guide, Version 7.1, SC31-8892

� Tivoli NetView for UNIX Administrator’s Reference, Version 7.1, SC31-8893

� Tivoli NetView Web Console User’s Guide, Version 7.1, SC31-8900

� IBM Tivoli Enterprise Console Command and Task Reference, Version 3.9,
SC32-1232

� IBM Tivoli Enterprise Console Installation Guide, Version 3.9, SC32-1233
© Copyright IBM Corp. 2004. All rights reserved. 421

http://www.ibm.com/software/support
http://www-1.ibm.com/support/docview.wss?uid=swg21063303

� IBM Tivoli Enterprise Console Rule Developer's Guide, Version 3.9,
SC32-1234

� IBM Tivoli Enterprise Console User’s Guide, Version 3.9, SC32-1235

� IBM Tivoli Enterprise Console Release Notes, Version 3.9, SC32-1238

� IBM Tivoli NetView for Windows Release Notes, Version 7.1.4, SC32-1239

� IBM Tivoli Enterprise Console Event Integration Facility Reference, Version
3.9, SC32-1241

� IBM Tivoli Enterprise Console Adapters Guide, Version 3.9, SC32-1242

� IBM Tivoli NetView for UNIX Administrators Guide, Version 3.9, SC32-1246

� IBM Tivoli Enterprise Console Rule Set Reference, Version 3.9, SC32-1282

Online resources
These Web sites are also relevant as further information sources:

� Tivoli software literature and technical resources

http://www.ibm.com/software/tivoli/library

� Tivoli software support

http://www.ibm.com/software/sysmgmt/products/support

� IBM software support

http://www.ibm.com/software/support

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
422 Event Management and Best Practices

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/software/tivoli/library
http://www.ibm.com/software/sysmgmt/products/support
http://www.ibm.com/software/support

Index

Symbols
$AGENT_ADDR 195
$BINDIR/../generic_unix/TME/ACF_REP 378
$BINDIR/TME/TEC directory 304
$BINDIR/TME/TEC/scripts directory 254
$BINDIR/TME/TEC/scripts/wstartmaint.sh 330
$COMMUNITY 195
$DBDIR/dependencies.pro file 240
$ENTERPRISE 195
$SOURCE_TIME 195
$SPECIFIC 195
$TYPE 195
$VARBIND 195
*.modem 248
.tec_gateway_diag_config file 363, 377
/tmp/notify_bob.out log file 256
/usr/OV/bin/ovxbeep 246
/usr/OV/bin/ovxecho 247
/usr/OV/ITLS2/conf/topo_server.ini 400
/usr/OV/log/trapd.trace 375
/usr/OV/prg_samples/nnm_examples/beep-
er/beep_951x 247
@limit_discovery 203
_cleanup_admin parameter 239
_cleanup_interval parameter 239
_cleanup_list parameter 239
_default_span parameter 239
_over_time parameter 337

A
ACF (Adapter Configuration Facility) 88, 91–92
ack_close_time 288
action node 226
actionable event 44, 58
Actionhandler tag 412
actionsvr daemon 120
activating rule set 345
Adapter Configuration Facility (ACF) 88, 91–92,
378–379
adapter configuration in NetView 193
adding a field to the NetView database 320
AdditionalLegalTrapCharacters 350
addtrap command 181
© Copyright IBM Corp. 2004. All rights reserved.
administrator name 287, 329
AIX installation notes 121
all_duplicates 236
all_instances 236
allEvents 214
ambiguous case 226
ambiguous exception 224
Apache smartset 133
API (application programming interface) 17, 104
application layer 143
application programming interface (API) 17, 104
Application Registration File (ARF) 409
applications 359
ARF (Application Registration File) 409
ArgList tag 412
assigning responsibilities 37
attribute 119
authentication trap 201
automated actions 5, 19, 343

executing 339
security fix in NetView 350
triggering 339

automated recovery 20
automatic rediscovery 154
automation 1–2, 4–5, 19, 77, 173, 338, 346, 354

best practices 78
cross-platform correlation 80
event flow 370
gathering diagnostic data 79
IBM Tivoli Enterprise Console 351
IBM Tivoli Monitoring 354
implementation considerations 80
in a NetView rule set 344
NetView 338
problem verification 79
recovery 80

avoiding unwanted unsecure events 208

B
back log 382
bad practice 50
BAROC (Basic Recorder of Objects in C) 95
Basic Recorder of Objects in C (BAROC) 95
 423

best practices 25, 237
automation 78
automation with NetView 349
correlation 51
customization 338
duplicate detection and throttling 50
escalation 60
event management products 173
event synchronization 67
filtering 44
filtering by limiting monitoring scope 202
flowchart 82
for NetView filtering 200
IBM Tivoli Enterprise Console gateway 212
maintenance mode 77
NetView console 247
notificiation 58
setting severities 277
severity mapping between tools 263
trapd.conf 175
trapd.log data 187
trouble ticketing 69
using NetView adapter 199

bidirectional update capability 308
binutils 123
blank.modem 248
block event display ruleset node 320
blocking traps 320
bo_set_slotval 294
boolean operator 119
buffer filtering 205
business impact 18, 62, 263

escalation rule 279
management 41
software 44

business impact escalation 18, 64, 66, 286

C
cache searching 381
called _assoc_flag 315
card mode 113
case study 357
cause_date_reception attribue 243
cause_event_handle attribute 243
CDS (class definition statement) file 206
centralized event management 21
change request 96
change rule 96

change_event_severity 294
Change_Severity task 295
check_cache_for_escalation 289
check_maintenance_mode rule 336
check_maintenance_timeout timer rule 336
check_overtime_timer timer rule 337
choose top X problems from each support area 28
class definition statement (CDS) file 206
classes to escalate 288
cleanup.rls 239
clearing event 48, 54
collector 100
collector event 100
collector rule 216
command

addtrap 181
executing from rule sets 343
executing from trapd.conf 339–340
IBM Tivoli Monitoring Query 230
itmquery 230
mib2trap 181
ovstart 144
ovstart itsl2 154
ovstart trapd 371
ovstatus trapd 371
ovstop 144
ovstop itsl2 154
ovtopodump -X 146, 148, 370
ovxbeep 246
ovxecho 246
postemsg 191
reorg 383
repetitive sequences 20
snmptrap 377
snmpwalk 146
wpostemsg 191
wrb 97–98

–comprules 209
–imptgtrule 209
–loadrb 209

wrb -comprules 389
wrb –deldp 241
wrb –imptdp 241
wsetesvrcfg 380
wtdumprl 377
xecho 181

command line utilities 157
comparison operator 119
compound rule 97
424 Event Management and Best Practices

connection-oriented service 92
consistent standards 36
console 209

IBM Tivoli Enterprise Console 249
Java-based 249–250
NetView 245
Web-based 249, 251

console filter 210
console filtering 209
core router 63
correlation 1, 8, 51, 95, 173, 218

avoiding upstream correlation 306
best practices 51
cross-host 14
cross-platform 13, 80
e-business 243
event flow 370
IBM Tivoli Enterprise Console 232
IBM Tivoli Monitoring 244
root cause 11
rule 97
sequence 237
topology-based 15, 56, 77
using NetView rules 226
with NetView and IBM Tivoli Switch Analyzer
218

correlation rule set 238, 240, 249
correlation.rls 238, 240
correlation_configure rule 240
correlation_parameters action 240
corrstat1 field 321
cprb option 98
create_event_criteria 299
critical 61
CRM (customer relationship management) 90
cross-host correlation 14
cross-platform correlation 13, 80
crtrp option 98
customer relationship management (CRM) 90
customization, best practices 338

D
daemon 144

trapd 119
Data Driven Event Management Design (DDEMD)
21, 31, 51
data flow 87
data link layer 143

data repository 43
database 358
database managed table 383
date_reception 243, 380
DB2 241
DB2 Universal Database 358
DDEMD (Data Driven Event Management Design)
21, 31, 51
debug parameter 378
debugging

NetView rules 395
rules with trace directive 388
state correlation 394
state correlation and rule sets in NetView 394

decentralized event management 21
decision node 226
de-duplication 45
de-escalation 44, 65
default XML file 99
definitions 94
dependency 238

rule set 240
dependency.rls 240
dependency_type 240
–detailed suboption 99
device

discovery 203
priority 18
type 18
unmanaging 204

diagnostics 20, 247, 370
disabled mode 221
discover

retry attempts for failed discovery 154
supported layer 2 devices 146

discovered service 133
discovery 146

network 103
problems 158
process 147
status 148
switch 155

discovery_interval field 154, 400
distributed management 103
distributed rule base 97
distribution router 63
dmae_mn_send_email 261
dmae_mn_send_notice 261
double monitor 45
 Index 425

downstream correlation from trouble-ticketing sys-
tem 306
downstream switch 167
dummy shell 105
dup_detect 216
duplicate 100
duplicate detection 7, 45, 50, 95, 212, 296, 314

IBM Tivoli Monitoring 217
implications 46

duplicate event 50, 100, 212
detection 45
suppressing 45

duplicate rule 216

E
e-business

correlation 243
rule set 238–240

ebusiness.rls 238–241
e-mail 16, 59
e-mail notification 239
e-mailing 57, 252
EMMD (Event Management and Monitoring Design)
28–29, 236
End User Interface (EUI) 105
EndDay 319
EndTime 319
enterprise tier 6
entry point into the hierarchy 6
entry tier of the hierarchy 6
epoch time 330
escalate.rls 239, 286, 291
escalate_configure 289
escalate_housekeeping 290
escalate_old_events 289
escalate_specific_event 290
escalating events

with IBM Tivoli Enterprise Console event server
285
with NetView 279

escalating severity using IBM Tivoli Enterprise Con-
sole rules 293
escalation 10, 17, 50, 60, 95, 236, 262, 274

best practices 60
business impact 18, 62, 66, 286
implementation considerations 65
in netview.Rls 285
intervals 62

rule 285
sequence 10
severity 263
time limits 288
to ensure problems are addressed 17
using escalate.rls 286
using event_thresholds.rls 291
worsening condition 64, 66, 284

escalation check frequency 287
escalation rule set 238–239, 286
escalation.rs rule 283
ESE.automation file 200, 345, 399
EUI 106, 403

behavior 113
configuration in NetView 402

EUI (End User Interface) 105
ev_classes 288
event 4, 94, 113, 217

actionable event 58
adapter 91, 94
avoiding unwanted unsecure events 208
browser 159
buffer filtering 205
cache searching 381
clearing 54
clearing event 8, 48
collector 100
colors for IBM Tivoli Enterprise Console 263
correlation 2, 4, 8, 236
correlation analysis 30
correlation problems and clearing 8
database 93, 216
duplicate 100
escalation 10, 262
filtering 7
filtering and forwarding 174
filtering nearer to the source 207
filtering rule set 238
flow 6, 370
forwarding 285
forwarding events of interest 210
group 209
handling 330
handling decisions 30
handling in maintenance mode 74
handling policies 29
handling related events 315
hanging or halted 399
ID 380
426 Event Management and Best Practices

informational event 58
internally generated 208
management 4
management hierarchy 26
management infrastructure 7
matching 100
name 43
notification 245
orphaned 67
problem event 58
processing 5, 119
processing concepts and issues 6
processing hierarchy 6
processing performance 381
processing tool 57
processors 6
raw 91
recovery 8
repertoires 30
repository 383
severity 5, 60, 68
severity escalation 129
source 6, 29
summary 245
symptom 52, 54
symptom event not requiring action 11
symptom event requiring action 12
synchronization 15
synchronization best practices 67
type 43
unhandled 60
verifying action taken 392
view 245

event attributes 327
node 327

event class 94, 252, 288
event console 93, 105, 112

configuration 403
Java 93

event management 1, 4
categories and best practices 25
policies and procedures 33
policies and standards 32
process guidelines 54
products 173
reviewing the process 33

Event Management and Monitoring Design (EMMD)
28–29, 236

approach 29

diagrams 31
methodology 29
tools 31
workbooks 31

Event Management Process Guidelines 54
event reception

in IBM Tivoli Enterprise Console 377
in NetView 371

event server 93, 95, 212, 216
CLOSED event synchronization 297, 300

event severity 252, 264, 288
in IBM Tivoli Enterprise Console 272
in Netview for UNIX 270
in NetView for Windows 271
in trouble-ticketing system 275

event synchronization 16, 66, 295–297
CLOSED from a high-level IBM Tivoli Enterprise
Console event server 300
CLOSED from a low level IBM Tivoli Enterprise
Console event server 297

event_filtering.rls 209, 238
event_handle 243, 380
event_thresholds.rls rule set 213, 291
examples 370
Exceed 105
exec_program predicate 254, 352
executing automated actions 339

F
fact file name 330
fact files 256
failover process 5
failure reporting 48
false positives 45
FDDI (Fiber Distributed Data Interface) 110
FFDC (first failure data capture) 130, 134
Fiber Distributed Data Interface (FDDI) 110
field to the NetView database 320
filter by SMEs 42
filtered dynamic work space 399
filtered event work space 346
filtering 7, 39–40, 174

at the source 7
bandwidth considerations 39
best practices 44
by limiting monitoring scope 202
by smartset 194
console 209
 Index 427

event buffer 205
event server limitations 39
events nearer to the source 207
how to filter 40
IBM Tivoli Enterprise Console 205
IBM Tivoli Monitoring 210
in tecad_nv6k.conf 198
manageability 40
NetView 174
NetView best practices 200
network considerations 39
redundant information 39
tecad_nv6k.cds 195
trapd.conf 182
using event_filtering.rls 209
what to filter 41
where to filter 41
why 39

filtering and forwarding 205
first failure data capture (FFDC) 130, 134
firstEvent 214
fixedWindow 215
flagging traps 320
flapping error condition 82
fluttering error condition 82
format file 205
forwardEvents 215
forwarding 7, 66, 174

events of interest and suppressing others 210
IBM Tivoli Enterprise Console 205, 346
IBM Tivoli Monitoring 210
NetView 174
traps to IBM Tivoli Event Console 159

forwarding.rls 297–298
forwarding_configure rule 298
fqhostname 241–242, 391
fqhostname attribute 333

G
gateway 92, 206, 212, 296, 377
generate_event predicates 236
generating sample events 391
group paging 72
GUI Rule Builder 99

H
HARMLESS severity 239
heartbeat rule set 239

heartbeat.rls 239
help desk 38
hiding traps from view 320
high risk server 63
Highest_level keyword 379
hole 217
host 133
host name 257
host_a 240
host_b 240
host-based maintenance 74
housekeeping frequency 287

I
IBM Event Management and Monitoring Design
(EMMD) 236
IBM Tivoli Business Systems Manager 64
IBM Tivoli Enterprise Console 205

automation 351
automation scripts 352
automation tasks 351
components 91
correlation 232
data flow 87
duplicate detection 212
escalating events 279
event colors 263
event reception 377
event server to escalate events 285
event severity escalation 129
event synchronization 295, 297
forwarding 346
gateway 92, 206, 212, 296
highlights 86
IBM Tivoli NetView 92
input 88
maintenance mode 328
monitoring and maintaining logs 383
multiple servers 297
notificaiton 249
output 90
overview 85
problem diagnosis 89
problem verification 347
processing 89
resolution attempts 89
revised integration for Version 7.1.3 125
revised integration for Version 7.1.4 128
428 Event Management and Best Practices

rule tracing 388
rules 207, 251
rules to escalate severity 293
scripts 254
setting severity 272
severity 263
state correlation engine 232
state correlation gateway 284
terms and definitions 94
throttling 212
trouble ticketing 302, 307
troubleshooting 377
Version 3.9 out-of-the-box rule 297
versus NetView for trouble ticketing 307

IBM Tivoli Event Console forwarding traps 159
IBM Tivoli Monitoring 260, 354

correlation 244
duplicate detection 217
filtering and forwarding 210
notification 260
throttling 217
Web Health Console 260

IBM Tivoli Monitoring for Business Integration 241
IBM Tivoli Monitoring for Databases 241
IBM Tivoli Monitoring for Web Infrastructure 241
IBM Tivoli Monitoring Query command 230
IBM Tivoli NetView 101
IBM Tivoli NetView distributed 103
IBM Tivoli Switch Analyzer 116, 399

correlation 218
daemons and processes 144
discovery 146
duplicate detection 212
features of V1.2.1 144
installation 364
ITSL2 Enterprise trap 159
layer 2 network management 142
layer 2 root cause 160
layer 3 network management insufficiencies
143
NetView layer 2 topology report 149
overview 141
root cause analysis 160
throttling 212
trap 159

IBM_DB2_Servers smartset 133
ibm5853.modem 248
ibm7855.modem 248
IHS smartset 133

implementation approach 26
choose top X problems from each support area
28
perform Event Management and Monitoring De-
sign 28
report only known problems and add them to the
list as they are identified 27
send all possible events 26
start with out-of-box notifications and analyze re-
iteratively 27

implementation plan 31
–import suboption 98
imprbrule option 99
imprprule option 99
incident report 81
indication 217
inetd 123
informational event 58
installation issues 363
installation notes 120
Integrated TCP/IP Services 102
integration platform 104
Interface Down trap 156
internally generated events 208
IP Internet map 107
IP segment symbol 110
IP status 149
IP Status attribute 417
IPaddress 319
IT environment assessment 21
itmquery command 230

examples 231
ITMQUERY function 129
ITSATool 147
ITSL2 Enterprise trap 159

J
Java event console 93
Java Runtime Environment (JRE) 121
Java-based console 249–250
JRE (Java Runtime Environment) 121

K
known problems 27

L
lab
 Index 429

approach 237
databases 358
environment 358
layout 359
network components 361
operating systems 358
servers 360
setup and diagram 359
software and operating systems 358
Tivoli products 358

lastEvent 214
latency 240, 287, 329
layer 142
layer 2

connectivity devices 224
devices 146
discovery report 150
network management 142
OID? 149
report 151
status 156
topology report 149

layer 3
network management insufficiencies 143
router fault isolation 160

Layer2Status field 156
Layer2Status field value 149
line mode 113
link_effect_to_cause predicate 243
Linux installation notes 123
load-balancing cluster 55
location symbol 109
logfile adapter 205, 212
long-term maintenance 328
lQ8Ekr suffix 398
–lsrbpack option 99
–lsrbrule option 99

M
machine layout 362
maintenance event severity 329
maintenance mode 19, 72, 318

automate 73
automation 81
handling through NetView rules 320
host-based maintenance 74
IBM Tivoli Enterprise Console 328
initiating 330

NetView 315
network topology considerations 76
prolonged 75
rule set 238, 329
status notification 73
system events 74
terminating 334
unmanaging SNMP devices 316

maintenance_mode.rls 238, 329, 334
rule 335
test cases 337
testing 337

maintenance_mode_configure
configuration rule 337

maintenance_mode_configure rule 335
maintenance_received rule 335
manager 38
manager submap 107
map 105
map view 105
marginal status 417
match rule 206
matching event 100
mean-time to repair 20, 33, 45, 50, 55, 79
menu integration 124
Method tag 412
MIB browser 106
mib2trap command 181
monitoring 126
monitoring scope 202
multiple servers 297

N
naming convention 36, 359
native NetView console 105
nested location 109
netfmt command 375
netmon configuration 225
netmon seed file 203, 230, 410
nettl command 374
nettl operation 374
NetView 92, 245

adapter 191
adapter configuration 193
Application Registration File (ARF) 409
automation 338
automation in a rule set 344
best practices for using the adapter 199
430 Event Management and Best Practices

changes in 7.1.3 and 7.1.4 124
command line utilities 157
console 245
console best practice 247
correlation with IBM Tivoli Switch Analyzer 218
debugging rules 395
debugging state correlation and rule sets 394
duplicate detection 212
escalating events 279
EUI 105, 112
EUI configuration 402
event console 105, 112
event console configuration 403
event synchronization 295
features and enhancements for Version 7.1.3
124
filtering and forwarding 174
filtering best practices 200
GUI 414
IBM Tivoli Enterprise Console event severity es-
calation 129
IBM Tivoli NetView distributed 103
installation issue 364
installing the adapter 192
Integrated TCP/IP Services 102
integration into the topology map 157
layer 2 topology report 149
maintenance mode 315
map view 105
maps, submaps 106
native console 105
new features, enhancements for Version 7.1.4
126
new functions in Version 7.1.4 131
overview 101
paging rules 247
revised Tivoli Enterprise Console integration for
Version 7.1.3 125
revised Tivoli Enterprise Console integration for
Version 7.1.4 128
root cause analysis 160
Router Fault Isolation (RFI) 221
rules 199
rules for correlation 226
security fix impact on automated actions 350
severity 263
smartset example 417
Submap Explorer 157
suggested configuration 401

TEC Integrated TCP/IP Services 103
throttling 212
tool window 105
trap color 263
trapd.conf 175
using rules to handle maintenance mode 320
versus IBM Tivoli Enterprise Console for trouble
ticketing 307
visualization components 104
Web Application Registration File (WARF) 409
Web console 114, 156–157

applet 406
installation 404
menu extension 408
menu integration 124
security 407
stand-alone installation 404

NetView database, adding a field 320
NetView layer 3 router fault isolation 160
NetView rule set 238–239
netview.rls 125, 238–239, 286, 295

escalation 285
rule set 399

netviewd daemon 123
network

component 361
discovery 103
layer 143
layout 362
topology considerations 76

newhayes.modem 248
node 327

block event display ruleset 320
name 149
override 327
override ruleset 279, 320
Query Database Field 325–326
removing 162

Node added trap 155
non-TME adapter 192
not equal norma 418
notification 16, 56, 217, 236, 244, 252, 260

best practices 58
chain 278
how to 56
IBM Tivoli Enterprise Console 249
maintenance mode status 73
NetView 245
out-of-the-box 27
 Index 431

rule set 238
notify.rls 238, 252, 254

customizing for which events to send notifica-
tions 252

Notify_Bob 256
notify_bob script 256
Notify_Bob.Sh 256
notify_configure rule 252, 254
notify_for_fatal_events rule 254
nv.carriers 248
nvcold daemon 127
nvcord 396
nvcorrd daemon 119
nvdbimport command 322
nvmaputil utlity 317
nvpage command 248–249
nvpager.config 248
nvpagerd daemon 120
nvpaging.protocols 249
nvserverd daemon 120, 189
nvsetup 414
nvsniffer daemon 126

O
-o DESC option 377
object list 119
occurrence 217
OLA (operations-level agreement) 61
oldhayes.modem 248
on-call list 72
Open Maintenance event group 337
Open Systems Interconnection (OSI)

application layer 143
data link layer 143
layers 142
model 141–142
network layer 143
physical layer 142
presentation layer 143
session layer 143
transport layer 143

open_ack_time 288
operating system 358

supported 121
operations-level agreement (OLA) 61
operator

boolean 119
comparison 119

operator-initiated rediscovery 154
organizational considerations 21
orphaned event 67
OSI (Open Systems Interconnection) 141–142
out-of-the-box rule 239, 252
ovactiond daemon 397

customizing 342
performance considerations 343

ovelmd 120
override node 327
override ruleset node 279, 320
ovesmd daemon 120
ovstart command 144
ovstart itsl2 command 154
ovstart trapd command 371
ovstatus trapd command 371
ovstop command 130, 144
ovstop itsl2 command 154
ovtopodump -X command 146, 148, 370
OVW Maps Exists field 316
OVW Maps Managed field 316
OVwDb object ID 149
ovxbeep command 246
ovxecho command 246

P
P%wKiw suffix 398
paging 16, 57, 59, 247, 252

group 72
rules 247
utility 247

partition
appearance 223
identification 223
suppressed polling 224

pass-through 100
rule 232

pdksh 123
Peregrine priority code 275
Peregrine ServiceCenter 302, 308
perform Event Management and Monitoring Design
28
physical layer 142
place_change_request 294
plain rule 96
planning considerations 20
pmd daemon 119
policies 23
432 Event Management and Best Practices

and procedures 33
enforcing 38

polling 224
interval 133
to routers 225

PollTypes 319
pop-up window 16, 245
post mortem 34, 44, 50
postemsg command 191
presentation layer 143
primary event 11
probabilistic mode 221
problem diagnosis 89
problem event 8, 58
problem post mortem 44
problem verification 19, 79, 81, 346–347

automation 346
process owner 37
PROCESSED event 380
processes 144
processing events 119
processing logic 333
profiles to limit 211
project deliverables 30
prolog rule 235
prolog-based rule 99
prolonged maintenance mode 75

Q
qblazer.modem 248
Query Database Field node 325–326
QUEUED event 380

R
raw event 91
RDBMS Interface Module (RIM) 93
real-life example 161
reception buffer 380
reception log 383
recovery 20, 80, 223

actions 346
commands 5
event 8

rediscovery 154
operator initiated 154

redo request 96
referenceNo slot 309
related events 315

reorg command 383
repetitive command sequences 20
report only known problems, add to list as identified
27
report_period 382
reset on match event 100
reset on match rule 233
resetOnMatch 100
resolution attempts 89
Resource Model Builder (RMB) utility 211
resource models 210
responsibilities 37
retry attempts for failed discovery 154
RFI (Router Fault Isolation) 160, 218
RIM (RDBMS Interface Module) 93
RMB (Resource Model Builder) utility 211
root cause 11

analysis 103
analysis using IBM Tivoli Switch Analyzer and
NetView 160
correlation 11
of layer 2 in IBM Tivoli Switch Analyzer analysis
160
router 224

root map 106
root.baroc 95
root.baroc EVENT class 310
router analysis 223
Router Fault Isolation (RFI) 160, 218

configuration 221
enabling and disabling 225
mode 221
NetView 221
overview 219
stopping 221

router link, defective 168
Router Status trap 160
rule 95, 117, 143, 161, 247, 417

business impact escalation 279
cache 380
change rule 96
collector 216
configuring maintenance_mode.rls 329
correlation 95
correlation rule 97
debugging in NetView 395
debugging with trace directive 388
duplicate 216
duplicate detection 95
 Index 433

e-mailing 252
escalation 95, 285
escalation.rs 283
event synchronization 295
for long-term maintenance 328
IBM Tivoli Enterprise Console 207, 251
maintenance 328
maintenance_mode.rls 335
matching 206
out-of-the-box 239, 252
paging 247, 252
pass-through 232
plain rule 96
prolog 235
prolog-based 99
reset on match 233
scripts 254
simple rule 97
smartset 118–119
state correlation 233
state correlation gateway 347
state-based 100
thresholding 95, 100
timer rule 96
trouble ticketing 236

rule base 97, 235, 381
design approaches 236
distributed 97
rule set sequencing and dependencies 238
target 97
writing best practices 235

Rule Cache full: forced cleaning 381
rule pack 98
rule set 98, 120, 394, 397

activating 345
correlation 238, 240
dependency 240
directory problems 398
e-business 238–240
escalation 239, 286

escalate.rls 238
event filtering 238
executing commands 343
heartbeat 239
maintenance mode 238, 329
NetView 238–239
netview.rls 399
notification 238
sequencing and dependencies 238

trouble ticketing 238
using 199

rule_sets file 238
–rulepacks suboption 98
ruleset editor 199, 397
–rulesets suboption 98

S
sample events 391
sample_period 382
scenter.rls 310
SCpmClosed class 314
SCpmOpen class 308
Scpmopened 313
scripts 254
secondary event 11
Secure Sockets Layer security 125
security fix 350
seed file 203

netmon 410
segment symbol 110–111
send all possible events 26
sequencing 238
server_handle 380
servers 360
serversetup command 342
service decomposition 29
service discovery 126
Service Down Delete Interval 133
service monitor 126
service-level agreement (SLA) 18, 61, 263
servmon 126, 131, 164

Apache smartset 133
application 117
daemon 131
IBM_DB2_Servers 133
IHS 133
polling interval 133
Service Down Delete Interval 133
WebSphereServers 133

servmon.log 132
session layer 143
set_event_severity 293
set_fqhostname rule 241
severity 5, 60, 68, 257, 263, 288

critical 61
defining 34
escalation 129, 262
434 Event Management and Best Practices

event 252
HARMLESS 239
IBM Tivoli Enterprise Console 263
maintenance event 329
mapping between tools 263
NetView 263
setting 264, 277

event severity in NetView for Windows 271
trap severity in NetView for UNIX 264
trap severity in NetView for Windows 267

trouble ticket 263
UNKNOWN 239
warning 61

simple rule 97
skill level 22
SLA (service-level agreement) 18, 61
slideWindow 216
smartset 117, 133, 321

editor 118
example 417
filtering 194
membership 126
node 126
rule 118–119
submap 107

SNMP address 149
SNMP device in maintenance mode 316
SNMP management 103
SNMP trap 119

forwarding using trapd.conf 183
snmptrap command 377
snmpwalk command 146
source 91
standards 23
start with out-of-box notifications and analyze reiter-
atively 27
Start_Maintenance task 331
start_maintenance_timer timer rule 336
StartDay 319
StartTime 319
state change monitoring 296
state correlation 99, 213–214, 284, 361, 377, 394

engine 99–100, 232
gateway 92, 284
gateway rule 347
rule 99, 206–207, 233

state machine 99
state-based rule 100
status 67

determining 156
displaying 156
marginal 417
not equal normal 418

Status Events 182
subject matter expert 38
submap 107
Submap Explorer 157
subnet 119
summary report 151
supplied rule set 307
support staff 38
supported operating system 121
supported platforms 120
suppression 45

events 210
implications 46
polling in a partition 224

switch discovery 155
switch exception 224
symptom 11
symptom event 52, 54

not requiring action 11
requiring action 12

Symptom Events 12
sysObjectID 149
system configuration 37
systems management architect 37
systems management tool implementations 33

T
tablespace 383
tasks 261
TEC Integrated TCP/IP Services 103
TEC_Class 257
TEC_Error class 253
tec_forward.conf file 299, 301
tec_gateway 363
tec_gateway.conf file 363, 377
tec_gateway_sce 363
TEC_Notice event 381
tec_reception trace file 382
tec_t_evt_rec_log table 383
tec_t_evt_rep table 383
TEC_Test_Event 299
tecad_nv6k.cds file 195, 271
tecad_nv6k.cfg file 192
tecad_nv6k.conf 198
 Index 435

terminology 4
terms 94
testdowns.rs 347
third-party processes 137
threshold 100
thresholding 95
thresholding rule 100
throttling 7–8, 45, 50, 212, 291

IBM Tivoli Monitoring 217
time stamp 43
time window 100, 214–215, 234, 382

considerations 46
time-based rule 100
timer rule 96
timing considerations 15
Tivoli Availability Intermediate Manager 92
Tivoli Data Warehouse 104
Tivoli Management Region (TMR) server 232
Tivoli Monitoring for Business Integration 241
Tivoli Monitoring for Databases 241
Tivoli Monitoring for Web Infrastructure 241
Tivoli NetView 101
Tivoli products 358
Tivoli software 363
TME 10 Framework 192
TME adapter 192
TMR server 232
tool implementer 38
tool usage 22
tool window 105
topo_server log 149
topology display 103
topology map 157
topology view 245
topology-based correlation 15, 56, 77
trace 379
trace directive 388
transport layer 143
trap 159
trap color 263
trap escalation 279
trap severity

in NetView for UNIX 264
in NetView for Windows 267

trapd daemon 119
trapd -T command 375
trapd.conf 175, 339

adding entries 176
configuring command execution 340

filtering 182
forwarding SNMP traps 183

trapd.log file 119, 175, 182, 201
maintaining 186

trapfrwd daemon 185
triggering automated actions 339
trouble ticket 17

severity 263
trouble ticket ID (ttid) 304, 306
trouble ticketing 17, 68, 360

best practices 69
escalating events 279
group paging 72
IBM Tivoli Enterprise Console 302, 307
NetView versus IBM Tivoli Enterprise Console
307
on-call list 72
prioritization 71
rule 236
rule set 238
system 244
system severity 275

troubleshooting IBM Tivoli Enterprise Console 377
troubleticket.rls rule 302, 307, 315
TroubleTicket.sh 304
trouble-ticketing integration 302
trouble-ticketing software 307
trouble-ticketing system 17, 57, 65–68

downstream correlation 306
integration with event processor 69

Truncate_on_restart keyword 379
ttid (trouble ticket ID) 304, 306

U
ucd-snmpd 123
unhandled events 60
UNKNOWN severity 239
unmanaged subnet 224
unsecure events 208
unwanted unsecure events 208
update capability, bidirectional 308
ups_fatal_forwarding 299
upstream correlation 306
upward synchronization 296
user interface server 93

V
visualization component 104
436 Event Management and Best Practices

W
WAITING event 380
WARF (Web Application Registration File) 124, 409
warf directory 409
warning 61
Web Application Registration File (WARF) 124, 409
Web console 114, 156

applet 406
installation 404
menu extension 408
menu integration 124
NetView 157
security 407
stand-alone installation 404

Web event console 94
Web Health Console 260
Web-based console 249, 251
WebSphere Application Server 241
WebSphere MQ 241
WebSphere_MQ_ChannelNotTransmitting event
243
Websphere_MQ_QueueManagerUnavailable event
243
WebSphereServers smartset 133
worsening condition 52, 64, 66

escalation 284, 291
wpostemsg command 191
wrb command 97–98
wrb -comprules command 389
wrb –deldp command 241
wrb –imptdp command 241
wsetesvrcfg command 380
wtdumper 291
wtdumprl command 377

X
xecho command 181
xextra 123
XFree86-Xvfb 123
XML file 99
xvfb 123
 Index 437

438 Event Management and Best Practices

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Event M
anagem

ent and Best Practices

®

SG24-6094-00 ISBN 0738497878

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Event Management
and Best Practices
Implement and use
best practices for
event processing

Customize IBM Tivoli
products for event
processing

Diagnose IBM Tivoli
Enterprise Console,
NetView, Switch
Analyzer

This IBM Redbook presents a deep and broad understanding
about event management with a focus on best practices. It
examines event filtering, duplicate detection, correlation,
notification, escalation, and synchronization. Plus it discusses
trouble-ticket integration, maintenance modes, and
automation in regard to event management.

Throughout this book, you learn to apply and use these
concepts with IBM Tivoli® Enterprise™ Console 3.9,
NetView® 7.1.4, and IBM Tivoli Switch Analyzer 1.2.1. Plus
you learn about the latest features of these tools and how they
fit into an event management system.

This redbook is intended for system and network
administrators who are responsible for delivering and
managing IT-related events through the use of systems and
network management tools. Prior to reading this redbook, you
should have a thorough understanding of the event
management system in which you plan to implement these
concepts.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to event management
	1.1 Importance of event correlation and automation
	1.2 Terminology
	1.2.1 Event
	1.2.2 Event management
	1.2.3 Event processing
	1.2.4 Automation and automated actions

	1.3 Concepts and issues
	1.3.1 Event flow
	1.3.2 Filtering and forwarding
	1.3.3 Duplicate detection and throttling
	1.3.4 Correlation
	1.3.5 Event synchronization
	1.3.6 Notification
	1.3.7 Trouble ticketing
	1.3.8 Escalation
	1.3.9 Maintenance mode
	1.3.10 Automation

	1.4 Planning considerations
	1.4.1 IT environment assessment
	1.4.2 Organizational considerations
	1.4.3 Policies
	1.4.4 Standards

	Chapter 2. Event management categories and best practices
	2.1 Implementation approaches
	2.1.1 Send all possible events
	2.1.2 Start with out-of-the-box notifications and analyze reiteratively
	2.1.3 Report only known problems and add them to the list as they are identified
	2.1.4 Choose top X problems from each support area
	2.1.5 Perform Event Management and Monitoring Design

	2.2 Policies and standards
	2.2.1 Reviewing the event management process
	2.2.2 Defining severities
	2.2.3 Implementing consistent standards
	2.2.4 Assigning responsibilities
	2.2.5 Enforcing policies

	2.3 Filtering
	2.3.1 Why filter
	2.3.2 How to filter
	2.3.3 Where to filter
	2.3.4 What to filter
	2.3.5 Filtering best practices

	2.4 Duplicate detection and suppression
	2.4.1 Suppressing duplicate events
	2.4.2 Implications of duplicate detection and suppression
	2.4.3 Duplicate detection and throttling best practices

	2.5 Correlation
	2.5.1 Correlation best practices
	2.5.2 Implementation considerations

	2.6 Notification
	2.6.1 How to notify
	2.6.2 Notification best practices

	2.7 Escalation
	2.7.1 Escalation best practices
	2.7.2 Implementation considerations

	2.8 Event synchronization
	2.8.1 Event synchronization best practices

	2.9 Trouble ticketing
	2.9.1 Trouble ticketing best practices

	2.10 Maintenance mode
	2.10.1 Maintenance status notification
	2.10.2 Handling events from a system in maintenance mode
	2.10.3 Prolonged maintenance mode
	2.10.4 Network topology considerations

	2.11 Automation
	2.11.1 Automation best practices
	2.11.2 Automation implementation considerations

	2.12 Best practices flowchart

	Chapter 3. Overview of IBM Tivoli Enterprise Console
	3.1 The highlights of IBM Tivoli Enterprise Console
	3.2 Understanding the IBM Tivoli Enterprise Console data flow
	3.2.1 IBM Tivoli Enterprise Console input
	3.2.2 IBM Tivoli Enterprise Console processing
	3.2.3 IBM Tivoli Enterprise Console output

	3.3 IBM Tivoli Enterprise Console components
	3.3.1 Adapter Configuration Facility
	3.3.2 Event adapter
	3.3.3 IBM Tivoli Enterprise Console gateway
	3.3.4 IBM Tivoli NetView
	3.3.5 Event server
	3.3.6 Event database
	3.3.7 User interface server
	3.3.8 Event console

	3.4 Terms and definitions
	3.4.1 Event
	3.4.2 Event classes
	3.4.3 Rules
	3.4.4 Rule bases
	3.4.5 Rule sets and rule packs
	3.4.6 State correlation

	Chapter 4. Overview of IBM Tivoli NetView
	4.1 IBM Tivoli NetView (Integrated TCP/IP Services)
	4.2 NetView visualization components
	4.2.1 The NetView EUI
	4.2.2 NetView maps and submaps
	4.2.3 The NetView event console
	4.2.4 The NetView Web console
	4.2.5 Smartsets
	4.2.6 How events are processed

	4.3 Supported platforms and installation notes
	4.3.1 Supported operating systems
	4.3.2 Java Runtime Environments
	4.3.3 AIX installation notes
	4.3.4 Linux installation notes

	4.4 Changes in NetView 7.1.3 and 7.1.4
	4.4.1 New features and enhancements for Version 7.1.3
	4.4.2 New features and enhancements for Version 7.1.4
	4.4.3 First failure data capture

	4.5 A closer look at the new functions
	4.5.1 servmon daemon
	4.5.2 FFDC

	Chapter 5. Overview of IBM Tivoli Switch Analyzer
	5.1 The need for layer 2 network management
	5.1.1 Open Systems Interconnection model
	5.1.2 Why layer 3 network management is not always sufficient

	5.2 Features of IBM Tivoli Switch Analyzer V1.2.1
	5.2.1 Daemons and processes
	5.2.2 Discovery
	5.2.3 Layer 2 status
	5.2.4 Integration into NetView’s topology map
	5.2.5 Traps
	5.2.6 Root cause analysis using IBM Tivoli Switch Analyzer and NetView
	5.2.7 Real-life example

	Chapter 6. Event management products and best practices
	6.1 Filtering and forwarding events
	6.1.1 Filtering and forwarding with NetView
	6.1.2 Filtering and forwarding using IBM Tivoli Enterprise Console
	6.1.3 Filtering and forwarding using IBM Tivoli Monitoring

	6.2 Duplicate detection and throttling
	6.2.1 IBM Tivoli NetView and Switch Analyzer for duplicate detection and throttling
	6.2.2 IBM Tivoli Enterprise Console duplicate detection and throttling
	6.2.3 IBM Tivoli Monitoring for duplicate detection and throttling

	6.3 Correlation
	6.3.1 Correlation with NetView and IBM Tivoli Switch Analyzer
	6.3.2 IBM Tivoli Enterprise Console correlation
	6.3.3 IBM Tivoli Monitoring correlation

	6.4 Notification
	6.4.1 NetView
	6.4.2 IBM Tivoli Enterprise Console
	6.4.3 Rules
	6.4.4 IBM Tivoli Monitoring

	6.5 Escalation
	6.5.1 Severities
	6.5.2 Escalating events with NetView

	6.6 Event synchronization
	6.6.1 NetView and IBM Tivoli Enterprise Console
	6.6.2 IBM Tivoli Enterprise Console gateway and IBM Tivoli Enterprise Console
	6.6.3 Multiple IBM Tivoli Enterprise Console servers
	6.6.4 IBM Tivoli Enterprise Console and trouble ticketing

	6.7 Trouble ticketing
	6.7.1 NetView versus IBM Tivoli Enterprise Console
	6.7.2 IBM Tivoli Enterprise Console

	6.8 Maintenance mode
	6.8.1 NetView
	6.8.2 IBM Tivoli Enterprise Console

	6.9 Automation
	6.9.1 Using NetView for automation
	6.9.2 IBM Tivoli Enterprise Console
	6.9.3 IBM Tivoli Monitoring

	Chapter 7. A case study
	7.1 Lab environment
	7.1.1 Lab software and operating systems
	7.1.2 Lab setup and diagram
	7.1.3 Reasons for lab layout and best practices

	7.2 Installation issues
	7.2.1 IBM Tivoli Enterprise Console
	7.2.2 NetView
	7.2.3 IBM Tivoli Switch Analyzer

	7.3 Examples and related diagnostics
	7.3.1 Event flow
	7.3.2 IBM Tivoli Enterprise Console troubleshooting
	7.3.3 NetView
	7.3.4 IBM Tivoli Switch Analyzer

	Appendix A. Suggested NetView configuration
	Suggested NetView EUI configuration
	Event console configuration
	Web console installation
	Web console stand-alone installation
	Web console applet

	Web console security
	Web console menu extension
	A smartset example

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

